Recall from last time:
- Truncated TOM(n, k) has area $O(n^2 k^2)$.
- TOM(n) has area $O(n^2 l g^2 n)$.
- If G has a (w, α) decom tree, it has a $(O(w), \alpha)$ balanced decom tree.

Theorem
Every N-node graph with a $(w, \sqrt{2})$ decom tree can be laid out in $O(w^2 l g^2 (N/w))$ area.

Pf.
Get an $(O(w), \sqrt{2})$ balanced decom tree for G.

Embed G in TOM$(cw, 2 l g (N/w))$ for some constant c:

![Diagram](image)

Leaf meshes:
- #nodes $= \frac{(cw)^2}{2^{\frac{1}{2}l g (N/w)}} = \frac{c^2 w^2}{N^2 / w^2} = \frac{c^2 w^4}{N^2}$
- Side length $= \frac{c w^2}{N}$

- #vertices in leaf meshes $= \frac{N}{2^{\frac{1}{2}l g (N/w)}} = \frac{N}{N^2 / w^2} = \frac{w^2}{N}$

- #edges leaving leaf mesh $= \frac{O(w)}{(\sqrt{2})^{\frac{1}{2}l g (N/w)}} = \frac{O(w)}{N/w} = O\left(\frac{w^2}{N}\right)$

By adjusting c, can route edges within mesh + room on perimeter for wires to escape.
At depth p, side length of mesh is $\geq \frac{cw}{2^{p/2}}$.

#edges leaving = $O(w)/(\sqrt{2})^{p-1} = O(w)/2^{p/2}$.

Adjust c for adequate capacity.

Routing internal-node meshes:

![Diagram of routing internal-node meshes]

Type 1 & 2: 2 layers each.
Type 3: 3 layers.

... 7 layers (squash to 2 if desired).

Area of $TOM(cw, 2\log(N/w))$ is

$O((cw)^2 (2\log(N/w))^2) = O(w^2 \log^2(N/w))$\(\checkmark\)

Corollary. Let w be smallest value for a $(w, \sqrt{2})$ decomp tree for N-node graph G. Let A be min area.

Then, $w^2 \leq A \leq O(w^2 \log^2(N/w))$.

PF.

![Diagram of area calculation]

#edges leaving subgraph at depth p

$\leq \frac{\sqrt{A}}{\sqrt{2}}^{p-1}$

$\therefore G$ has $(\sqrt{A}, \sqrt{2})$ decomp tree. $\Rightarrow w \leq \sqrt{A}$.\(\checkmark\)
\textbf{Which network is best?}

<table>
<thead>
<tr>
<th>Network</th>
<th>Area</th>
<th>Routing Time</th>
<th>AT^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear array</td>
<td>N</td>
<td>N</td>
<td>N^3</td>
</tr>
<tr>
<td>2D array</td>
<td>N</td>
<td>\sqrt{N}</td>
<td>N^2</td>
</tr>
<tr>
<td>3D array</td>
<td>$N^{1/3}$</td>
<td>$N^{1/3}$</td>
<td>N^2</td>
</tr>
<tr>
<td>CBT</td>
<td>N</td>
<td>N</td>
<td>N^3</td>
</tr>
<tr>
<td>hypercube</td>
<td>N^2</td>
<td>$\lg N$</td>
<td>$N^2 \lg^2 N$</td>
</tr>
<tr>
<td>butterfly</td>
<td>$N^{2/3} N$</td>
<td>$\lg N$</td>
<td>N^2</td>
</tr>
<tr>
<td>2D MOT</td>
<td>$N \lg^2 N$</td>
<td>\sqrt{N}</td>
<td>$N^2 \lg^2 N$</td>
</tr>
</tbody>
</table>

Universality: An N-node butterfly can simulate any other N-node bounded-degree network with $O(\lg N)$ slowdown, just by routing messages.

Universal = expensive?

VLSI perspective: normalize to area, not \# procs.

Area A network. Route A packets:

- 2D array: $N = A$
 - Route A packets in \sqrt{A} time
- Butterfly: $N = \sqrt{A} \lg A$ ($\lg A \sim \lg N$)
 - Route N packets in $\lg N$ time
 \[\frac{A}{\sqrt{A} \lg A} = \frac{\sqrt{A}}{\lg A} \]

$TA/\lg A$ batches of $\sqrt{A} \lg A$ packets, each taking $\lg A$ time. Total time = $\sqrt{A} / \lg A \times \lg A = \sqrt{A}$.

Same! (Reason: basically since $AT^2 = N^2$ for both).

\textbf{How can we compare?} Ans. Simulate.

- Can an area-A butterfly simulate any other area-A network efficiently? ($O(\lg A)$ slowdown)
 - Can't even do linear array.

 \[\# \text{procs in butterfly} = \sqrt{A} \lg A \]
 \[\# \text{procs in lin. array} = A \]
 \[\text{Slowdown} = \frac{A}{\sqrt{A} \lg A} = \frac{\sqrt{A}}{\lg A} \]
1D array can't sim. 2D array (draw)
2D array can't sim CBT (digraph).
CBT can't sim. 2D array (brs. width).
2D MOT can sim others with $\lg^2 A$ slowdown.

Next time: "Area-universal" networks.
 Idea: physical structure is TOM, but low dram.
 "Fat-trees"

«Reminder: catch up on reading for final>>