
Making Commitments in the Face of Uncertainty:

How to Pick a Winner Almost Every Time

(Extended Abstract)

Baruch Awerbuch* Yossi Azart Amos I?iat$ Torn Leighton~

Abstract

In this paper, we formulate and provide optimal solu-

tions for abroad class of problems in which a decision-

maker is required to select from among numerous com-

peting options. The goal of the decision-maker is to

select the option that will have the best future perfor-

mance. This task is made difficult by the constraint

that the decision-maker has no way to predict the future

performance of any of the options. Somewhat surpris-

ingly, we find that the decision-maker can still (at least

in several important scenarios) pick a winner with high
probability y.

Our result has several applications. For example,
consider the problem of scheduhng background jobs on

a network of workstations (NOW) when very little is

known about the future speed or availability of each

workstation. In this problem, the goal is to schedule

each job on a workstation which will have enough idle
capacity to complete the j ob within a reasonable or spec-
ified amount of time. This task is complicated by the

fact that any particular workstation might become sat-
urated by higher priority jobs shortly after one of our
jobs is assigned to it, in which case progress will not

● Johns Hopkins University and Lab. for Computer Science,
MIT Supported by Air Force Contract TNDGAFOSR-86-O078,
ARO contract DAAL03-86-K-0171, NSF contract 9114440-CCR,
DARPA contract NOOO14-J-92-1799, and a special grant from
IBM. E-Mail: baruch@theory.lcs. mit,edu.

tDepartment of Computer Science, Tel Aviv University. E-

Mad azar~math. tau.ac.il. Research supported in part by AlIon
Fellowship and by the Israel Science Foundation administered by
the Israel Academy of Sciences

tDepartment of Computer Science, Tel-Aviv University, Is-

rael E-Mail fiat@?math. tau ac 11. Research supported m part
by the Israel Sc]ence Foundation admimstered by the Israel
Academy of Sciences.

SMathematics Department and Lab for COmPuter SCI-
ence. MIT E-Mad: ftl@math.mit.edu Research SUDDOrted in
part ‘by ARPA Contract NOO014-95-1-1246 and Arm~’Contract
DAAH04-95-1-0607.

be made on our job. Thus, in order to complete the
jobs within a specified amount of time, we need to be
able to accurately guess (or predict) which workstations

will be idle and when. Somewhat surprisingly, it is pos-
sible to make such guesses with a very high degree of

accuracy, even though very little is assumed about the

future availability y of the workstations. For example, if
at least k of n workstations will be available for at least
D units of time each (spread out over some interval of 1

units of time), then with probability at least 1 – 0(1/n),

we will be able to complete k log n jobs with duration
!2(D/ log n) within the interval. The result holds for all
k, d, n, and 1, and only knowledge of n is needed in
order to schedule the tasks. For small values of k, the

result is far superior to the (seemingly optimal) “dart-

throwing” approach in which each job is assigned to a
random workstation in the hope that it will be idle.

Our results can also be used to provide the first com-

petitive algorithm for the video-on-demand scheduling
problem as well as the more general on-line set cover

problem. The results may also be of int crest in the

context of investment planning, strategic planning, and

other areas where it is important to be able to predict
the future moves of an adversary or a market.

1 Introduction

In this paper, we consider a class of optimization prob-

lems in which there is a decision-maker who is required

to choose from among numerous competing options. The

goal of the decision-maker is to select the option that

will have the best future performance. The task is com-

plicated by the fact that the decision-maker only has
information about the pastperformance of each option,
and little or no information about future performance

can be assumed or inferred based on the past perfor-
mances. Nevertheless, we will show how to make opt i-
mal or near-optimal selections in a variety of settings.

Permissionto makedlgkal/hnrd copiesof all or part of tils material for Decision-making problems arise in numerous appli-
peraonelor classroomuse is grantedwhhout fee provided thal the copies cations. For concreteness, we will focus most of our
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is

attention on one such application in this paper. In par-

given that copyright is by permission of the ACM, Inc. To copy otherwise, tic~ar, we will focus on the problem of scheduling back-

tn republish, to post on sewers or to redktribute to tists, requires specific ground or low-priority jobs on a network of workstations

permission andlor fee. (NOW) when very little information is known about the
STOC’96, Phdadelphia PA,USA future speed or availability of each of the workstations.
0 199fj ACM @sgTgl-78$S/9fj/OS ..$.3.50 We will then mention how the results can be generalized

519

and applied to other problems step. We will also assume that all workstations are

1.1 Scheduling Jobs on Networks of Worksta-
tions

Consider a company in which there is a network of n

workstations and where there is a hierarchy of priorities
for the various users of each workstation. For exam-

ple, the owner of a workstation might have top prior-
ity for his/her workstation, the president of the com-
pany might have second priority for all workstations,
and so forth. Sometimes, an employee (call him Bob)

might have more work than can be handled by his own
workstation and so he will schedule some of his jobs

on other workstations in a background or low-priority
mode. When those workstations are not busy working

on higher-priority tasks (say those of their owners), they
will work on Bob’s background job.

Such job scheduling on NOWS has become very com-
mon, In fact, the “unused” capacity on NOWS has be-

come increasingly viewed as a major computational re-
source within companies. Accordingly, it is often desired
that this resource be used (and used efficiently) before
funds are allocated to purchase additional equipment.

In this paper, we describe efficient algorithms for
scheduling background jobs on NOWS. To begin, we

focus on the problem faced by a single user who needs
to schedule a set of jobs (perhaps with precedence con-

straints) on the workstations so that all of the jobs can
be accomdished within some interval of time. In order

to be effic;ent, the user is restricted to assign each job to

a single workstation.’ (E.g., the user is not allowed to

make n copies of a job and then simultaneously assign
one copy to each workstation.) If the user is unsatis-
fied with the progress of a workstation on a job, he may
elect to kill the job and start over on another worksta-

tion, however. Of course, the user will be reluctant to
make frequent switches because of the effort lost when

the job is killed and the overhead incurred when the job
is moved elsewhere.

The goal of the user is to assign the jobs to worksta-
tions that will be able to comdete them auicldv. The

difficult y is that the user does ‘nat know dead ;f time
which workstations will be able to finish a job quickly.

The user can monitor the NOW to see which worksta-
tions are currently available, and which were available
at various times in the past, but we da not assume that
there is any connection (probabilistic or otherwise) be-
tween the past ar present and the future. (E.g., the fact

that the workstation was available for the last T seconds
does not imply anything about the praspect that it will

be available in the next second.)2

For simplicity, we will partitian time inta units of
equal length called steps, and we will assume that every
workstation is either available or unavailable for each

1 Such a constraint may also be needed to insure coherency in

cases where the job makes use of external data or where the job

could have side effects.

‘In some scenarios, it might be remonable to assume that

such a dependency does exist (I.e., that workstations that were

idle in the past are more likely to be idle m the future), but we

will show that euch assumptions are not necessary in order to ob-

tain good performance, Hence, we will do without them, thereby

obtaining algorithms with stronger guarantees of performance.

equally fast and that there is no penalty incurred when a
workstation swaps back and forth between a low-priority

job and a higher-priority job. Hence, a workstation W

will complete a d-step background job in the dth step

that W was available after the job was assigned to W.3
We also assume that an adversary decides which work-

stations will be available at each step and that this ad-
versary is aware of our scheduling algorithm, but not
the results of our random coin tosses.

We first consider the scenario when Bob wants to

schedule a single background job of duration d on the

NOW. Bob may schedule the jab on any machine that he

chooses and he is assumed to have full knowledge of the
past availability of every machine. After scheduling the

job, Bob may later kill the job and restart elsewhere if he
is not satisfied with the performance of his first choice.

The number of times that Bob must restart his job is
samething that we would like to minimize (in addition

ta the total time needed to get the job dane).

ln order for Bob to get his job done in some interval
af 1 steps, it is necessary that at least one workstation be
available far d steps within the interval. Unfortunately,

this condition is not sufficient ta guarantee that Bob
can get his job done since Bob does not know until it

is toa late which workstation(s) will be available far d
steps. Even if many (say m) af the n workstations will

be available for d steps, the probability that Bob will
be able to pick one of the m good workstations can

be limited to m/n by the adversary. (In this case, the

adversary need only make n – m workstations available

for fewer than d steps and m workstations available for

exactly d steps. The m good workstations can be chosen
randomly. Bob’s best strategy is ta schedule the jab on
a random workstation at the beginning of the interval
and then to hope for the best. It will not help Bob to
make any changes in this case.)

The preceding example is very discouraging since it

demonstrates that Bob will not be likely ta get his job
done even though there may be a great deal af unused

capacity in the NOW. Even worse, the adversary need
not be malicious since even a randam adversary is suf-

ficient to thwart Bob.

In the paper, we show that if the adversary is re-

stricted slightly, however, then Bob can find a goad
workstation with very high probability. In particular,
if at least one workstation will be available for ad log n

steps (where a = ~(l)), then Bob will be able to get

his d-step job done with probability 1 – 0(1/n). In fact,
even if Bob has log n cl-step jobs which must be done in

sequence, he will still be able to get them all done with

probability 1 – 0(I/n). Moreover, in the latter case,

the number af times that Bab will need to kill a job
and switch workstations will be very small compared to
the number of times that Bob picks a good workstation
for one of his jobs. In other words, Bob will almost
always be able to pick a “good” workstation when he

3Most of these assumptions can be relaxed without changing

the results that we prove, although the analysis becomes more

difficult. For example, our methods can also be apphed to see.

narios where machines run at different speeds and where there is

a penalty for swapping between jobs. In fact, the methods even

work for a model where Job swapping is not allowed (e.g., if a

job is swapped out, it is killed).

520

goes to schedule a job. Viewed in another way, our re-

sult shows that if Bob partitions his work into jobs of

size O(D/ log n), where D is the amount of time that

the most idle workstation will be available, then he will
almost cert airily be able to get @(D) work done. More-
over, if Bob is allowed to schedule 0(1) jobs at once,
then he will be able to get (1 – e) D work done for any

constant c >0 with high probability y.4

The results can be extended to a scenario where

there are multiple users with varying priorities. In this
case, if the ith most available machine is available for

D, steps, then for all i, the user with the ith prior-

ity can be assured (with high probability) of getting at

least (1 – e)~, work done. Knowledge of the D,’s is not
needed in order to obtain these results and no coordi-

nation is needed among the users.

Our scheduling algorithm is quite simple and tends
to schedule jobs on machines that have been available in
the past (thus confirming that what may be considered
a standard practice is, in fact, good practice). Although

the past is not related to the future, we will show that

such a strategy makes it difficult for the adversary to
prevent any of the users from making progress while

also making sure that i workstations are available for
at least D, steps. (This is provided, of course, that the

strategy is randomized and that the random choices are

made in the right way.)

1.2 A General Problem Formulation

The problem just described can be formulated in a more
general context. For example, consider a problem in

which there are n commodities. A decision-maker or

trader (call her Alice) is allowed to “hold at most one

commodity at any time. At each step, each commodity
may or may not issue a “dividend” or a return of, say,

$1. Allice collects the dividend as profit if and only if she
is holding the commodity at the time that the dividend
is paid. Alice may or may not be allowed to change the
commodity that she is holding and there may or may

not be a steep penalty or cost every time that Alice
makes a change. Alice’s goal, of cpurse, is to maximize

her profit while minimizing the number of changes that
she makes. 5

4Although the constraint that some workstation be available

for D = ad log n steps may seem strange at first, It is really a

mdd assumption. For example, such a condition would be likely

to arm if workstations were avadable with some constant prob-

ability at each step. Such a condition may also be likely to arise

in pract]ce since some workstations may be idle for long periods

of time. By focusing on the D-step avadabi lit y constraint, we

are merely identifying a salient feature that makes the problem

tractable. The fact that we have identdied a salient feature is

demonstrated by the matching lower bounds that are proved in

the paper Finally, the constraint M useful in guiding the choice

of job sizes. In particular, we find that by partitioning maxlmal-

length Jobs mto El (log n) chunks, we will be assured of scheduling

them efficiently, even w]thout knowledge of which workstations

wdl be available

5The connection between the trading problem and job

scheduhng on NOWS M quite close The workstations correspond

to commodities and dividends correspond to workstation avail-

abdlty. The only ddference M that a Job M completed on a work-

station only when a threshold is reached m terms of avadabdlty.

Such a threshold can be modeled by a steep trading cost. Our
methods can also be apphed to a scenario m which a Job 1s com-

pleted iff a workstation is available for d comecuttue steps, in

which case the dividends can be collected Iff they are Issued for

Let D denote the number of dividends paid by the
best commodity. At first glance, it seems as though

Alice’s best strategy is to select a random commodity,

in which case her expected profit might be as small as
@(D/n). In fact, Alice can do much better.

For example, even if Alice is not allowed to make any
trades (i.e., she is allowed to hold only one commodity)

and D > log n, then our selection algorithm will obtain

a profit of Q (D / log n) for Alice with probability y at least

0.99. (This is optimal.) By makhg O(log n) trades,

Alice’s profit can be increased to @(D) with probability

1 – 0(1/n). (This is also optimal.) If Alice is allowed to
hold O(1) commodities at any step, then her profit can

be increased to .99D with high probability. The value
of D need not be known in advance, although then the

number of trades may increase to O(log n log(D/ log n))
if D is not known.6 The results can also be extended to

a scenario where there are multiple traders or to where
Alice is allowed to own several commodities at the same

time. In each case, we will show how Alice can almost
always pick a winner every time.

1.3 On-line Set Cover and Related Applications

It turns out that our methods can also be used to give
a @(log n log ~) competitive algorithm for the on-line

set cover problem. 78 In the on-line set cover problem,

we are given a family of n sets F = {SI, SZ, S~}.
Elements v1, W, v~ arrive one at a time where each

u, belongs to at least one of the sets. As each element
arrives, the sets to which it belongs are revealed to the

player. The goal of the player is to pick k sets so as to
maximize the number of elements that are covered. In

this version of the problem, the player can make selec-

tions at any time, but cannot change a selection once

it is made. In addition, the player only gets credit for
elements that are contained in a set that was selected by

the player before or during the step when the element
arrived. Moreover, the player only gets credit for each
element at most once, even if he/she has selected many
sets that contain the element.

In the case when the sets are constrained to be dis-
joint, we have the special case of the commodity trading

problem described in the previous section where Alice
is allowed to own k commodities but cannot make any

trades. Alice’s profit is simply the number of elements

covered. g

d consecutive steps during which Alice holds that commodity

6 If D is not known and Ahce is not allowed to make trades,

then her probabdity of obtaining a profit of f2(D/ logn) is

decreased

‘This bound is optimal for many values of n, m, and k.
8We use the convention that the competitive ratio IS always

greater than one, even though we cons]der benefit problems

rather than cost problems. Thus, an upper bound of c on the

competitive ratio really means that the ratio between the on-hne

benefit and the adversary benefit is at least I/c A lower bound

of c on the competitive ratio means that the above ratio M at

most I/c.

‘Technically, Alice only gets credit for dividends pa]d on com-

modities that she owned m prevzous steps, in which case, we need

to assume that the return of the off-line player is CJ(k log n) m

order to guarantee that Alice will be O(log n log ~) competitive

521

1.3.1 Video-on-Demand Scheduling

The disjoint version of the set cover problem is also

equivalent to the “video-on-demand” scheduling prob-

lem posed in [AGH94]. In this problem, customers issue
requests for movies (which will start at a prearranged
later time) to a video server with limited capacity k.
Each customer demand is immediately accepted or re-
jected. If the demand is accepted, that movie must be
shown. If the demand is rejected, the customer is lost.
The goal is to be able to accept the largest number of
demands subject to the capacity constraint k.

The on-line algorithms in [AGH94] achieve linear

(O(m)) competitive ratio; the semi-offline algorithms

with look-ahead (where the decision can be postponed
to the time when future demand is known) achieve loga-

rithmic ratio. In this case, the movies correspond to the
sets, and the customers correspond to the base elements.
The more general (non-disjoint) set cover problem cor-
responds to a setting in which every customer discloses

a list of alternative movie titles that he/she wants to
watch.

1.3.2 Investment Planning

The disjoint set cover problem also has applications in
the context of investment planning. For example, previ-

ous work on the competitive analysis of financial prob-
lems [EFKT92, EK93, CEL93] focused on trading prob-

lems, where algorithms were allowed to make partial in-
vestments, to retract from previous decisions (at some

cost), or were based on some statistical knowledge of
the input. In contrast, on-line set cover captures sit-
uations where investment decisions are indivisible and
irrevocable: once an investor has decided to invest in

building a new factory, he/she must hope that there will

be high demand for the product produced by the fac-
tory, in which case the dividends paid to investors will

be high. In our model, investment decisions do not have

to take place immediately; investors can postpone the

decision until he/she get convinced that the company

is doing well and indeed paying lofty dividends. Still
there is risk involved since the future and the past are
not necessarily related and once the investor decides to
invest in a company, demand for its product could drop
to zero, in which case the investor is stuck with the fac-
tory building and a warehouse full of merchandise that
nobody wants. Hence, with limited financial resources,

the investor has to decide what investments to make and
at what stage along the curve of increasing demand.

The more general (non-disjoint) set cover problem
captures scenarios where there may be complex relation-

ships between between one company’s growth and an-
other’s (e.g., they are producing a competitive product
or mutually exclusive lines of products). For example,
the marginal revenues of investing in a factory produc-

ing answering machines may be too low after purchase of
a factory producing answering machines with a cordless
phone. To analyze such problems, we view companies
as sets of products, and arriving customers as base ele-
ments. Upon their arrival, customers disclose mutually
exclusive lists of products they would like to purchase.
If, by that time, the investor has already has purchased
a company producing any one of these products, the

investor makes a profit. Otherwise, the customer (and

the money) are lost, since the client may not wait.

1.3.3 Strategic Planning

The methods developed in this paper may also be of
interest in the domain of strategic planning and war
gaming. For example, consider the following oversim-
plified battlefield scenario where a general needs to de-
cide where and when to attack an enemy defender. In
the scenario, the general wants to find a single soft spot
from among n enemy defensive positions. The enemy

does not have the resources to defend all n positions,

but he can shift his forces on a daily basis. The attack-

ing general has access to intelligence data that reveals
which enemy positions were well defended in all previous

days, but this data does not provide the general with
any information about which positions will be defended
during the coming day(s).

The general’s problem is to pick a position p c [1, n]

and a day q 6 [1, Tl for the attack. The general wins if
site p is not well defended on day g, and he loses oth-

erwise. The only knowledge possessed by the general
about the future is that over the course of the next T

days, at least one of the n positions will not be defended
for at least @(log nT) consecutive days. 1° In this case,

our results provide a strategy for the general that will

result in victory with probability near one, no matter

what strategy is used by the enemy. The high success
probability holds even if the enemy knows the strategy
being followed by the general (but not the result of the
coin tosses being used by the general each morning when
deciding whether or not to attack). In other words, it is
not possible for the enemy to trick the general into at-

tacking a well-defended position by, for example, leaving

a position undefended for several consecutive days, only

to switch and suddenly ramp up defenses in anticipation
of an attack.

Our results can also be applied to scenarios where

multiple attacks are being planned and/or where attacks

can be broken off quickly if a position is attacked that
is well defended. In such cases, the general can achieve

success against even less restricted enemies. The gen-
eral’s decision about where and when to attack does
rely on random coin tosses each morning (which might
be disconcerting to some) but it is the randomness in
the coin tosses that insures that the general will be suc-

cessful wit h high probabifit y. (For inst ante, wit bout the
randomness, the general will have no chance of success

against an enemy who has acquired the general’s strat-

egy.)

1.4 Additional Previous Work

Various on-line optimization variants of many combina-
torial problems have been subject to competitive anal-

10In some cases, the restriction that a position be left uncle.

fended for El(log nT) consecutive days M unrealistic, Indeed, the

enemy may decide to continually move his forces so that no site

]s left undefended for more than o(log nZ’) days at a t]me How-

ever, continual movement of forces might be costly, and even-

tually, the enemy may be forced to leave some sights less well

defended for longer periods of t]me. If this ever happens, the

general will win with high probabdity,

522

ysis [ST85a, KMRS88]. Such problems include, for ex-

ample, on-line matching [KVV90], partition [FKT89],
on-line steiner tree and generalizations [1W91, CV92,

ABF93, WY93], and also on-line graph coloring [Vish90,

Irani90, HS92].

The subject of job scheduling in the face of uncer-

tainty has also been studied previously [BL94, KP94,

BCLR95], though our results differ from those of prior
researchers in several respects. The closest prior work is

that of Kalyanasundaram and Pruhs [KP94], who devise
competitive algorithms for task scheduling of unrelated

jobs on a NOW where processors may become faulty. In
the case when most processors are faulty and replication
is not allowed, the results are mostly negative. In con-
trast, the positive nature of the results in this paper are
possible because we consider a different adversary and
objective function. Bhatt et al. [B CLR95], on the other

hand, study a related cycle-stealing problem in which

the zeal is to maximize the amount of zminterrwted.
work that can be stolen from a single workstation.

1.5 Outline of the Paper

The remainder of the paper is divided into sections as
follows. In Section 2, we describe an optimal algorithm
for picking a winner with probability close to 1 on the
first try. We then show how this algorithm can be used
to provide an optimal solution to the on-line set cover

problem. In Section 3, we describe a more efficient algo-

rithm for picking winners repeat edly if we are allowed

to kill and reschedule jobs. Several extensions of the

results are presented in Section 4. We conclude with

some acknowledgements and references.

2 Picking a Winner on the First Try

We begin by considering the scenario where Bob wants

to run a single d-step job and he is only allowed to
schedule the job once. (This corresponds to the scenario

where Alice is allowed to own only one commodity and

to the on-line set cover problem where we can select just

one set.) We will assume that at least one of the n work-

stat ions will be available for at least D > 3d log n steps.

In what follows, we will show how to select a worksta-
tion so that the job is completed with probability at

least 1 – O(w).

The algorithm for selecting the workstation is quite
simple. Label the workstations as WI,)’V2, Wn. At

each step, Bob checks the status of each workstation to

see which are available. For each i (i = 1,2, n in se-
quence), if W, was available at the end of the last step,

Bob flips a coin to decide whether or not to assign the
job to W,. In particular, Bob will assign the job to W,

with probability n SXID-Z / d, where x is the number of

steps for which ~, has been available thus far. lf the
job is ever assigned to some workstation, then Bob stops
ilipping coins and just waits for the job to be completed.

In what follows, we will show that with probability at

least 1 – O((cllog n)/D + l/rz), the job will be assigned
to a workstation that will be available for d or more
steps following the assignment, no matter what strat-

egy is employed by the adversary in determining when
machines are available.

Let S denote a sample space of coin tosses where
there will be one coin toss for each pair (z, ~) for which

Wi is available at step j. If W, is available for the xth
time at step j, then the probability y of Heads for the

(z, J flip is set to be n3xlD-2/d.

There is a sample point in S for each possible com-

bination of Heads and Tails for the flips. Each sam-
ple point also corresponds to an outcome of the coins

flipped by Bob to determine when and where to sched-
ule hk job. In particular, Bob will schedule his job on

W, at step j if the (i, j) coin is Heads and if the (z’, j’)
coin is Tails for all (i’, j’) such that j’ < j or j’ = j and
i’ < i.

Let Swin denote the subspace of S consisting of sam-
ple points for which Bob is successful in getting his job
done. These are the sample points for which there is at

least one Head among the flips and for which the first

fiip to result in Heads occurs for a workstation that is

available for at least d subsequent steps (i.e., for which

there are at least d subsequent flips). The probability y

that Bob is successful is then Pr[Swin].

In order to show that .?’r[SWin] is close to 1, we will

consider a second space S’ ~ S for which it is easy to

show that Pr[S’] is large and that Pr[Swin] is nearly

as large as % [S’]. In partictiar, we define S‘ to con-
sist of the sample points for which there is at least one
Head and for which the first d tlips for each workstation
result ed in Tails.

Lemma 2.1 Pr[S’] z 1- 0(1/rz).

Proof: The probability of getting a Head among the

(at most) dn flips for which z s d is at most

dn(n 3dl D-2/d) < 2/n.

The probability that there are no Heads among the
last d flips for the workstation that is available for D

steps is either O or at most

(1- n3(D-:’D-2)’ < (1 - ~)d ~ e-nj2, ❑

Lemma 2.2 Pr[Swin] z (1 – O(w)) Pr[S’].

Proofi We will construct an injection f : S’ + Swin
for which

Vs’e s’ Pr[f(s’)] > (1– o(W)) Pr[s’].

The lemma will then follow.

Consider any sample point s’ c S’. Let W, be the
workstation for which a flip is first Heads in s’ and let

x denote the number of steps that W, had been avail-

able up to and includkg the step when the first Heads

occurred. By the definition of S’, we know that z > d.
Let

z’= n3=JD-2/d

523

and

z
~3(x-d)/D–2/d

=

~–3df Dz!
=

= (1 - El(W)) Z’.

If z’ > 1/2, then define ~(s’) to be the sample point
which is–identical to s’ in every way except that the

out come of the (z – d) t h flip for W, is changed from
Tails to Heads. By definition, this sample point is in

swin. Moreover,

Pr[f(s’)] z

Pr[sI] = l–z

(1 – e(%))z’

= 1 – (1 – e(Q&))z’

L_@(*)
>2

+ @(
)

. l.@(*),

since z’ ~ 1/2.

If z’ ~ 1/2, then define f(s’) to be the sample point
which is Identical to s’ except that the outcome of the

(z – d)th flip for W; is changed from Tails to Heads and
the outcome of the zth flip for W, is changed from Heads
to Tails. Once again, it is easy to see that f (s’) E Swin.
It is also easy to check that f is an injection. Moreover,

Pr[.f(s’)] = z 1–2’

P?-[s’] — “ —l–z z’

> (1 – e(w))

1–2’

x 1 – .2’ + El(Q.&z’)

since z’ ~ 1/2. Q

Theorem 2.3 Pr[Swzn] ~ 1 – O(w + ~).

Proofi Follows immediately from Lemmaa 2.1 and 2.2.
❑

Remark 2.4 By being more careful with the asymp-
totic analysis and adjusting the probability of the iiips
slightly, it is possible to make Pr[Swin] > 1—% —~.

Remark 2,5 The probability bound of Theorem 2.3
cannot be improved by more than a constant factor,
no matter what algorithm is used to select a worksta-
tion. This is because the adversary can select pJn of the
workstations at random to be available for the first dj
steps for 1 ~ j ~ D/d where p = 1—6)(%). (In other

words, (p~ — p~+ 1) n machines wilI cease to be available

immediately after step dj”,) No matter what selection
algorithm is used, it can have at most a p chance of

picking a winner. More generally, a similar adversary
can be used to show that if D G [td, (t + l)d – 1], then
Bob can select a good workstation with probability at

–lJtmost n .

2.1 Application to On-line Set Cover

Next, we show how to adapt the preceding algorithm
to provide an optimal O(log n log ~)-competitive algo-

rithm for the on-line set cover problem.

In the set cover problem, we are given n sets F =
{S,, S2, S~}, of which we are allowed to choose k.
The elements WI, VZ, v~ arrive one per step (without

loss of generalit y), and as each element arrives, we learn
what sets it belongs to. In what follows, we will assume

that credit is given for an element if we have chosen a

set containing the element in the past or if we choose

a set containing the element during the step when the
element arrives. “ (E.g., in the video-on-demand prob-

lem, we can get credit for a request for a movie after
seeing the request, but only if we immediately accept
the request.)

For clarity of exposition, we will think of the k choices
as being made by k different people ‘PI, PZ, 7,$, each

of whom will make at most one choice. When a person

PI chooses some set S, he will get credit for all elements
v c S that arrived during or after the step when he se-

lected S and that are not credited to Pl, for 1’<1. (In

other words, if v is contained in a set that was selected

by Pl, for some 1’<1 before or during the step when v

arrived, then v is not credited to ‘Pt.) By prioritizing the

allocation of credit in this way, we can ensure that we
only get credit for each element once, even if the same
set is selected more than once. The prioritization also
allows the analysis to proceed as if PI selects first (see-
ing all the elements before P2 selects), Pz selects from
what remains, and so forth, even though all the play-
ers make their decisions as each element arrives. (so,
in fact, ‘P1 might select the same set as PZ after it is

selected by P2, In this case, P2 stops getting credit for

the set as soon as PI selects the set,)

Pi makes his selection using the protocol followed by
Bob in the previous section, but with the following mod-

ifications. First the value of D is replaced by D1 = 23’1
where j is selected at random from [1, log +]. (Each D1

is chosen independently from the others.) The value of d

is replaced by dl = 1*J, where a is a suitably large

constant. Next, we identify set S, with workstation W,
for each i. W, will be considered to be “available” by
?? at the jth step iff WYc S, and Vj # S,/ for all i’ such
that S,, was previously selected by PIJ for some 1’<1.
(In other words, S, is considered to be available at step

j by ‘Pt if ‘Pt would have gotten credit for Vj had ‘PL
chosen S, in the past or if P1 chooses S, now.) If dl = O

and this is the first time that Pi has a chance to get
credit for an element, then P1 selects S,. Otherwise, P~

selects S, at step j with the same probability that Bob
would select W, at step J.

In what follows, we use Rl to denote the random
variable that counts the number of covered elements
that are credited to PZ. We also define R = R1 +
R2 +... + Rk to be the size of the cover produced
by the algorithm. Our goal is to show that EX[R] ~

11The ~e,uits ,-an be ~~dified to handle a scenario where credit

is only given for elements that are contained in previously-held

sets, but we will then need to assume that the optimal k-cover

contains L ~ ak log n elements where a is a sufficiently large

constant, although we will not assume that the value of L is

known in advance,

524

wlOgnlO; (7n/k)
), where L is the size of the optimal off-

line k-cover.

Let Lt be the random variable that denotes the max-

imum amount that any workstation (or set) appeared
to be available to P~. If LI z L/2k, then D[will

be chosen so that & < D! < Lt with probability at

least 1/ log ~. If this happens (i.e., if & < Dt ~ Ll)

and CJ z 1, then we can use Theorem 2.3 to show

that RI > dl > Q(A) > Q(A) with probabil-

ity close to 1. If & < 11 ~ L1 and dl = O, then

R1 = 1 ~ Q(%) ~ Q(A) with certainty. Com-

bining the preceding facts yields the conclusion that

—) with probability at least 0(1/ log ~)R 2 Q(klo; n

(all provided L1 ~ L/2k).

We next show that if LI < L/2k for some 1, then

R > L/2. The proof is by contradiction. Suppose that
R < L/2. Then R1 +Rz+. . .+ RI_l < L/2. Since there

are k sets that cover L items, this means that some set

must cover at least ~ ~ & items that were not
credited to PI, PZ, or ‘Pl_l. By the definition of

availability y to ‘PI, this means that L1 ~ L/2k. Hence, if

L{ < L/2k for some 1, then R > L/2, as claimed.

Let T’l = R, + R/k. Then EZITI] ~ Q(~log ~lo~ ~)

since we get that contribution from Ez[R~] if LI > L/2k
and we get more than that from Ex [R/k] otherwise,

Let T denote the sum of the Tl. Then Ez[~ =

2Ez[R] and EzITl z O(log ~~og ~). Hence, Ez[R] z

‘(log nfog ~
), as claimed.

The preceding algorithm allowed the same set to be

chosen more than once, even though each element was

credited only once. In fact, it never helps to select a set
a second time and so we can easily restrict our algorithm

to select each set only once. In this case, we may select
fewer than k sets overall.

2.2 Lower Bounds

The lower bounds we give hold even in the special case
where the sets are disjoint, i.e., every element belongs

to precisely one set.

We first show that m/(2k) is a lower bound on the

competitiveness of any deterministic algorithm. This
bound is obviously tight up to a factor of 2.

The adversary first presents elements taken from set
number 1. Once the on-line algorithm commits to this
set, no further elements from set 1 arrive, but elements
from set number 2 are presented. This process is re-

peated until the on-line algorithm commits to k sets or
at total of m elements have been presented overall.

For every set chosen by the on-line algorithm, the on-

line benefit is 1 giving a total benefit of no more than

k for all sets. If after k such sets at least m/2 elements
were presented then the off-line algorithm accepts all

these sets in advance and obtains a benefit of at least
m/2. Otherwise at least m/2 elements belonging to set
k + 1 arrive. The off-line algorithm accepts this set
obtaining a benefit of at least m/2 whereas the on-line

algorithm remains at benefit k as it cannot accept any

more sets. In any case the off-line benefit is at least m/2

whereas the on-line benefit is at most k. This implies

the lower bound.

The randomized lower bound is more complicated.
We prove it for the case when k = 1. A similar result
can be proved for some larger values.

The competitive ratio of a randomized algorithm is
defined as the supremum over all sequences of the ratio

bof ~/E(bon). To prove the lower bound we apply a vari-
ation of Yao’s theorem to the competitive ratios under

consideration. (See ABM-93 for this variation). This
allows us to replace randomness in the algorithm with
randomness in the input. We will choose a distribution
on the input sequence such that the expected competi-
tive ratio of any deterministic algorithm is at least the
desired lower bound when averaging over the possible

sequence inputs.

Consider the following probability distribution over

sequences of elements from the sets:

1. Choose integers g and z such that n ~ 2Vz and
m ~ 2Z2Y.

2. Ghoose an integer 1 < Z* < z uniformly at ran-

dom.

3. Construct sequences that consists of i“ phases while
each phase consists of y steps. Associated with

phase istepj, o<i<i”, l~~ <y, isa setof
2Y–~ sets S(i, j) (S(i, j) c {S1, ..., S~}). During

phase z’ step j, 2’ different elements are presented

from every set S C S(i, j).

Throughout the sequence, no element is ever pre-

sented twice. (In fact, elements names are not sig-

nificant, only the sets to which they belong, and

every element belongs to exactly one set).

The set of sets S(Z, 1) consists of 2Y–1 sets and

is pairwise dkjoint with sets of sets S(r, 1) for all

r#i, O~i <i*.

The set of sets S(i, j), j >1, (elements from whose
elements are presented at phase i step j), is a ran-

dom set of size 2Y–J out of the 2Y–J+ 1 sets associ-

ated with the previous step (S(i, j – l)). In other
words S(i, j) is a random half of S(i, j – 1).

Note that the number of new sets in each phase is

precisely 2Y-] and there are at most z phases. Thus

the number of sets is at most 2Y-l Z < n. Moreover,

the number of elements requested in phase i is less than

2Y 2;. Hence the total number of elements is bounded

by 2Y2Z < m. Thk justifies the choice of y and z as a

function of m and n.

Since the off-line algorithm knows the value of i* and
the set that will be used in the last step of phase Z*, it is

easy for the off-line algorithm to get a benefit of 2’” – 1y.

Matters are more difficult for the on-line algorithm,
however, since it knows neither piece of information. In
fact, we will next show that the on-line algorithm can

not do any better than picking a predetermined point
at which to select the set, where the selected set is the
set containing the item just presented.

Consider “simple” deterministic on-line algorithms
of the following form: “wait until the element 1 is pre-
sented, choose the set to which it belongs.” We can now

525

argue that given any deterministic on-line algorithm A

for this problem with inputs drawn from the above dis-

tribution, there exists a simple deterministic algorithm

A’ such that the expected benefit of A’, over the above
distribution on input sequences, is at least the expected

benefit of A on the same distribution. This is because
nothhg is significant in one sequence over another. (Up
to reordering the input and the set lables, every input of
a fixed length in the same.) Hence, we can successively

modify A, without decreasing the expected benefit, un-

til a simple algorithm is obtained.

It follows that to prove a lower bound on the com-
petitive ratio it suffices to prove an upper bound on

the expected ratio between the on-line benefit of simple
deterministic algorithms and the adversary benefit.

A simple deterministic on-line algorithm has a sin-
gle parameter 1 as discussed above, this translates to
choosing a set which has an element presented in phase
2’, step ~’ for some O ~ i’ < z, 1 <j’ < y.

Then the probability that i’ = i’ + s for 1 – Z’ <
s ~ z — i’ is ~. Now, if s < 0 then the on-line bene-

fit 1s zero because the sequence ends before the on-line

algorithm chooses any set. If s ~ 1 then the on-line

algorithm chooses some set S c S(i’, j’). The on-line
benefit depends on the maximal value ~’ s k s Y

for which S c S(Z’, k), in which case it is no more

than (k – j + 1)2”. The conditional probability that

S c S(i’,lc +r), r z O, given that S c S(Z’, k), is 2-’.

It now follows that the expected ratio between the
on-line benefit and the adversary benefit is no more than

1 ‘ 2“

()(

2“—. ;+—
z 22/+1 + —2,/+2 + “ “ “

)

(

~ 2-0 +2-1 +2-2+...

)
< ~.

Y yz

This implies the yz/4 lower bound on the competitive
ratio. Note that in terms of n and m the lower bound
is log n log m for wide range of values.

3 Picking Winners Repeatedly

We next consider the scenario where Bob has log n d-
step jobs to run and where he may elect to kilI a job

and restart it on another workstation if he is not sat-
isfied with the progress thus far. To make matters

more difficult, we will assume that the jobs, call them

Jl,..., frog., must be run in sequence (i.e., that Yt+l

cannot be scheduled until $, is completed for all z <
log n).

In what follows, we will show how to schedule the
jobs so that all of them are completed with probabil-
ity 1 — 0(1/n). We will assume only that at least one
workstation will eventually be available for D > ad log n
steps where a is a sufficiently large constant.

As before, the scheduling algorithm is quite sim-
ple. In this case, we flip (1 + e) log n coins (call them

Cl, cl,..., C(I+C) ~Og~) for every pair (i, J where W, is

available at step j. (e = @(l/ log a) is a small constant

that will be specified later.) The probability of a Heads

for ch will be

2-c, hnc2xjD-2/d

where c1 = @(log cr) and cz = @(log a) are large con-

stants that will be specified later and z is the number
of steps that W, has been available thus far. Whenever

one of the coins is Heads for the first time (i.e., if the
hth coin is Heads for the first time at step j of Wi), then

Bob schedules a job on W,. If a job was still running on

another workstation, then it is killed and restarted on

W,. Otherwise, the next job in the queue is scheduled
on W,.

The proof that this algorithm works is similar to
but more complicated than the proof for the case when

Bob schedules a job only once. The complication arises
because we need to overcome the log n barrier described
in Remark 2.5 as well as dependence problems caused
by occasionally having to kill jobs in order to be more
efficient. We begin by getting good bounds on when

each coin is likely to first come up Heads.

Each time that some workstation is available at a
step, there is a chance (specifically, the probability is
Z–C1hnC2$lD-2/~) that Ch will come up Heads. Let mh

denote the sum of these probabilities up to and includ-

ing the current flip. (In the case that 2–c1hnc2’’D-2/d >
1, we still add the full amount into mh. Then, it will

be the case that m~+l = 2–C’ mh for au h.) We say
that a coin is early if Ck comes up Heads for the first
time when mh < 2—=112 and iate if eh does not come

up Heads while mh < 2“1’2. In what follows, we show
that the probability that a coin is either early or late is

small.

Lemma 3.1 For ang h, the probability that eh is early

is at most 2 -.1 i2 ~n~ the probability that Ch is ~~te is at

_2ql~
most e .

Proofi The probability that there is a Heads among

the first r tosses of Ch is at most PI + pZ + ~ . + p,

where p~ is the probability of a Heads on the lth flip
of C~ (over all workstations and steps). For eh to be
early, one of these tosses must result in Heads where

mh=Pl+P2+’””+pr<2
–CI 12. Thus, the probability

that eh is early is at most 2-” /2.

By similar reasoning, the probability that eh is late

is at most

6

1=1

where mh=p~+. ..+p, ~2 c112. Thus, the probability

that Ch is late is at most e
_2.llZ .0

Lemma 3.2 With probability l–0(1/n), at most ~ log n

coins will be either early or late.

Proofi By Lemma 3.1 and the independence of the

coins, the probability that ~ log n or more coins are ei-
ther early or late is at most

(ws9(2-c’’2+e-2c1’2’g

526

This probability is 0(1/rs) provided that e ~ 1 and

that c1 ~ 36/e. Henceforth, we will assume that a is

large enough and that c1 and c are selected so that both
conditions are satisfied. ❑

Lemma 3.3 For eachh < (l+e)logn, theprobabd-

ity that ch first becomes Heads afterch+l first becomes

Heads is at most 2-=11’+ e-”’”.

Proofi The step at which mh first reaches 2=’/2 is the

same as the step at which mh+l first reaches 2-=1/2

(since mh+l = 2-” mh by definition). Thus in order for
ch to first become Heads after ch+ 1 first becomes heads,

it must be the case that either ch is late or C~+ 1 is early.
The result then immediately follows from Lemma 3.1.
❑

Lemma 3.4 For any h ~ (1+ c)log n, with probability

1- o(c2/a + 2-” ‘2 + ~/n), ch will eventua[iy become
Heads and it will first become Heads when flivoed for a. . . .
workstation which will be availab!e for at least d steps

before Ch+ 1 first becomes Heads.

Proofi The proof is similar to the proof in Section 2.
In particular, let S denote the sample space of all flips

for Ch and Ch+ 1. Let S’ denote the subspace of sample

points for which Ch first becomes Heads at or before the
step where Ch+ 1 first becomes Heads and for which the

fist d flips of Ch for each workstation results in Tails.
Let Swin denote the subspace of points for which the

condition of the Lemma holds; namely, that ch will first

become Heads when flipped for a workstation that will

be available for at least d steps before Ch+ 1 first becomes
Heads.

We first show that Pr[S’] is close to 1. The proba-
bility of getting a Heads among the (at most) dn flips

of & for which x ~ d is at most

~n(2-clhnMD-2/~) ~ n.zdJD–l

zc’1~
=_

= O(;/n)

since c’ = O(log a).

The probability that there are no Heads among the
last d flips of ch for the workstation that is available for
D steps is either O or at most

(1 _ 2-cl~ncz(~-d)/D-2 /d)d

~ (1 _ ~–ci(l+c)+cz-c, d/D-2 /d)d

<e
_nc~(l-d/D) -cl(l+.)-2

~ 0(1/n)

provided that cz ~ 3+2c1, a ~ 1 and e <1. Henceforth,
we will assume that a is large enough and that c’ and

e are selected so that these conditions are satisfied.

Combining the previous two bounds with the bound
of Lemma 3.3, we find that

Pr[S’] > 1 – 2-’1’2 – e-’”’” – 0(1/n)

We next show that Pr[Swin] is large. The proof is

nearly identical to that of Lemma 2.2. In particular, we
construct an injection

f ZS’ + S~in

for which Vs’ E S’

Pr[$(s’)] ~ (1 – @(cz/a))Pr[s’].

The injection is constructed by identifying the worksta-
tion W, and flip x for which ch is first Heads, amd then

changing the (x – d)th flip of & for W, to be Heads

instead of Tails. If z’ = 2–’1hnc2Xl D–2/d is less than
1/2, then we also change the zth fllp of ch for W, to be
Tails instead of Heads.

As a result, we can conclude that

p~[Swin] ~ (1 - 0(c2/a))pr[s’l

> 1 – 0(C2/CI + 2–’1/2 + l/n). ❑

Lemma 3.5 With probability 1 – 0(1/n), for all but
$ log n values of h ~ (1+ c) log n, ch will become Heads
and will first become Heads for a workstation which will
be available for at least d steps before ch~l first becomes
Heads.

Proofi

We first consider the case when h is even. Then the
probability that the condition of Lemma 3.4 holds will

be independent for each h. In particular, the probability

that the condition of Lemma 3.4 fails for more than

~ log n even values of h is at most

()~l$nn (o(c’/a + 2-”/2 + I/n)) ~ 10’ ‘.

This probability is 0(l/n) provided that c ~ 1, c1
is a sufficiently large constant multiple of 1/.5, c’ is

0(1/c), and t is a sufficiently large constant multiple of

1/ log a. All of these conditions (as well as the prior con-

straints in the constants) can be met provided that a is
a sufficiently large constant and where c = @(1/ log a),

c1 = @(logs), and cz = @(logs).

An identical argument can be use to show that the

probability that the condition in Lemma 3.4 fails for
more that ~ log n odd values of h is at most 0(1/n).
Thus, with probability y 1 – 0(1/n), the condition of
Lemma 3.4 fails for at most ~ log n values of h. ❑

Theorem 3.6 With probability l–0(1/n), the schedzd-
ing algorithm wiil result in ail log n jobs being completed

and at most clog n instances where a job is killed and
restarted on another workstation.

Proofi

Let lh denote the interval of time between the step
when ch is first Heads and the step when Ch+ 1 is first
Heads. If both of ch and C~+ 1 are neither early nor
late, we say that lh is good. Otherwise, we say that Ih

is bad. By Lemma 3.2, we know that with probability y
1 – 0(1/n), there are at most ~ log n bad intervals.

527

Since no two good intervals overlap, we can again use
Lemma 3.2 to show that with probability 1 – 0(1/n),

there are at most ~ log n good intervals 1~ during which

another coin (other than C~ or Ch+ 1) first becomes Heads.

By Lemma 3.5, we know that with probability 1 –
0(1/n), for all but at most slog n values of h, Ch will

become Heads for a workstation which will be available
for at least d steps before ch+ 1 fist becomes Heads.

Combining the previous three facts and adding fail-
ure probabilities, we can conclude that with probability y
1 – 0(1/n), there are at least

(l+c)logn –;logn– ;logn–:logn=logn

values of h for which ch first becomes Heads for a work-

station that will be available for at least d steps before
any other coin first becomes Heads. The job that is

assigned to such a workstation is guaranteed to be com-
pleted before the algorithm attempts to schedule an-

other job. Since only (1 + e) log n attempts are made to
schedule a job, only e log n can end in failure. ❑

The result in Theorem 3.6 can be shown to be tight
or nearly tight in several respects. For example, by con-

sidering a randomized adversary of the type outlined in
Remark 2.5 (with p = 1/ log n), it can be shown that

if D = O((d log n)/ log log n), then no scheduling algo-
rithm will have better than a @(1/ log log n) chance of
scheduling even one job, no matter how many swaps
and restarts it makes.

4 Extensions

4.1 Obtaining Higher Efficiency

The algorithm described in Section 3 is inefficient by a
factor of a. This is because there is a workstation that
was available for D = ad log n steps, but we only com-

pleted log n d-step jobs with high probability. In what
follows, we will show how to attain higher efficiency by
allowing the user to schedule up to a/c = O(l) jobs
at the same time. (Each workstation still only actively

works on one job at a time, of course, and there are no
precedence constraints between jobs scheduled at the

same time.)

The improvement is quite simple. Assume that some
workstation will be available for D* steps. Then the
user runs cY/e versions of the algorithm, described in Sec-

tion 3 with d = & and D = D*/(2 + 1/6). Each

version is assigned a unique priority and works inde-

pendently from the others. (In fact, we can think of
the cY/e versions as if each was being run by a separate
user.) Whenever a higher-priority job is scheduled on

a workstation, that workstation simply appears to be
unavailable to all lower priority versions. (The reverse

is not true. In other words, a workstation running a
low-priority job will appear to be available to a higher-

priority user.)

The key to proving that (a/e) log n jobs are com-
pleted with high probability rests on the fact that each
version can consume at most (1 + c)d log n available
steps. (This is because a version starts at most (1+

e) log n jobs, each of which has length at most d.) Hence,

even if all cr/e versions consume (1 + c)d log n steps on a
single workstation, some workstation will still be avail-

able for at least

D* – :(l+c)dlogn = D(2+ l/~) – :(1 +6)

=D

steps, which means that every version of the algorithm
will be able to complete log n jobs with high probability

by Theorem 3.6.

The total amount of work accomplished by the a/c

versions is

D*

= 1+26
— ~ (1 – 2e)D*.

By making e be small, this amount can be made arbi-
trarily close to D*.

The preceding analysis ignored the scenario when
there is more than one workstation that is available for

D* steps. We show how to exploit the available capacity
in multiple workstations in the following section where

we also handle the case of multiple users.

4.2 The Case of Multiple Schedulers

One particularly nice aspect of our scheduling algorithm

is that (with only small modifications) it can be used
simultaneously by multiple individuals without coordi-

nation. (Alternatively, it can be used by a few individ-

uals who want to use multiple workstations — this is

reducible to the case where there are multiple users.)

For example, consider a scenario where there are at

least k workstations that will be available for at least D*
steps each. In this case, each user will be instructed to

use the algorithm of Section 3 with D = D*/(2 + 1/6).
For simplicity, the users will be prioritized, but they will
not otherwise interact. Each user runs the scheduling
algorithm as if he/she were the only individual running

background jobs. Workstations will be considered to be
available to a user iff they are not running a higher-

priority job. Higher-priority jobs will always interrupt
lower-priority jobs. Knowledge of k is not needed and

is used only for the purposes of the analysis. In order
to attain near maximum use of the available time in
the k workstations, we will assume that there are at
least (a/c)k users, each with log n d-step jobs where

d = D/(a log n). Somewhat surprisingly, the (cr/c)k
users will get all of their log n jobs run (in sequence)
with high probability. This is because each of the (cr/e)k
users can consume at most (1 + e)d log n available time
using the algorithm of Section 3. This means that at
least one of the k workstations will still be available for

D* -
(cY/e)k(l + e)dlog n

k

= (2+ l/6)D - (~)D = D

steps no matter what the (a/c) k users do. Hence, by
Theorem 3.6, each of the (cr/c)k users will get all log n

528

jobs done with high probability. (Actually, we need to
boost the success probability of the analysis in Theo-
rem 3.6in order to make the preceding result hold with

probability l–O(l/n), but this iseasyto do by adjust-
ing the constant factors.)

It is worth noting that the preceding result attains

greater eficiency since weareable to accomplish

~kdlogn=~ =
kD*

6(1/6 + 2)

= = >(1–26)kD*
l+2t–

productive work.

4.3 The Case when D* is Unknown

The algorithms described thus far used knowledge of D*

in order to schedule the jobs. In what follows, we show

how to modify the algorithms so that dependence on

D* is no longer required.

In the case when D* is not known, the scheduler

partitions time into intervals as follows. The first inter-
val lasts until some workstation has been available for

a log n steps. During this time, the scheduler ruus the
algorithm for d-step jobs where d = 1.

For z > 1 the ith interval starts after the (i – l)st
interval has finished and lasts until some workstation

has been available for a2i - 1 log n steps (counting from
the beginning of the interval, only). During this time,

the scheduler runs the algorithm for d-step jobs where
d= 2’.

Even without knowing the value D*, log n jobs of

length O(D*/ log n) will still be completed with proba-

bility 1 – 0(1/n). Jobs of shorter length will also be
completed, although the number of killed jobs could

grow as large as e log n log (D*/ log n). The algorithms
in Sections 4.1 and 4.2 can be modified in a similar man-

ner in order to improve efficiency.

In fact, if the users each have a unique priority, and

if each user is allowed to run a/t jobs at the same time,
then for all k, the kth user will be able to get (1 – 2c)D~
work done with high probability where D: is the amount

of time available on the kth most available machine.

5 Acknowledgments

We would like to thank Allan Borodin, Leonid Levin,

Prabhakar Raghavan, Mike Sipser, Bob Tarjan, Al Vezza,
and Joel Wein for helpful remarks, suggestions, and ref-
erences.

References

[ABFR94] B. Awerbuch, Y. Bartal, A. Fiat, and A. Ros6n.

[ABF93]

Competitive Non-Preemptive Call-Control. In
Proc. oj the 5th Ann. ACM-SIAM Symp. on Dis-

crete Algorithms, pages 312-320, January 1994.

B. Awerbuch, Y. Bartal, and A. Fiat. Competitive
Distributed File Allocation. In Proc. of the 25th

Ann. ACM Symp. on Theory o.f Computing, pages

164-173, May 1993.

[ABM93]

[AGH94]

Y. Azar, A. Broder, and M. Mannase. On-line
choice of on-line algorithms. In Proc. lth ACM-
SIAM Symp. on Discrete Algorithms, pages 432–
440, 1993.

A. Aggarwal, Juan Garay, and Amir Herzberg.
Adaptive video on demand. In Proc. Thirteenth

ACM POD C Syrnp., page 402, 1994. also appeared

as an IBM Research Report, RC19770, Ott, 1994.

(BCLR951 S. Bhatt, F. Chun~, T. Lei~hton, and A. Rosen-
‘berg. Optimal stra~egies fox stealing cycles. Un-

[BL94]

[CEL93]

[CV92]

published manuscript, 1995.

R.D. Blumofe and C.E. Leiserson. Scheduling Mul-

tithreaded Computations by Work Stealing. In
Proc. oj the 95th Ann. IEEE Symp. on Founda-
tions oj Computer Science, pages 356-368, Novem-

ber 1994,

J. Cooperstock, R. E1-Yaniv, T. Leighton. The
Statistical Adversary Allows Online Foreign Ex-

change with no Rkk. Proceedings of SODA ’95.

B. Chandra and S. Vishwanathan. Construct-
ing Reliable Communication Networks of Small
Weight On-line. Journal of Algorithms, 1992.

[EFKT92] R. E1-Yaniv, A. Fiat, R. Karp, and G. Turpin.
Competitive Analsvs of Financial Games. In Proc.

[EK93]

[FKT89]

[HS92]

[Irani90]

[IW91]

[KP94]

of the 33th Ann. IEEE Symp. on Foundations oj

Computer Science, pages 327-333, October 1992.

R. E1-Yaniv and R. Karp. The Mortage Problem.

In Proc. of the 2nd Ann. Israeli Symp. on Theo-
retical Computer Science, May 1993.

U. Faigle, W. Kern and Gy6rgy Tur&n. On the
Performance of On-Line Algorithms for Parti-

tion Problems. Acts Cybernetics 9, pages 107-1I9,
1989.

M.M. Ha11d6rsson and M. Szegedy. Lower Bounds

for On-Line Graph Coloring. In Proc. oj the 3rd

Ann. ACM-SIAM Symp. on Discrete Algorithms,

pages 211-216, January 1992.

S. Irani. Coloring Inductive Graphs On-Line. In
Proc. oj the $lst Ann. IEEE Symp. on Founda-

tions oj Computer Science, pages 470-479, OctO-

ber 1990.

M. Imase and B.M. Waxman. Dynamic Steiner

Tree Problem. In SIAM .lournal on Discrete

Mathematics, 4(3):369-384, August 1991.

B. Kalyanasundaram and K.R. Pruhs. Fault-
Tolerant Scheduling. In Proc. oj the 26th Ann.
ACM Symp. on Theory oj Computing, pages 115-

124, May 1994.

[KMRS88] A.R. Karlin, M.S. Manasse, L. Rudolph, and
D.D. Sleator. Competitive Snoopy Caching. In Al-

[KVV90]

[LT94]

[ST85a]

[ST85b]

gorithmica, 3(1):79-119, 1988. -- -

R.M. Karp, U.V. Vazirani, and V.V. Vazirani. An

Optimal Algorithm for On-Line Bipartite Match-
ing. In Proc. oj the 22rd Ann. ACM Symp. on

Theory oj Computing, pages 352-358, May 1990.

Richard J. Lipton and Andrew Tomkins. On-

line interval scheduling. In Proc. 5th ACM-SIAM
Symp. on Discrete Algorithms, pages 302–311, Ar-
lington, VA, January 1994.

D.D. Sleator and R.E. Tarjan. Amortized Effi-
ciency of List Update and Paging Rules. In Co m-

munications o.f the A CM, 28(2) pages 202-208,
1985.

D.D. SLEATOR AND R.E. TARJAN. Self-Adjusting
Binary Search Trees. Journal oj the A CM, 32:652–
686, 1985.

529

[Vish90] S. Vishwanathan. Randomized Online Graph Col-
oring. In Proc. of the .?Ist Ann. IEEE Symp. on

Foundations oj Computer Science, October 1990.

[WY93] J. Westbrook. and D.K. Yan. Greedy On-Line
Steiner Tree and Generalized Steiner Problems. In

Proc. of the 9rd Workshop in Algorithms and Data
Structures, Also Lecture Notes in Computer Sci-
ence, vol. 709, pages 622-633, Montr6al, Canada,
1993, Springer-Verlag.

530

