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Abstract 

When two parallel threads holding no locks in common access the 
same memory location and at least one of the threads modifies the 
location, a “data race” occurs, which is usually a bug. This paper 
describes the algorithms and strategies used by a debugging tool, 
called the Nondeterminator-2, which checks for data races in pro- 
grams coded in the Cilk multithreaded language. Like its predeces- 
sor, the Nondeterminator, which checks for simple “determinacy” 
races, the Nondeterminator-2 is a debugging tool, not a verifier, 
since it checks for data races only in the computation generated 
by a serial execution of the program on a given input. 

We give an algorithm, ALL-SETS, that determines whether the 
computation generated by a serial execution of a Cilk program on a 
given input contains a race. For a program that runs serially in time 
T, accesses V shared memory locations, uses a total of n locks, 
and holds at most k << n locks simultaneously, ALL-SETS runs in 
O(r#Tcx(V,V)) time and O(dV) space, where a is Tarjan’s func- 
tional inverse of Ackermann’s function. 

Since ALL-SETS may be too inefficient in the worst case, we 
propose a much more efficient algorithm which can be used to de- 
tect races in programs that obey the “umbrella” locking discipline, a 
programming methodology that is more flexible than similar disci- 
plines proposed in the literature. We present an algorithm, BRELLY, 
which detects violations of the umbrella discipline in O(kT cx(V, V)) 
time using O(kV) space. 

We also prove that any “abelian” Cilk program, one whose crit- 
ical sections commute, produces a determinate final state if it is 
deadlock free and if it generates any computation which is data- 
race free. Thus, the Nondeterminator-2’s two algorithms can verify 
the determinacy of a deadlock-free abelian program running on a 
given input. 
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int x; cilk void foo3() { 
Cilk-lockvar A, B; Cilk-lock(&B); 

x++ ; 
cilk void fool0 { Cilk-unlock(&B); 

Cilk-lock(&A); 3 
Cilk-lock(&B); 
x += 5; cilk int main0 C 
Cilk-unlock(&B); Cilk-lock-init( 
Cilk-unlock(&A); Cilk-lock-init( 

3 x = 0; 
spawn fool(); 

cilk void foo20 ( spawn foo20; 
Cilk-lock(&A); apavn foo30 ; 
x -= 3; sync ; 
Cilk-unlock(&A); printf (“%d”, x) ; 

3 3 
Figure 1: A Cilk program with a data race. Cilk 13, 4. 6, 1.5, 201 is a 
multithreaded parallel language based on C being developed at the MIT 
Laboratory for Computer Science. The spawn statement in a Cilk program 
creates a parallel subprocedure, and the sync statement provides control 
synchronization to ensure that all spawned subprocedures have completed. 
The function Cilk-lock0 acquires aspecified lock, and CilkxnlockO 
releases a currently held lock. 

1 Introduction 

In a parallel multithreaded computation, a data race exists if logi- 
cally parallel threads access the same location, the two threads hold 
no locks in common, and at least one of the threads writes to the lo- 
cation. A data race is usually a bug, because depending on how the 
threads are scheduled, the program may exhibit unexpected, non- 
deterministic behavior. If the two threads hold a lock in common, 
however, the nondeterminism is not usually a bug. By introducing 
locks, the programmer presumably intends to allow the locked crit- 
ical sections to be scheduled in either order, as long as they are not 
interleaved. 

Figure 1 illustrates a data race in a Cilk program. The procedures 
fool, f 002, and f oo3 run in parallel, resulting in parallel accesses 
to the shared variable x. The accesses by fool and f oo2 are pro- 
tected by lock A and hence do not form a data race. Likewise, the 
accesses by fool and f oo3 are protected by lock B. The accesses 
by foo2 and foo3 are not protected by a common lock, however, 
and therefore form a data race. If all accesses had been protected 
by the same lock, only the value 3 would be printed, no matter how 
the computation is scheduled. Because of the data race, however, 
the value of x printed by main might be 2, 3, or 6, depending on 
scheduling, since the statements in f oo2 and f oo3 are composed 
of multiple machine instructions which may interleave, possibly re- 
sulting in a lost update to x. 

Since a data race is usually a bug, automatic data-race detection 
has been studied extensively. Static race detectors [25] can some- 
times determine whether a program will ever produce a data race 
when run on all possible inputs. Since static debuggers cannot fully 
understand the semantics of programs, however, most race detectors 
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are dynamic tools in which potential races are detected at runtime 
by executing the program on a given input. Some dynamic race 
detectors perform a post-mortem analysis based on program exe- 
cution traces [ 12, 18, 23,261, while others perform an “on-the-fly” 
analysis during program execution. On-the-fly debuggers directly 
instrument memory accesses via thecompiler [9, 10, 13, 14,22,29], 
by binary rewriting [32], or by augmenting the machine’s cache co- 
herence protocol [24,30]. 

The race-detection algorithms in this paper are based on the Non- 
determinator [13], which finds “determinacy races” in Cilk pro- 
grams that do not use locks. The Nondeterminator executes a Cilk 
program serially on a given input, maintaining an efficient “SP- 
bags” data structure to keep track of the logical series/parallel rela- 
tionships between threads. For a Cilk program that runs serially 
in time T and accesses V shared-memory locations, the Nonde- 
terminator runs in O(Ta(V,V)) time and O(V) space, where a is 
Tarjan’s functional inverse of Ackermann’s function, which for all 
practical purposes is at most 4. 

The Nondeterminator-2, which is currently under development, 
finds data races in Cilk programs that use locks. This race detector 
contains two algorithms, both of which use the same efficient SP- 
bags data structure from the original Nondeterminator. The first 
of these algorithms, ALL-SETS, is an on-the-fly algorithm which, 
like most other race-detection algorithms, assumes that no locks are 
held across parallel control statements, such as spawn and sync. 
The second algorithm, BRELLY, is a faster on-the-fly algorithm. 
but in addition to reporting data races as bugs, it also reports as 
bugs some complex (but race-free) locking protocols. 

The ALL-SETS algorithm executes a Cilk program serially on 
a given input and either detects a data race in the computation or 
guarantees that none exist. For a Cilk program that runs serially in 
time T, accesses V shared-memory locations, uses a total of n locks, 
and holds at most k < n locks simultaneously, ALL-SETS runs in 
O(nkT CL( V, V)) time and 0(&V) space. Tighter, more complicated 
bounds on ALL-SETS will be given in Section 2. 

In previous work, Dinning and Schonberg’s “lock-covers” algo- 
rithm [IO] also detects all data races in a computation. The ALL- 

SETS algorithm improves the lock-covers algorithm by generalizing 
the data structures and techniques from the original Nondetermina- 
tor to produce better time and space bounds. Perkovic and Keleher 
[30] offer an on-the-fly race-detection algorithm that “piggybacks” 
on a cache-coherence protocol for lazy release consistency. Their 
approach is fast (about twice the serial work, and the tool runs in 
parallel), but it only catches races that actually occur during a paral- 
lel execution, not those that are logically present in the computation. 

Although the asymptotic performance bounds of ALL-SETS are 
the best to date, they are a factor of nk larger in the worst case than 
those for the original Nondeterminator. The BRELLY algorithm is 
asymptotically faster than ALL-SETS, and its performance bounds 
are only a factor of k larger than those for the original Nondeter- 
minator. For a Cilk program that runs serially in time T, accesses 
V shared-memory locations, and holds at most k locks simultane- 
ously, the serial BRELLY algorithm runs in O(kT a( V, V)) time and 
O(W) space. Since most programs do not hold many locks simul- 
taneously, this algorithm runs in nearly linear time and space. The 
improved performance bounds come at a cost, however, Rather than 
detecting data races directly, BRELLY only detects violations of a 
“locking discipline” that precludes data races. 

A locking discipline is a programming methodology that dic- 
tates a restriction on the use of locks. For example, many programs 
adopt the discipline of acquiring locks in a fixed order so as to avoid 
deadlock [ 191. Similarly, the “umbrella” locking discipline pre- 
cludes data races. It requires that each location be protected by the 
same lock within every parallel subcomputation of the computation. 
Threads that are in series may use different locks for the same lo- 
cation (or possibly even none, if no parallel accesses occur), but if 
two threads in series are both in parallel with a third and all access 
the same location, then all three threads must agree on a single lock 
for that location. If a program obeys the umbrella discipline, a data 
race cannot occur, because parallel accesses are always protected 
by the same lock. The BRELLY algorithm detects violations of the 
umbrella locking discipline. 

Savage et al. [32] originally suggested that efficient debugging 
tools can be developed by requiring programs to obey a locking 
discipline. Their Eraser tool enforces a simple discipline in which 
any shared variable is protected by a single lock throughout the 
course of the program execution. Whenever a thread accesses a 
shared variable, it must acquire the designated lock. This discipline 
precludes data races from occurring, and Eraser finds violations of 
the discipline in O(kT) time and O(kV) space. (These bounds are 
for the serial work; Eraser actually runs in parallel.) Eraser only 
works in a parallel environment containing several linear threads, 
however, with no nested parallelism or thread joining as is permit- 
ted in Cilk. In addition, since Eraser does not understand the se- 
ries/parallel relationship of threads, it does not fully understand at 
what times a variable is actually shared. Specifically, it heuristically 
guesses when the “initialization phase” of a variable ends and the 
“sharing phase” begins, and thus it may miss some data races. 

In comparison, our BRELLY algorithm performs nearly as effi- 
ciently, is guaranteed to find all violations, and importantly, sup- 
ports a more flexible discipline. In particular, the umbrella disci- 
pline allows separate program modules to be composed in series 
without agreement on a global lock for each location. For exam- 
ple, an application may have three phases-an initialization phase, 
a work phase, and a clean-up phase-which can be developed inde- 
pendently without agreeing globally on the locks used to protect lo- 
cations. If a fourth module runs in parallel with all of these phases 
and accesses the same memory locations, however, the umbrella 
discipline does require that all phases agree on the lock for each 
shared location. Thus, although the umbrella discipline is more 
flexible than Eraser’s discipline, it is more restrictive than what a 
general data-race detection algorithm, such as ALL-SETS, permits. 

Most dynamic race detectors, like ALL-SETS and BRELLY, at- 
tempt to And, in the terminology of Netzer and Miller [28], up- 
parent data races-those that appear to occur in a computation ac- 
cording to the parallel control constructs-rather thanfeasible data 
races-those that can actually occur during program execution. The 
distinction arises, because operations in critical sections may affect 
program control depending on the way threads are scheduled. Thus, 
an apparent data race between two threads in a given computation 
may not actually be feasible, because the computation itself may 
change if the threads were scheduled in a different order. Since 
the problem of exactly finding feasible data races is computation- 
ally difficult,’ attention has naturally focused on the easier (but still 
difficult) problem of finding apparent data races. 

‘Even in simple models. finding feasible data rices is NP-hard [27]. 
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For some classes of programs, however, a feasible data race on 
a given input exists if and only if an apparent data race exists in 
every computation for that input. To check for a feasible data race 
in such a program, it suffices to check a single computation for 
an apparent data race. One class of programs having this prop- 
erty are “abelian” programs in which critical sections protected by 
the same lock “commute”: intuitively, they produce the same ef- 
fect regardless of scheduling. For a computation generated by a 
deadlock-free abelian program running on a given input, we prove 
that if no data races exist in that computation, then the program is 
determinate: all schedulings produce the same final result. For 
abelian programs, therefore, ALL-SETS and BRELLY can verify 
the determinacy of the program on a given input. Our results on 
abelian programs formalize and generalize the claims of Dinning 
and Schonberg [IO, I I], who argue that for “internally determinis- 
tic” programs, checking a single computation suflices to detect all 
races in the program. 

The remainder of this paper is organized as follows. Sec- 
tion 2 presents the ALL-SETS algorithm, and Section 3 presents the 
BRELLY algorithm. Section 4 gives some empirical results obtained 
by using the Nondeterminator-2 in its ALL-SETS and BRELLY 
modes. Section 5 defines the notion of abelian programs and proves 
that data-race free abelian programs produce determinate results. 
Section 6 offers some concluding remarks. 

2 The All-Sets Algorithm 

In this section, we present the ALL-SETS algorithm, which detects 
data races in Cilk computations that use locks. We first give some 
background on Cilk and the series-parallel control structure of its 
computations. We then discuss locking in Cilk. Finally, we present 
the ALL-SETS algorithm itself, show that it is correct, and analyze 
its performance. 

The computation of a Cilk program on a given input can be 
viewed as a directed acyclic graph, or dug, in which vertices are 
instructions and edges denote ordering constraints imposed by con- 
trol statements. A Cilk spawn statement generates a vertex with 
out-degree 2, and a Cilk sync statement generates a vertex whose 
in-degree is 1 plus the number of subprocedures syncing at that 
point. Normal execution of serial code results in a linear chain of 
vertices, which we call a thread. A thread cannot contain parallel 
control statements. 

The computation dag generated by a Cilk program can itself bc 
represented as a binary series-parallel parse tree, as illustrated in 
Figure 2 for the program in Figure I. In the parse tree of a Cilk 
computation, leaf nodes represent threads. Each internal node is 
either an S-node if the computation represented by its left subtree 
logically precedes the computation represented by its right subtree, 
or a P-node if its two subtrees’ computations are logically in paral- 
lel. (We use the term “logically” to mean with respect to the series- 
parallel control, not with respect to any additional synchronization 
through shared variables.) 

A parse tree allows the series/parallel relation between two 
threads el and e2 to be determined by examining their least com- 
mon ancestor, which we denote by LCA(~~ ,ez). If LCA(el ,ez) is a 
P-node, the two threads are logically in parallel. which we denote 
by el 11 e2. If LCA(PI ,PZ) is an S-node, the two threads are logically 
in series, which we denote by el + e2. assuming that el precedes 

(I 
printf (“%d”,x) 

Figure 2: The series-parallel parse tree for the Cilk program in Figure 1, 
abbreviated to show only the accesses to shared location X. Each leaf is 
labeled with a code fragment that accesses X, with the lock set for that access 
shown above the code fragment. 

e2 in a left-to-right depth-first treewalk of the parse tree. The series 
relation + is transitive. 

Release 5. I of Cilk [6] provides the user with mutual-exclusion 
locks, including the command Cilk-lock0 to acquire a specified 
lock and Cilk-unlock0 to release a currently held lock. Any 
number of locks may be held simultaneously. For a given lock A, 
the sequence of instructions from a Cilk-lock&A) to its corre- 
sponding Cilk-unlock&A) is called a critical section, and we 
say that all accesses in the critical section are protected by lock A. 
We assume in this paper, as does the general literature, that any 
lock/unlock pair is contained in a single thread, and thus holding a 
lock across a parallel control construct is forbidden.* The lock set 
of an access is the set of locks held by the thread when the access 
occurs. The lock set of several accesses is the intersection of their 
respective lock sets. 

If the lock set of two parallel accesses to the same location is 
empty, and at least one of the accesses is a WRITE, then a data 
race exists. To simplify the description and analysis of the race 
detection algorithm, we shall use a small trick to avoid the extra 
condition for a race that “at least one of the accesses is a WRITE.” 
The idea is to introduce a fake lock for read accesses called the 
R-LOCK, which is implicitly acquired immediately before a READ 
and released immediately afterwards. The fake lock behaves from 
the race detector’s point of view just like a normal lock, but during 
an actual computation, it is never actually acquired and released 
(since it does not actually exist). The use of R-LOCK simplifies the 
description and analysis of ALL-SETS, because it allows us to state 
the condition for a data race more succinctly: ifthe lock set oftwo 
parallel accesses to the salne location is empty, then a data race 
exists. By this condition, a data race (correctly) does not exist for 
two read accesses, since their lock set contains the R-LOCK. 

The ALL-SETS algorithm is based on the efficient SP-BAGS al- 
gorithm used by the original Nondeterminator to detect determinacy 
races in Cilk programs that do not use locks. The SP-BAGS algo- 
rithm executes a Cilk program on a given input in serial, depth-first 
order. This execution order mirrors that of normal C programs: ev- 
ery subcomputation that is spawned executes completely before the 
procedure that spawned it continues. While executing the program, 
SP-BAGS maintains an SP-bags data structure based on Tarjan’s 
nearly linear-time least-common-ancestors algorithm [33]. The SP- 

‘The Nondeterminator-2 can still be used with programs for which this assumption 
does not hold, but the race detector prints a warning. and some races may be missed. 

We are developing extensions of the Nondeterminator-2’s detection algorithms that 

work properly for programs that hold locks across parnllel control constructs. 
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ACCESS(l) in thread e with lock set H 

1 for each (e’,H’) E lockers[l] 

2 do if e’jleandH’nH={} 

3 then declare a data race 

4 reduntlunl t FALSE 
5 for each (e’, H’) E lockers[l] 

6 do ife’+eandH’>H 

7 then lockersjl] t lockers[l] - {(e’, H’)) 

8 ife’]jeandH’CH 

9 then redundant t TRUE 

10 if redundant = FALSE 

II then lockersfl] t lockers[l] U {(e, H)} 

Figure 3: The ALL-SETS algorithm. The operations for the spawn, sync, 
and return actions are unchanged from the SP-BAGS algorithm on which 
ALL-SETS is based. Additionally, the Cilk-lock0 and Cilk-unlock0 
functions must be instrumented to add and remove locks from the lock set 
H appropriately. 

bags data structure allows SP-BAGS to determine the series/parallel 
relation between the currently executing thread and any previously 
executed thread in O(a(V, V)) amortized time, where V is the size 
of shared memory. In addition, SP-BAGS maintains a “shadow 
space” where information about previous accesses to each location 
is kept. This information is used to determine previous threads that 
have accessed the same location as the current thread. For a Cilk 
program that runs in T time serially and references V shared mem- 
ory locations, the SP-BAGS algorithm runs in O(Ta(V, V)) time 
and uses O(V) space. 

The ALL-SETS algorithm also uses the SP-bags data structure 
to determine the series/parallel relationship between threads. Its 
shadow space lockers is more complex than the shadow space of 
SP-BAGS, however, because it keeps track of which locks were 
held by previous accesses to the various locations. The entry 
/ockers[/] stores a list of lockers: threads that access location I, 
each paired with the lock set that was held during the access. If 
(e, H) E lockers[l], then location 1 is accessed by thread e while it 
holds the lock set H. 

As an example of what the shadow space lockers may contain, 
consider a thread e that performs the following: 

Cilk-lock(&A) ; Cilk-lock(&B) ; 
READ(/) 
Cilk-unlock(&B) ; Cilk-unlock&A) ; 
Cilk-lock(&B) ; Cilk-lock&C) ; 
WRITE(I) 
Cilk-unlock(N) ; Cilk-unlock(&B) ; 

For this example, the list lockers[l] contains two lockers- 
(e,{A,B,R-LOCK}) and (e,{B,C}). 

The ALL-SETS algorithm is shown in Figure 3. Intuitively, this 
algorithm records all lockers, but it is careful to prune redundant 
lockers, keeping at most one locker per distinct lock set. Lines l-3 
check to see if a data race has occurred and report any violations. 
Lines 5-l I then add the current locker to the lockers shadow space 
and prune redundant lockers. 

Before proving the correctness of ALL-SETS, we restate two im- 
portant lemmas from [ 131. 

Lemma 1 Suppose thut three thrends el, ez3 and e3 execute in or- 
der in a serial, depth-jrst execution of ct Cilkprogram, and suppose 
that el 4 e2 and el ]] e3. Then, we huve e2 /I e3. n 

Lemma 2 (Pseudotransitivity of I]) Suppose that three threads 
el , e2, rend e3 execute in order in u serial, depth-first execution of 61 
Cilkprogrnm, and suppose that el ]] e2 and e2 ]] e3. Then, we have 
el II e3. n 

We now prove that the ALL-SETS algorithm is correct. 

Theorem 3 The ALL-SETS algorithm detects a data race in a 
computation of (I Cilk progmm running on N given input if and only 
if a clam ruce exists in the computation. 

Proof (3) To prove that any race reported by the ALL-SETS al- 
gorithm really exists in the computation, observe that every locker 
added to lockers[l] in line I I consists of a thread and the lock set 
held by that thread when it accesses 1. The algorithm declares a 
race when it detects in line 2 that the lock set of two parallel ac- 
cesses (by the current thread e and one from lockers[l]) is empty, 
which is exactly the condition required for a data race. 

(+) Assuming a data race exists in a computation, we shall show 
that a data race is reported. If a data race exists, then we can choose 
two threads et and e2 such that et is the last thread before e2 in the 
serial execution which has a data race with e2. If we let Hi and H2 
be the lock sets held by et and e2, respectively, then we haveet 1) e:! 
and HI n H2 = {}. 

We first show that immediately after el executes, lockers[l] con- 
tains some thread e3 that races with e2. If (et ,HI) is added to 
lockers[l] in line I I, then et is such an q. Otherwise, the redundant 
flag must have been set in line 9, so there must exist a locker 
(e3, Hs) E lockers[l] with e3 11 et and Hs C HI. Thus, by pseudo- 
transitivity (Lemma 2), we have e3 /I e2. Moreover, since Hj g HI 
and HI nH2 = {}, we have H3 fIH2 = {}, and therefore eg, which 
belongs to lockers[l], races with e2. 

To complete the proof, we now show that the locker (e3, Hs) is 
not removed from lockers[l] between the times that et and e:, are ex- 
ecuted. Suppose to the contrary that (q,&) is a locker that causes 
(e1, Hj) to be removed from lockers[/] in line 7. Then, we must have 
e-i 3 eq and H3 _> H4. and by Lemma I, we have e4 II e2. Moreover, 
since H3 > H4 and H3 n H2 = {}, we have H4 n H2 = {}, contra- 
dicting the choice ofet as the last thread before r2 to race with ez. 

Therefore, thread e3, which races with e2, still belongs to 
lockers[l] when e:! executes, and so lines l-3 report a race. n 

In Section I, we claimed that for a Cilk program that executes in 
time T on one processor, references V shared memory locations, 
uses a total of n locks, and holds at most k < IZ locks simulta- 
neously, the ALL-SETS algorithm can check this computation for 
data races in O(nkTa(V,V)) time and using O(rz’V) space. These 
bounds, which are correct but weak, are improved by the next the- 
orem. 
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Theorem 4 Consider a Cilk program that executes in time T on 
one processor; references V shared memory locations, uses a to- 
tal qf n locks, and holds at most k locks simultaneously. The 
ALL-SETS algorithm checks this computation fur data races in 
O(TL(k+ a(V, V))) time and O(kLV) space, where L is the maxi- 
mum of the number of distinct lock sets used to access any particu- 
lar location. 

Proof: First, observe that no two lockers in lockers have the same 
lock set, because the logic in lines 5-1 I ensure that if H = H’, then 
locker (e,H) either replaces (e’,H’) (line 7) or is considered reclun- 
dant (line 9). Thus, there are at most L lockers in the list lockers[/]. 
Each lock set takes at most O(k) space, so the space needed for 
lockers is O(kLV). The length of the list lockers[l] determines the 
number of series/parallel relations that are tested. In the worst case, 
we need to perform 2L such tests (lines 2 and 6) and 2L set oper- 
ations (lines 2, 6, and 8) per access. Each series/parallel test takes 
amortized O(a(V, V)) time, and each set operation takes O(k) time. 
Therefore, the ALL-SETS algorithm runs in O(TL(k+ a(V,V))) 
time. n 

The looser bounds claimed in Section 1 of O(nkT a(V, V)) time 
and O(nkV) space for k (< n follow because L < &,(~) = 
O(nk/k!). As we shall see in Section 4, however, we rarely see 
the worst-case behavior given by the bounds in Theorem 4. 

3 The Brelly Algorithm 

The umbrella locking discipline requires all accesses to any partic- 
ular location within a given parallel subcomputation to be protected 
by a single lock. Subcomputations in series may each use a dif- 
ferent lock, or even none, if no parallel accesses to the location 
occur within the subcomputation. In this section, we formally de- 
fine the umbrella discipline and present the BRELLY algorithm for 
detecting violations of this discipline. We prove that the BREI,LY 
algorithm is correct and analyze its performance, which we show to 
be asymptotically better than that of ALL-SETS. 

The umbrella discipline can be defined precisely in terms of the 
parse tree of a given Cilk computation. An zzmbrellu of accesses to 
a location 1 is a subtree rooted at a P-node containing accesses to 1 in 
both its left and right subtrees, as is illustrated in Figure 4. An um- 
brella of accesses to 1 is protected if its accesses have a nonempty 
lock set and unprotected otherwise. A program obeys the umbrella 
locking discipline if it contains no unprotected umbrellas. In other 
words, within each umbrella of accesses to a location I, all threads 
must agree on at least one lock to protect their accesses to 1. 

The next theorem shows that adherence to the umbrella discipline 
precludes data races from occuring. 

Theorem 5 A Cilk computation with a data race violates the LME- 

brella discipline. 

Proofi Any two threads involved in a data race must have a P- 
node as their least common ancestor in the parse tree, because they 
operate in parallel. This P-node roots an unprotected umbrella, 
since both threads access the same location and the lock sets of 
the two threads are disjoint. n 

The umbrella discipline can also be violated by unusual, but datn- 
race fret, locking protocols. For instance suppose that a location 

Figure 4: Three umbrellas of accesses to a location 1. In this parse tree, 
each shaded leaf represents a thread that accesses 1. Each umbrella of ac- 
cesses to I is enclosed by a dashed line. 

is protected by three locks and that every thread always acquires 
two of the three locks before accessing the location. No single lock 
protects the location, but every pair of such accesses is mutually ex- 
clusive. The ALL-SETS algorithm properly certifies this bizarre ex- 
ample as race-free, whereas BRELLY detects a discipline violation. 
In return for disallowing these unusual locking protocols (which in 
any event are of dubious value), BRELLY checks programs asymp- 
totically much faster than ALL-SETS. 

Like ALL-SETS, the BRELLY algorithm extends the SP-BAGS 
algorithm used in the original Nondeterminator and uses the R- 
LOCK fake lock for read accesses (see Section 2). Figure 5 gives 
pseudocode for BRELLY. Like the SP-BAGS algorithm, BRELLY 
executes the program on a given input in serial depth-first order, 
maintaining the SP-bags data structure so that the series/parallel 
relationship between the currently executing thread and any previ- 
ously executed thread can be determined quickly. Like the ALL- 
SETS algorithm, BRELLY also maintains a set H of currently held 
locks. In addition, BRELLY maintains two shadow spaces of shared 
memory: accessor, which stores for each location the thread that 
performed the last “serial access” to that location; and locks, which 
stores the lock set of that access. Each entry in the accessor space is 
initialized to the initial thread (which logically precedes all threads 
in the computation), and each entry in the locks space is initialized 
to the empty set. 

Unlike the ALL-SETS algorithm, BRELLY keeps only a single 
lock set, rather than a list of lock sets, for each shared-memory lo- 
cation. For a location 1, each lock in locks[l] potentially belongs to 
the lock set of the largest umbrella of accesses to 1 that includes the 
current thread. The BRELLY algorithm tags each lock k E locks[l] 
with two pieces of information: a thread nonlocker[k] and a flag 
alive[k]. The thread nonlocker[k] is a thread that accesses 1 with- 
out holding h. The flag alive[h] indicates whether h should still be 
considered to potentially belong to the lock set of the umbrella. To 
allow reports of violations to be more precise, the algorithm “kills” 
a lock /z by setting alive[k] t FALSE when it determines that k does 
not belong to the lock set of the umbrella, rather than simply re- 
moving it from locks[l]. 

Whenever BRELLY encounters an access by a thread e to a lo- 
cation 1, it checks for a violation with previous accesses to 1, up- 
dating the shadow spaces appropriately for future reference. If 
accexwr[l] -: e, we say the access is a serial access, and the algo- 
rithm performs lines 2-5, setting locks[l] t H and accessor[l] t e, 
as well as updating nonlocker[h] and alive[h] appropriately for each 
k E H. If accessor[l] 11 e, we say the access is a parallel access, 
and the algorithm performs lines 6-17, killing the locks in locks[l] 
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ACCESS(I) in thread e with lock set H 

1 

2 

3 

4 

5 

6 
7 
8 
9 

10 
11 
12 

13 
14 

15 

16 
17 

if uccessor[l] 3 e 

then D serial access 

locks[l] t H, leaving nonlocker[h] with its old 
nonlocker if it was already in locks[l] but 
setting nonlocker[h] +-- accessor[l] otherwise 

for each lock h E focks[l] 

do a/ive[h] t TRUE 

accessor[l] t e 

&e D parallel access 
for each lock h E locksjl] - H 

do if alive[h] = TRUE 

then alive[h] t FALSE 

nonlocker(h] t e 

for each lock h E locks[l] tl H 
do if afive[h] = TRUE and nonlocker[h] I] e 

then alive[h] +-- FALSE 

if no locks in lo&[/] are alive (or locks[l] = {}) 

then report violation on 1 involving 

e and uccessor [ 11 

for each lock h E H n locks[l] 

do report access to 1 without h 

by nonlocker[h] 

Figure 5: The BRELLY algorithm. While executing a Cilk program in 
serial depth-first order, at each access to a shared-memory location 1, the 
code shown is executed. Not shown are the updates to H, the set of cur- 
rently held set of locks, which occur whenever locks are acquired or re- 
leased. To determine whether the currently executing thread is in series or 
parallel with previously executed threads, BRELLY uses the SP-bags data 
structure from [ 131. 

that do not belong to the current lock set H (lines 7-10) or whose 
nonlockers are in parallel with the current thread (lines 1 l-13). If 
BRELLY discovers in line 14 that there are no locks left alive in 
locks[l] after a parallel access, it has discovered an unprotected um- 
brella, and it reports a discipline violation in lines IS-1 7. 

When reporting a violation, BRELLY specifies the location 1, the 
current thread e, and the thread accessor[l]. It may be that e and 
accessor[l] hold locks in common, in which case the algorithm uses 
the nonlocker information in lines 16-17 to report threads which 
accessed I without each of these locks. 

Figure 6 illustrates how BRELLY works. The umbrella contain- 
ing threads et, e2, and el is protected by lock A but not by lock 
B, which is reflected in locks[l] after thread ea executes. The um- 
brella containing eg and eg is protected by B but not by A, which is 
reflected in Incks[l] after thread e6 executes. During the execution 
of thread es. A is killed and /20/2/0Cker[A] is set to es, according to 
the logic in lines 7-10. When e7 executes, B remains as the only 
lock alive in locks[l] and nodocker[B] is eq (due to line 2 during 
es’s execution). Since eq (( e7, lines 1 I-13 kill B, leaving no locks 
alive in /ocks[l], properly reflecting the fact that no lock protects the 
umbrella containing threads eq through e7. Consequently, the test 
in line 14 causes BRELLY to declare a violation at this point. 

thread accessor(l] bcks(l] access type 
initial en 
el ei i~(Po),B(eo)j serial 
e2 er iA(et~),B(ez)) parallel 
e3 el {A(eu),B(e2)) parallel 
e4 e4 serial 
es es ~hed),B(ed)~ serial 
en (3 M4,B(e4)} parallel 
e7 es {t?(~n),!2(~4)~ parallel 

Figure 6: A sample execution of the BRELLY algorithm. We restrict our 
attention to the algorithm’s operation on a single location 1. In the parse 
tree, each leaf represents an access to 1 and is labeled with the thread that 
performs the access (e.g., et) and the lock set of that access (e.g.. {A, B}). 
Umbrellas are enclosed by dashed lines. The table displays the values of 
accessor[l] and locks[~] after each thread’s access. The nonlocker for each 
lock is given in parentheses after the lock, and killed locks are underlined. 
The “access type” column indicates whether the access is a parallel or serial 
access. 

The following two lemmas, which will be helpful in proving the 
correctness of BRELLY, are stated without proof. 

Lemma 6 Suppose u thread e performs a serial access to location 
I during an execution of BRELLY. Then all previously executed 
accesses to 1 logically precede e in the computation. n 

Lemma 7 The BRELLY algorithm maintains the invariant thatfor 
any location 1 and lock h E locks[l], the thread nonlocketjh] is either 
the initial thread or a thread that accessed 1 without holding h. n 

Theorem 8 The BRELLY algorithm detects a violation of the um- 
brella discipline in a computation of u Cilk program running on a 
given input if and only ifa violation exists. 

Proof We first show that BRELLY only detects actual violations 
of the discipline, and then we argue that no violations are missed. 
In this proof, we denote by locks*[l] the set of locks in locks[l] that 
have TRUE alive flags. 

(+) Suppose that BRELLY detects a violation caused by a thread 
e, and let eo = accessor[l] when e executes. Since we have eo ]I e, 
it follows that p = LCA(eo,e) roots an umbrella of accesses to 1, 
because p is a P-node and it has an access to 1 in both subtrees. 
We shall argue that the lock set U of the umbrella rooted at p is 
empty. Since BRELLY only reports violations when locks*[l] = {}, 
it suffices to show that fJ E: locks*[I] at all times after eu executes. 

Since eo is a serial access, lines 2-5 cause locks* [1] to be the lock 
set of ec. At this point, we know that U C_ locks* [1], because U can 
only contain locks held by every access in p’s subtree. Suppose that 
a lock h is killed (and thus removed from locks*[l]), either in line 9 
or line 13, when some thread e’ executes a parallel access between 
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the times that eg and e execute. We shall show that in both cases 
12 $ U, and so fJ C locks* [I] is maintained. 

In the first case, if thread e’ kills h in line 9, it does not hold h, 
and thus h 4 U. 

In the second case, we shall show that w, the thread stored in 
nonlocker[h] when h is killed, is a descendant of p, which implies 
that h @’ U, because by Lemma 7, w accesses 1 without the lock h. 
Assume for the purpose of contradiction that w is not a descendant 
of p. Then, we have LCA(W,Q) = LCA(W,~‘), which implies that 
w I/ eo, because w I/ e’. Now, consider whether nonlocker[h] was set 
to w in line IO or in line 2 (not counting when nonlocker[ll] is left 
with its old value in line 2). If line 10 sets nonlocker@] t w, then 
w must execute before eo, since otherwise, w would be a parallel 
access, and lock h would have been killed in line 9 by w before e’ 
executes. By Lemma 6, we therefore have the contradiction that 
PV 4 eo. If line 2 sets nonlocker[h] t w, then w performs a serial 
access, which must be prior to the most recent serial access by eg. 
By Lemma 6, we once again obtain the contradiction that w -X eo. 

(+=) We now show that if a violation of the umbrella discipline 
exists, then BRELLY detects a violation. If a violation exists, then 
there must be an unprotected umbrella of accesses to a location 1. 
Of these unprotected umbrellas, let T be a maximal one in the sense 
that T is not a subtree of another umbrella of accesses to I, and let 
p be the P-node that roots T. The proof focuses on the values of 
nccessor[l] and locks[l] just after p’s left subtree executes. 

We first show that at this point, accessor[l] is a left-descendant 
of p. Assume for the purpose of contradiction that accessor[l] is 
not a left-descendant of p (and is therefore not a descendant of p at 
all), and let p’ = LCA(accessov[l],p). We know that p’ must be a 
P-node, since otherwise accessor[l] would have been overwritten in 
line 5 by the first access in p’s left subtree. But then 1~’ roots an um- 
brella which is a proper superset of T, contradicting the maximality 
ofT. 

Since uccessor[l] belongs to 11’s left subtree, no access in p’s 
right subtree overwrites locks[l], as they are all logically in parallel 
with accessor[/]. Therefore, the accesses in p’s right subtree may 
only kill locks in locks[l]. It suffices to show that by the time all 
accesses in 11’s right subtree execute, all locks in /ocks[l] (if any) 
have been killed, thus causing a race to be declared. Let h be some 
lock in locks* [L] just after the left subtree of p completes. 

Since T is unprotected, an access to 1 unprotected by h must 
exist in at least one of p’s two subtrees. If some access to I is 
not protected by /Z in p’s right subtree, then /Z is killed in line 9. 
Otherwise, let el,f, be the most-recently executed thread in p’s left 
subtree that performs an access to 1 not protected by h. Let e’ be the 
thread in accessor[l] just after elcf, executes, and let e,.ig/,, be the first 
access to 1 in the right subtree of 17. We now show that in each of the 
following cases, we have nonlocker[h] 11 Ed/,, when e,.iSlt, executes, 
and thus h is killed in line 13. 

Case 1: Thread elep is a serial access. Just after elep executes, 
we have h 6 locks[l] (by the choice of e,,D) and uccess&[l] = ejcp. 
Therefore, when tz is later placed in locks[l] in line 2, nonlocker[h] 
is set to el+. Thus, we have nonlocker[h] = etcR I/ eri8/It. 

Case 2: Thread +ft is a parallel access and h E locks[l] just 
before el,ft executes. Just after e’ executes, we have h E locks[l] 
and alive[h] = TRUE, since h E locks[l] when el,ft executes and 
all accesses to 1 between e’ and elep are parallel and do not place 
locks into locks[/]. By pseudotransitivity (Lemma 2). e’ 11 ejcp and 

ekfi II eright implies e’ II e+hr. Note that e’ must be a descendant of 
p, since if it were not, T would be not be a maximal umbrella of 
accesses to 1. Let e” be the most recently executed thread before or 
equal to e/d that kills h. In doing so, e” sets nonlocker[h] t e” in 
line 10. Now, since both e’ and el<p belong to p’s left subtree and 
e” follows e’ in the execution order and comes before or is equal 
to elep, it must be that e” also belongs to p’s left subtree. Conse- 
quenily, we have nonlocker[h] = e” 11 eri8h,. 

Case 3: Thread e/d is a parallel access and h 6 locks[l] just be- 
fore eI<ti executes. When h is later added to locks[l], its nonlocker[h] 
is set toe’. As above, by pseudotransitivity, e’ (1 “left and el<. 11 eriRh, 
implies nonlocker[h] = e’ 11 e,.+,,. 

In each of these cases, nonlocker[h] I( e+t,, still holds when e+,h, 
executes, since elcp, by assumption, is the most recent thread to 
access I without la in 17’s left subtree. Thus, h is killed in line 13 
when e,.;K/,t executes. n 

Theorem 9 On a Cilk program which on a given input executes 
serially in time T, uses V shared-memory locations, and holds 
ut most k locks simultaneously, the BRBLLY hlgorithm runs in 
O(kT a(V, V)) time and O(kV) space. 

Proos The total space is dominated by the locks shadow space. 
For any location 1, the BRELLY algorithm stores at most k locks in 
locks[l] at any time, since locks are placed in locks[l] only in line 2 
and IHI 5 k. Hence, the total space is O(kV). 

Each loop in Figure 5 takes O(k) time if lock sets are kept in 
sorted order, excluding the checking of nonlocker[h] )I e in line 12, 
which dominates the asymptotic running time of the algorithm. The 
total number of times nonlocker[h] II e is checked over the course of 
the program is at most kT, requiring O(kT a(V, V)) time. n 

4 Experimental Results 

We are in the process of implementing both the ALL-SETS and 
BRELLY algorithms as part of the Nondeterminator-2 debugging 
tool. Our experiences are therefore highly preliminary. In this sec- 
tion, we describe our initial results from running these two algo- 
rithms on four Cilk programs that use locks. Our implementations 
of ALL-SETS and BRELLY have not yet been optimized, and so bet- 
ter performance than what we report here is likely to be possible. 

According to Theorem 4, the factor by which ALL-SETS slows 
down a program is roughly O(Lk) in the worst case, where L is the 
maximum number of distinct lock sets used by the program when 
accessing any particular location, and k is the maximum number of 
locks held by a thread at one time. According to Theorem 9, the 
worst-case slowdown factor for BRELLY is about O(k). In order 
to compare our experimental results with the theoretical bounds, 
we characterize our four test programs in terms of the parameters k 
and L:” 

maxflow: A maximum-flow code based on Goldberg’s push- 
relabel method [16]. Each vertex in the graph contains a lock. Par- 
allel threads perform simple operations asynchronously on graph 
edges and vertices. To operate on a vertex u, a thread acquires u’s 
lock, and to operate on an edge (u, v). the thread acquires both u’s 

‘These characterizations do not count the implicit “fake” K-LOCK used by the de- 

tection algorithms. 
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Parameters Time (sec.) Slowdown 
program ( input k L 1 orig. ALL. BR. 1 ALL. BR. 

maxflow ( sp. I K 2 32 1 0.05 30 3 1 590 66 
sp. 4K 2 64 0.2 484 14 2421 68 
d. 2.56 2 256 0.2 263 I5 131.5 78 
d. 512 2 512 2.0 7.578 136 3789 68 

n-body IK I 1 0.6 41 47 79 78 
2K I I 1.6 122 I19 76 14 

bucket IOOK I I 0.3 22 22 14 73 
rad iter. I 2 65 1.2 109 45 91 31 

iter. 2 2 94 I.0 179 4s 179 4s 
iter. 5 2 168 2.8 773 94 276 33 
iter. I3 2 528 9. I 13123 SS9 1442 61 

Figure 7: Timings of our implementations on a variety of programs and 
inputs. (The input parameters are given as sparse/dense and number of ver- 
tices for maxflow, number of bodies for n-body, number of elements fol 
bucket, and iteration number for rad.) The parameter L is the maximum 
number of distinct lock sets used while accessing any particular location, 
and k is the maximum number of locks held simultaneously. Running times 
for the original optimized code, for ALL-SETS, and for BRELLY are given, 
as well as the slowdowns of ALL-SETS and BRELLY as compared to the 
original running time. 

lock and V’S lock (making sure not to introduce a deadlock). Thus, 
for this application, the maximum number of locks held by a thread 
is k = 2, and L is at most the maximum degree of any vertex. 

n-body: An n-body gravity simulation using the Barnes-Hut al- 
gorithm [I]. In one phase of the program, parallel threads race to 
build various parts of an “octtree” data structure. Each part is pro- 
tected by an associated lock, and the first thread to acquire that lock 
builds that part of the structure. As the program never holds more 
than one lock at a time, we have k = L = 1. 

bucket: A bucket sort [7, Section 9.41. Parallel threads acquire 
the lock associated with a bucket before adding elements to it. This 
algorithm is analogous to the typical way a hash table is accessed 
in parallel. For this program, we have k = L = 1. 

rad: A S-dimensional radiosity renderer running on a “maze” 
scene. The original 75-source-file C code was developed in Bel- 
gium by Bekaert et. al. [2]. We used Cilk to parallelize its scene 
geometry calculations. Each surface in the scene has its own lock, 
as does each “patch” of the surface. In order to lock a patch, the sur- 
face lock must also be acquired, so that k = 2, and L is the maximum 
number of patches per surface, which increases at each iteration as 
the rendering is refined. 

Figure 7 shows the preliminary results of our experiments on the 
test codes. These results indicate that the performance of ALL- 
SETS is indeed dependent on the parameter L. Essentially no per- 
formance difference exists between ALL-SETS and BRELLY when 
L = 1, but ALL-SETS gets progressively worse as L increases. On 
all of our test programs, BRELLY runs fast enough to be useful as 
a debugging tool. In some cases, ALL-SETS is as fast, but in other 
cases, the overhead of ALL-SETS is too extreme (iteration 13 of 
rad takes over 3.5 hours) to allow interactive debugging. 

5 Abelian Programs 

By checking a single computation for the absence of determinacy 
races, the original Nondeterminator can guarantee that a Cilk pro- 
gram without locking is determinate: it always produces the same 

int x. y; 
Cilk-lockvar A; 

cilk int main0 I 
Cilk-lock-init( 
x = 0; 
spawn barlo; 
spawn bar2 () ; 
sync ; 
printf (“%d” , y) ; 

It 

cilk void bar10 I 
Cilk-lock(&A); 
x++ ; 
if (x == 1) 

y = 3; 
Cilk-unlock(&A); 

) 

cilk void bar20 C 
Cilk-lock(&A); 
x++ ; 
Cilk-unlock(&A); 
y = 4; 

It 

Figure 8: A Cilk program that generates a computation with an infeasible 
data race on the variable y. 

answer (when run on the same input). To date, no similar claim has 
been made by any data-race detector for programs with locks. We 
cannot make a general claim either, but in this section, we introduce 
a class of nondeterministic programs for which a determinacy claim 
can be made. We prove that the absence of data races in a single 
computation of a deadlock-free “abelian” program implies that the 
program (when run on the same input) is determinate. As a con- 
sequence, ALL-SETS and BRELLY can verify the determinacy of 
abelian programs from examining a single computation. We do not 
claim that abelian programs form an important class in any practical 
sense. Rather, we find it remarkable that a guarantee of determinacy 
can be made for any nontrivial class of nondeterministic programs. 

Locking introduces nondeterminism intentionally, allowing 
many different computations to arise from the same program, some 
of which may have data races and some of which may not. Since 
ALL-SETS and BRELLY examine only one computation, they can- 
not detect data races that appear in other computations. More sub- 
tlely, the data races that lhese algorithms do detect might actually 
be infeasible, never occurring in an actual program execution. 

Figure 8 shows a program that exhibits an infeasible data race. In 
the computation generated when bar1 obtains lock A before bar2, 
a data race exists between the two updates to y. In the scheduling 
where bar2 obtains lock A first, however, bari’s update to y never 
occurs. In other words, no scheduling exists in which the two up- 
dates toy happen simultaneously, and in fact, the final value of y is 
always 4. Thus, the computation generated by the serial depth-first 
scheduling, which is the one examined by ALL-SETS and BRELLY, 
contains an infeasible data race. 

Deducing from a single computation that the program in Figure 8 
is determinate appears difficult. But not all programs are so hard to 
understand. For example, the program from Figure 1 exhibits a 
race no matter how it is scheduled, and therefore, ALL-SETS and 
BR~ZLLY can always find a race. Moreover, if all accesses to x in 
the program were protected by the same lock, no data races would 
exist in any computation. For such a program, checking a single 
computation for the absence of races suffices to guarantee that the 
program is determinate. The reason we can verify the determinacy 
of this program from a single computation is because it has “com- 
muting” critical sections. 

The critical sections in the program in Figure I obey the follow- 
ing strict definition of commutativity: Two critical sections Rt and 
R2 commute if, beginning with any (reachable) program state S, the 
execution of RI followed by R2 yields the same state S’ as the ex- 
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ecution of R2 followed by RI ; and furthermore, in both execution 
orders, each critical section must execute the identical sequence of 
instructions on the identical memory locations. Thus, not only must 
the program state remain the same, the same accesses to shared 
memory must occur, although the values returned by those accesses 
may differ. The program in Figure 1 also exhibits “properly nested 
locking.” Locks areproperly nested if any thread which acquires a 
lock A and then a lock B releases B before releasing A. We say that 
a program is abelian if any pair of parallel critical sections that are 
protected by the same lock commute, and all locks in the program 
are properly nested. The program in Figure 1 is an example of an 
abelian program. 

The idea that critical sections should commute is natural. A pro- 
grammer presumably locks two critical sections with the same lock 
not only because he intends them to be atomic, but because he in- 
tends them to “do the same thing” no matter in what order they 
are executed. The programmer’s notion of commutativity is usually 
less restrictive, however, than what our definition allows. First, both 
execution orders of two critical sections may produce distinct pro- 
gram states that the programmer nevertheless views as equivalent. 
Our definition insists that the program states be identical. Second, 
even if they leave identical program states, the two execution orders 
may cause different memory locations to be accessed. Our defini- 
tion demands that the same memory locations be accessed. 

In practice, therefore, most programs are not abelian, but abelian 
programs nevertheless form a nontrivial class of nondeterministic 
programs that can be checked for determinacy. For example, all 
programs that use locking to accumulate values atomically, such 
as a histogram program, fall into this class. Although abelian pro- 
grams form an arguably small class in practice, the guarantees of 
determinacy that ALL-SETS and BRELLY provide for them are not 
provided by any other existing race-detectors for any class of lock- 
employing programs. It is an open question whether a more gen- 
eral class of nondeterministic programs exists for which an efficient 
race-detector can offer a provable guarantee of determinacy. 

In order to study the determinacy of abelian programs, we first 
give a formal multithreaded machine model that more precisely de- 
scribes an actual execution of a Cilk program. We view the ab- 
stract execution machine for Cilk as a (sequentially consistent [21]) 
shared memory together with a collection of interpreters, each with 
some private state. (See [5, 8, 171 for examples of multithreaded 
implementations similar to this model.) Interpreters are dynami- 
cally created during execution by each spawn statement. The ith 
such child of an interpreter is given a unique interpreter name by 
appending i to its parent’s name. 

When an instruction is executed by an interpreter, it maps the 
current state of the multithreaded machine to a new state. An in- 
terpreter whose next instruction cannot be executed is said to be 
blocked. If all interpreters are blocked, the machine is deadlocked. 

Although a multithreaded execution may proceed in parallel, we 
consider a serialization of the execution in which only one inter- 
preter executes at a time, but the instructions of the different inter- 
preters may be interleaved.4 The initial state of the machine con- 
sists of a single interpreter whose program counter points to the 
first instruction of the program. At each step, a nondeterministic 
choice among the current nonblocked interpreters is made, and the 

“The fact that any parallel execution can be simulated in this fashion is a conse- 

quence of OUT choice of sequential consistency as the memory model. 

instruction pointed to by its program counter is executed. The re- 
sulting sequence of instructions is referred to as an execution of the 
program. 

When an instruction executes in a run of a program, it affects 
the state of the machine in a particular way. To formalize the ef- 
fect of an instruction execution, we define an instantiation of an 
instruction to be a 3-tuple consisting of an instruction I, the shared 
memory location 1 on which I operates (if any), and the name of the 
interpreter that executes 1. We assume that the instantiation of an 
instruction is a deterministic function of the machine state. 

We define a region to be either a single instantiation other than 
a LOCK or UNLOCK instruction, or a sequence of instantiations that 
comprise a critical section (including the LOCK and UNLOCK in- 
stantiations themselves).’ Every instantiation belongs to at least 
one region and may belong to many. Since a region is a sequence 
of instantiation?,, it is determined by a particular execution of the 
program and not by the program code alone. We define the nestirrg 
count of a region R to be the maximum number of locks that are 
acquired in R and held simultaneously at some point in R. 

The execution of a program can alternatively be viewed as se- 
quence of instantiations, rather than instructions, and an instan- 
tiation sequence can always be generated from an instruction se- 
quence. We formally define a computation as a dag in which the 
vertices are instantiations and the edges denote synchronization. 
Edges go from each instantiation to the next instantiation executed 
by the same interpreter, from each spawn instantiation to the first 
instantiation executed by the spawned interpreter, and from the last 
instantiation of each interpreter to the next sync instantiation exe- 
cuted by its parent interpreter. 

We can now give a more precise definition of a data race. A 
data race exists in a computation if two logically parallel instanti- 
ations access the same memory location without holding the same 
lock, and at least one of the accesses is a WRITE. Since a memory 
location is a component of each instantiation, it is unambiguous 
what it means for two instantiations to access the same memory 
location. In contrast, if the computation were constructed so that 
the nodes were instructions, it would not be apparent from the dag 
alone whether two nodes reference the same memory location. 

A scheduling of a computation G is a sequence of instantiations 
forming a permutation of the vertex set of G. This sequence must 
satisfy the ordering constraints of the dag, as well as have the prop- 
erty that any two LOCK instantiations that acquire the same lock are 
separated by an UNLOCK of that lock in between. If any scheduling 
of any prefix of G can be extended to a scheduling of G, we say that 
G is deadlock free. Not every scheduling of G corresponds to some 
actual execution of the program. If a scheduling does correspond to 
an actual execution as defined by the machine model, we call that 
scheduling a true scheduling of G; otherwise it is a false schedul- 
ing. Since we are only concerned with the final memory states of 
true schedulings, we define two schedulings of G to be equivalent 
if both are false, or both are true and have the same final memory 
state. An alternate definition of commutativity, then, is that two re- 
gions RI and Rz commute if, beginning with any reachable machine 
state S, the instantiation sequences RlR:! and R~RI are equivalent. 

Our study of the determinacy of abelian programs will proceed 
as follows. Starting with a data-race free, deadlock-free computa- 

‘The instantiations within a critical section must be serially related in the dng, as 

we disallow parallel control constructs while locks are held. 
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tion G resulting from the execution of an abelian program, we first 
prove that adjacent regions in a scheduling of G can be commuted. 
Second, we show that regions which are spread out in a scheduling 
of G can be grouped together. Third, we prove that all schcdulings 
of G are true and yield the same final memory state. Finally, we 
prove that all executions of the abelian program generate the same 
computation and hence the same final memory state. 

Lemma 10 (Reordering) Let G be a duta-race free, deadlock- 
,free computation resulting from the execution of ~1 abelian pro- 
gram. Let X be some scheduling of G. [f regions RI and R2 ap- 
pear adjacent in X, i.e., X = XI RI R2X2, und RI /I R2. then the two 
schedulings XI RI R2X2 and X1 R2RlX2 are equivalent. 

Proqf: WC prove the lemma by double induction on the nesting 
count of the regions. Our inductive hypotheses is the theorem as 
stated for regions RI of nesting count i and regions R2 of nesting 
count j. 

Base case: i = 0. Then RI is a single instantiation. Since RI and 
R2 are adjacent in X and are parallel, no instantiation of R2 can be 
guarded by a lock that guards RI, because any lock held at RI is not 
released until after R2. Therefore, since G is data-race fret, either 
RI and R2 access different memory locations or RI is a READ and 
R2 does not write to the location read by RI. In either case, the 
instantiations of each of RI and R2 do not affect the behavior of the 
other, so they can be executed in either order without affecting the 
final memory state. 

Base case: j = 0. Symmetric with above. 
Inductive step: In general, RI of count i > 1 has the form 

LOCK(A)... UNLOCK(A), and R2 of count j 2 1 has the form 
LOCK(B)...UNLOCK(B). If A = B, then RI and R2 commute by 
the definition of abelian. Otherwise, there are three possible cases. 

Case I: Lock A appears in R2, and lock B appears in RI. This sit- 
uation cannot occur, because it implies that G is not deadlock free, 
a contradiction. To construct a deadlock scheduling, we schedule 
XI followed by the instant&ions of RI up to (but not including) 
the first LOCK(B). Then, we schedule the instantiations of R2 un- 
til a deadlock is reached, which must occur, since R2 contains a 
LOCK(A) (although the deadlock may occur before this instantia- 
tion is reached). 

Case 2: Lock A does not appear in R2. We start with the se- 
quence XI RlR2X2 and commute pieces of RI one at a time with R2: 
first, the instantiation UNLOCK(A), then the (immediate) subregions 
of RI, and finally the instantiation LOCK(A). The instantiations 
LOCK(A) and UNLOCK(A) commute with R2. because A does no1 
appear anywhere in R2. Each subregion of RI commutes with R2 
by the inductive hypothesis, because each subregion has lower nest- 
ing count than RI. After commuting all of RI past R2, we have an 
equivalent execution Xt R2RlX2. 

Case 3: Lock B does not appear in RI. Symmetric to Case 2. n 

Lemma 11 (Region grouping) Let G be a data-race free, 
deadlock-free computation resulting from the e.xecution of an 
abelian program. Let X be some scheduling of G. Then, there ex- 
ists cm equivalent scheduling X’ of G in which the instantiations qf 
every region are contiguous. 

Proof: We shall create X’ by grouping the regions in X one at 
a lime. Each grouping operation will not destroy the grouping of 
already grouped regions, so eventually all regions will be grouped, 

Let R be a noncontiguous region in X that completely overlaps no 
other noncontiguous regions in X. Since region R is noncontiguous, 
other regions parallel with R must overlap R in X. We first remove 
all overlapping regions which have exactly one endpoint (an end- 
point is the bounding LOCK or UNLOCK of a region) in R, where by 
“in” R, we mean appearing in X between the endpoints of R. We 
shall show how to remove regions which have only their UNLOCK 
in R. The technique for removing regions with only their LOCK in 
R is symmetric. 

Consider the partially overlapping region S with the leftmost 
UNLOCK in R. Then all subregions of S which have any instanti- 
ations inside R are completely inside R and are therefore contigu- 
ous. We remove S by moving each of its (immediate) subregions 
in R to just left of R using commuting operations. Let St be the 
leftmost subregion of S which is also in R. We can commute St 
with every instruction I to its left until it is just past the start of R. 
There are three casts for the type of instruction I. If I is not a 
LOCK or UNLOCK, it commutes with St by Lemma IO because it 
is a region in parallel with S,. If I = LOCK(B) for some lock B, 
then St commutes with I, because St cannot contain LOCK(B) or 
UNLOCK(B). If I = UNLOCK(B), then there must exist a match- 
ing LOCK(B) inside R, because S is chosen to be the region with 
the leftmost UNLOCK without a matching LOCK. Since there is a 
matching LOCK in R, the region defined by the LOCK/UNLOCK pair 
must be contiguous by the choice of R. Therefore, we can commute 
St with this whole region at once using Lemma IO. 

We can continue to commute St to the left until it is just before 
the start of R. Repeat for all other subregions of S, left to right. 
Finally, the UNLOCK at the end of S can be moved to just before R, 
because no other LOCK or UNLOCK of that same lock appears in R 
up to that UNLOCK. 

Repeat this process for each region overlapping R that has only 
an UNLOCK in R. Then, remove all regions which have only their 
LOCK in R by pushing them to just after R using similar techniques. 
Finally, when there are no more unmatched LOCK or UNLOCK in- 
stantiations in R, we can remove any remaining overlapping regions 
by pushing them in either direction to just before or just after R. The 
region R is now contiguous. 

Repeating for each region, we obtain an execution X’ equivalent 
to X in which each region is contiguous. 8 

Lemma 12 Let G be u data-race free, deudlock-free computation 
resulting ,from the execution qf an abelian program. Then every 
scheduling of G is true and yields the same final memory state. 

Proof’: Let X be the execution that generates G. Then X is a true 
scheduling of G. We wish to show that any scheduling Y of G is 
true. We shall construct a set of equivalent schedulings of G that 
contain the schedulings X and Y, thus proving the lemma. 

We construct this set using Lemma 1 I. Let X’ and Y’ be the 
schedulings of G with contiguous regions which are obtained by 
applying Lemma I I to X and Y, respectively. From X’ and Y’, we 
can commute whole regions using Lemma IO to put their threads 
in the serial depth-first order specified by G, obtaining schedulings 
X” and Y”, We have X” = Y”, because a computation has only one 
serial depth-first scheduling. Thus, all schedulings X, X’, X” = Y”, 
Y’, and Y are equivalent. Since X is a true scheduling, so is Y, and 
both have the same final memory state. 8 
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Theorem 13 An abelian Cilk program thut produces a deadlock- 
free computation with no duta ruces is determinate. 

Proof Let X be an execution of an abelian program that gener- 
ates a data-race free, deadlock-free computation C. Let Y be an 
arbitrary execution of the same program. Let H be the computation 
generated by Y, and let Hi be the prefix of H that is generated by the 
first i instantiations of Y. If Hi is a prefix of G for all i, then H = G, 
and therefore, by Lemma 12, executions X and Y have the same 
final memory state. Otherwise, assume for contradiction that io is 
the largest value of i for which Hi is a prefix of G. Suppose that 
the (io + I)st instantiation of Y is executed by an interpreter with 
name n. We shall derive a contradiction through the creation of a 
new scheduling Z of G. We construct Z by starting with the first io 
instantiations of Y, and next adding the successor of H,,, in G that is 
executed by interpreter n. We then complete Z by adding, one by 
one, any nonblocked instantiation from the remaining portion of G. 
One such instantiation always exists because G is deadlock free. By 
Lemma 12, the scheduling Z that results is a true scheduling of G. 
We thus have two true schedulings which are identical in the first io 
instantiations but which differ in the (iof l)st instantiation. In both 
schedulings the (io + I)st instantiation is executed by interpreter n. 
But, the state of the machine is the same in both Y and Z after the 
first iu instantiations, which means that the (io + I)st instantiation 
must be the same for both, which is a contradiction. 8 

We state without proof one more lemma, which allows us to show 
that ALL-SETS and BRELLY can give a guarantee of determinacy 
for deadlock-free abelian programs. 

Lemma 14 Let G be a computation generated by a deadlockyfree 
abeliun program. [f G is dutu-race free, then it is deadlock free. 8 

Corollary 15 If the ALL-SETS algorithm detects no data races in 
an execution qf a deadlock-free abelian Cilkprogrum, then the pro- 
gram running on the same input is determinate. 

Proof: Combine Theorems 3 and 13 and Lemma 14. 8 

Corollary 16 Ifthe BRELLY algorithm detects no violations ofthe 
umbrella discipline in un execution of a deudlock:free abelian Cilk 
program, then the program run on the same input is determinate. 

Proof Combine Theorems $8, and 13 and Lemma 14. 8 

6 Conclusion 

Although ALL-SETS and BRELLY are fast race-detection algo- 
rithms, many practical questions remain as to how to use these al- 
gorithms to debug real programs. In this section, we discuss our 
early experiences in using the Nondeterminator-2, which currently 
provides both algorithms as options, to debug Cilk programs. 

A key decision by Cilk programmers is whether to adopt the um- 
brella locking discipline. A programmer might first debug with 
ALL-SETS, but unless he has adopted the umbrella discipline, he 
will be unable to fall back on BRELLY if ALL-SETS seems too slow. 
We recommend that programmers use the umbrella discipline ini- 
tially, which is good programming practice in any event, and only 
use ALL-SETS if they are forced to drop the discipline. 

The Nondeterminator-2 reports any apparent data race as a 
bug. As we have seen, however, some data races are infeasi- 
ble. We have experimented with ways that the user can inform the 
Nondeterminator-2 that certain races are infeasible, so that the de- 
bugger can avoid reporting them. One approach we have tried is to 
allow the user to “turn off” the Nondeterminator-2 in certain pieces 
of code using compiler pragmas and other linguistic mechanisms. 
Unfortunately, turning off the Nondeterminator-2 requires the user 
to check for data races manually between the ignored accesses and 
all other accesses in the program. A better strategy has been to give 
the user fake locks-locks that are acquired and released only in 
debugging mode, as in the implicit R-LOCK fake lock. The user can 
then protect accesses involved in apparent but infeasible races using 
a common fake lock. Fake locks reduce the number of false reports 
made by the Nondeterminator-2, and they require the user to man- 
ually check for data races only between critical sections locked by 
the same fake lock. 

Another cause of false reports is “publishing.” One thread allo- 
cates a heap object, initializes it, and then “publishes” it by atom- 
ically making a field in a global data structure point to the new 
object so that the object is now available to other threads. If a logi- 
cally parallel thread now accesses the object in parallel through the 
global data structure, an apparent data race occurs between the ini- 
tialization of the object and the access after it was published. Fake 
locks do not seem to help much, because it is hard for the initializer 
to know all the other threads that may later access the object, and 
we do not wish to suppress data races among those later accesses. 
We do not yet have a good solution for this problem. 

With the BRELLY algorithm, some programs may generate many 
violations of the umbrella discipline that are not caused by ac- 
tual data races. We have implemented several heuristics in the 
Nondeterminator-2’s BRELLY mode to report straightforward data 
races and hide violations that are not real data races whenever pos- 
sible. 

False reports are not a problem when the program being de- 
bugged is abelian, but programmers would like to know whether 
an ostensibly abelian program is actually abelian. Dinning and 
Schonberg give a conservative compile-time algorithm to check if 
a program is “internally deterministic” [IO], and we have given 
thought to how the abelian property might likewise be conserva- 
tively checked. The parallelizing compiler techniques of Rinard 
and Diniz [31] may be applicable. 

We are currently investigating versions of ALL-SETS and 
BREILY that correctly detect races even when parallelism is al- 
lowed within critical sections. A more ambitious goal is to detect 
potential deadlocks by dynamically detecting the user’s accordance 
with a tlexible locking discipline that precludes deadlocks. 

Acknowledgments 

Thanks to Arvind of MIT for helpful discussions about locking. 
Thanks to the other members of the Cilk group for their support. 
We are also indebted to the SPAA reviewers for their extensive com- 
ments on the submitted draft. 

308 



References 

[II 

PI 

PI 

I41 

PI 

[61 

I71 

PI 

[91 

[lOI 

[Ill 

1121 

1131 

[l41 

[1-Y 

[I61 

[I71 

[I81 

J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation al- 
gorithm. Nature. 32414461149, 1986. 

Philippe Bekaert, Frank Suykens de Laet, and Philip Dutre. Ren- 
derpark, 1997. Available on the Internet from http://www.cs. 
kuleuven.ac./cwis/research/graphics/RENDERPARK/. 

Robert D. Blumofe. Execuring Multithrended Prqpms Eflciently. 
PhD thesis, Department of Electrical Engineering and Computer Sci- 
ence, Massachusetts Institute of Technology, September 1995. 

Robert D. Blumofe, Christopher E Joerg, Bradley C. Kuszmaul. 
Charles E. Leiserson. Keith H. Randall, and Yuli Zhou. Cilk: An 
efficient multithreaded runtitne system. Jolrrntrl c!f I’c~rcrllel cfnrl Dis- 
trihuted Conrpufi~~, 37( 1):55-69, August 1996. 

Robert D. Blumofe, Christopher E Joerg, Bradley C. Kuszmaul, 
Charles E. Leiserson. Keith H. Randall, and Yuli Zhou. Cilk: An 
efficient multithreaded runtime system. In Proceedings of the Ftffh 
ACM SIGPLAN Sjwl~osirrm on Principles and Practice oj Pamllel 
Programmin,g (PPoPP), pages 207-216, Santa Barbara, California, 
July 1995. 

Cilk-5. I Reference Manual. Available on the Internet from http: // 
theory.lcs.mit.edu/-cilk. 

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. /!I- 
/roduc/ion fo Al~orithrns. The MIT Press, Cambridge, Massachusetts, 
1990. 

David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von 
Eicken, and John Wawrzynek. Fine-grain parallelism with minimal 
hardware support: A compiler-controlled threaded abstract machine. 
In Proceedings of fhe Fourth /nfermrtional Conjerence on Architec- 
tural Support jiw Propwwning Laqucr~es and OpertrlinR Sysfenw 
(ASPLOS), pages 164-175, Santa Clara, California, April 199 I. 

Anne Dinning and Edith Schonberg. An empirical comparison of 
monitoring algorithms for access anomaly detection. In Proceedings 
of the Second ACM SIGPLAN Symposium on Principles & Pructice of 
Pa,nllel Prq,wmmin~ (PPoPP), pages I -I 0. ACM Press, 1990. 

Anne Dinning and Edith Schonberg. Detecting access anomalies in 
programs with critical sections. In Procredinp of the ACM/ONR 
Works/rol~ on P~~dlel cmd Distributed Debugging, pages 85-96. ACM 
Press, May 199 I. 

Anne Carolyn Dinning. Deferring Nondeterminism in Shred Memory 
Parallel Progrcmrs. PhD thesis, Department of Computer Science. 
New York University. July 1990. 

Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Event synchro- 
nization analysis for debugging parallel programs. In Slrl7erconll,lrtin.~ 
‘9/, pages 580-588. November 199 1. 

Mingdong Feng and Charles E. Leiserson. Efficient detection of de- 
terminacy races in Cilk programs. In Proceedings ofthe Ninth Annuc~l 
ACM Symposium on Ptrrallel Alprithns trnd Architectures (SPAA), 
pages l-1 1, Newport, Rhode Island, June 1997. 

Yaacov Fenster. Detecting parallel access anomalies. Master’s thesis, 
Hebrew University, March 1998. 

Matte0 Frigo, Keith H. Randall, and Charles E. Leiserson. The im- 
plementation of the Cilk-5 multithreaded language. In Proweding~ o/ 
the ACM SICPLAN ‘98 Conference on Propwnmin~~ Ltmguqe De- 
s&~ ctnrl In?lJlenrrnttr/ion (PLDI), Montreal, Canada, June 1998. To 
appear. 

Andrew V. Goldberg and Robert E. Tarjan. A new approach to the 
maximum flow problem. In Proceedinp of /he Eighreenth Anmud 
ACM Sympo.sium on Theory of’Comlmtin,q, pages 136-146, Berkeley, 
California, 28-30 May 1986. 

Michael Halbhcrr, Yuli Zhou, and Chris E Jocrg. MIMD-style parallel 
programming with continuation-passing threads. In Proceedinp of 
the 2nd Interntrtionnl Workshop on Massive Parcrllehn: Hardware. 
Sojiware. anti Applicntions, Capri, Italy, September 1994. 

David P. Helmbold. Charles E. McDowell, and Jian-Zhong Wang. An- 
alyzing traces with anonymous synchronization. In Proceedings ofthe 
1990 Internntbnrrl Co@rence on Purcrllel Processing, pages 1170- 
1177, August 1990. 

[l91 

PO1 

PII 

WI 

WI 

~241 

P51 

WJI 

~271 

P81 

1291 

PO1 

PII 

w-1 

[33] 

Richard C. Holt. Some deadlock properties of computer systems. 
Cmnputing Surveys, 4(3): 179-l 96, September 1972. 

Christopher F. Joerg. The Cilk Sy.~temfor Parallel Multithrerrded Corn- 
puting. PhD thesis, Department of Electrical Engineering and Com- 
puter Science, Massachusetts Institute of Technology, January 1996. 

Leslie Lamport. How to make a multiprocessor computer that cor- 
rectly executes multiprocess programs. IEEE Trunsactions on Com- 
puters, C-28(9):690-69 I, September 1979. 

John Mellor-Crummey. On-the-fly detection of data races for pro- 
grams with nested fork,join parallelism. In Proceedinp ofSupercom- 
/~l~fing ‘Y/, pages 24-33. IEEE Computer Society Press, I99 I. 

Barton P. Miller and Jong-Deok Choi. A mechanism for efficient de- 
bugging of parallel programs. In Proceedings of the l98R ACM SIG- 
PLAN Conference on Propwmnrin~q Language Design nnd hplemm- 
ftrtion (PLDIJ, pages 135-144, Atlanta, Georgia, June 1988. 

Sang Lyul Min and Jong-Deok Choi. An efficient cache-based ac- 
cess anomaly detection scheme. In Proceedings of the Fourth Inter- 
ncrtional Conference on Architecnrrcrl Supportf~v Prqqrmmning Lon- 
guages and Operating Systems (ASPLUS), pages 2X-244, Palo Alto, 
California, April I99 I. 

Greg Nelson, K. Rustan M. Leino, James B. Saxe, and Raymie 
Stata. Extended static checking home page, 1996. Available 
on the Internet from http://www.research.digital.com/SRC/ 
esc/Esc. html. 

Robert H. B. Netzer and Sanjoy Ghosh. Efficient race condition de- 
tection for shared-memory programs with post/wait synchronization. 
In P roceedin~s of ihe 1992 lnfernntiorwl Cwference on Pwxllel Pro- 
cessing, St. Charles, Illinois, August 1992. 

Robert H. B. Netzer and Barton P. Miller. On the complexity of event 
ordering for shared-memory parallel program executions. In Pro- 
ceedings ofthe 1990 Internrrrional Conference on Parcdlel Processing, 
pages II: 93-97, August 1990. 

Robert H. B. Netzer and Barton P. Miller. What are race conditions? 
ACM Letters on Progmmmin~ Languages cmd Systems, I( 1):74-88, 
March 1992. 

Itzhak Nudler and Larry Rudolph. Tools for the efficient development 
of efficient parallel programs. In Pmceediqs oj’the First Ismeli Con- 

,ference on Compu/er S,rrtems Engineering, May 1986. 

Dejan PerkoviC and Peter Keleher. Online data-race detection via co- 
herency guarantees. In P roceedinp of the Second USENX Sympn- 
sium on Operating Sysfems Desip und Implementation (OSDI), Seat- 
tle, Washington, October 1996. 

Martin C. Rinard and Pedro C. Diniz. Commutativity analysis: A new 
analysis framework for parallelizing compilers. In Proceedings oj’fhe 
1996 ACM SICPLAN Clmference on Propwwning Lrmguage Design 
cmd //tyJlerllenrr~/ior1 (PLDI), pages 54-67, Philadelphia, Pennsylva- 
nia, May 1996. 

Stefan Savage, Michael Burrows, Greg Nelson, Patric Sobatvarro, 
and Thomas Anderson. Erasel-: A dynamic race detector for multi- 
threaded programs. In Proceedings of the Sixteenth ACM Symposium 
011 Opertrring Sysrems Princ$es (SOSP), October 1997. 

Robert Endre Tarjan. Applications of path compression on bal- 
anced trees. Jourmd of the A.s.wcichon ,ji,r Computing Machinery, 
26(4):690-7 IS, October 1979. 

309 


