
Chapter 33

Competitive Randomized Algorithms for
Non-Uniform Problems

Anna R. Karlin*
Mark S. Manasse*
Lyle A. McGeochj

Abstract
Competitive analysis is concerned with comparing the
performance of on-line algorithms with that of an op-
timal off-line algorithm. For some problems, ran-
domized on-line algorithms have yielded better per-
formance ratios than deterministic on-line algorithms,
assuming that the input sequences are generated by
an adversary that has no knowledge about the re-
sults of the coin tosses made by the algorithm. In
this paper, we present new randomized on-line algo-
rithms for snoopy-caching and the spin-block prob-
lem. These algorithms achieve strongly competitive
ratios approaching e/(e - 1) GZ 1.58, a surprising im-
provement over the best possible ratio in the deter-
ministic case, which is 2. We also consider the situ-
ation when the request sequences for these’ problems
are generated according to an unknown probability
distribution. In this case, we show that deterministic
algorithms that adapt to the observed request statis-
tics also pay at most a factor of e/(e-1) more than the
optimal off-line algorithm. Finally, we show that for
the 2-server problem on a 3-vertex isosceles triangle,
there is a lower bound on the competitive ratio with
a limit of e/(e - 1). This is in contrast to the 2-server
problem on an equilateral triangle where a strongly
3/2-competitive randomized algorithm is known.

1 Motivation and Results

The amortized analysis of on-line algorithms for pro-
cessing sequences of tasks in dynamic systems has
been a subject of great interest in recent years. The
approach taken is to compare the performance of a
strategy that operates with no knowledge of the future
with that of an optimal, clairvoyant strategy, that has
complete knowledge of the future and operates op-

*DEC Systems Research Center, 130 Lytton Ave., Palo Alto,
CA 94301.

tDept. of Mathematics and Compute-r Science, Amherst
College, Amherst, MA 01002.

Susan Owicki*

timally given that information. A large number of
problems have been studied from this point of view,
cf [l, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 143.

On-line algorithms whose performance is within the
smallest possible constant factor of the optimum off-
line are said to be strung/y compeailiue. More formally,
let A be a (possibly randomized) on-line algorithm,
let u be an input sequence to the algorithm, and let
ECA(U) be the expected cost A incurs when process-
ing input sequence b. Let Gopt(u) be the cost incurred
by the optimal off-line algorithm in processing r~. We
consider two types of adversaries.

Our first type of adversary is one that makes
its request sequence without regard to the non-
deterministic choices made by the on-line algorithm.
An on-line algorithm A is said to be c-competitive
against a weak adversary if there is a constant a such
that for any fixed input sequence 6,

EC,&) < c ’ C,,,(a) + a.

The constant c is known as the competitive factor.

The second type of adversary is one that can choose
each input request depending on the choices made by
the algorithm in servicing the previous requests. An
on-line algorithm A is said to be c-competitive against
a strong adversary if there is a constant u such that
for any input sequence u generated in this way,

ECA(U) 5 c . C,,,(u) + a.

Finally, an algorithm is strongly c-competitive
against a weak (rasp. strong) adversary if c is the
smallest constant attained by any on-line algorithm.

Observe that if the on-line algorithm is determinis-
tic then a weak adversary can simulate a strong one.

A natural and interesting question is whether there
are problems for which the best competitive factor is
smaller against weak adversaries than against strong

301

adversaries. Two dramatic results of this type have
been obtained. The first, due to Borodin, Linial and
Saks [3] shows that for an n-state metrical task sys-
tem where all states are unit distance apart the com-
petitive factor can be improved from O(n) against
a strong adversary to 2X, (= O(logn)) against a
weak adversary. A similar result due to McGeoch and
Sleator [12] 1 slows that for the paging problem with
memory size k (or equivalently a E-server problem
with uniform distances), the competitive factor can
be improved from k: to Xk. Fiat et al [7] showed that
this is the best possible competitive factor against a
weak adversary.

In this paper we present new randomized algo-
rithms for the snoopy-caching and spin-block prob-
lems. For both of these problems, it is not possible
to construct an on-line algorithm with a competitive
ratio better than 2 against a strong adversary. Our
randomized algorithms have competitive ratios which
approach e/(e - 1) M 1.58. We also show that this is
best possible against a weak adversary. An interest-
ing fact about these results is that they are the first
strongly-competitive algorithms against a weak ad-
versary for a server problem on a non-uniform graph.

We also present a lower bound result for the a-server
problem. It is known that for the a-server problem on
a graph with all distances equal, there is a strongly
3/2-competitive algorithm against a weak adversary.
We show that such a competitive ratio cannot be
achieved on a graph with unequal distances. In par-
ticular for the 2-server problem on a 3-vertex isosceles
triangle, there is a lower bound on the competitive ra-
tio greater than 1.5 and tending to e/(e - 1). We also
show a lower bound greater than 1.54 on the com-
petitive ratio for the 2-server problem on the 3-4-5
triangle.

Finally, we consider the question of how well a
deterministic algorithm can perform if the input se-
quence is generated according to some unknown but
time-independent probability distribution. This ques-
tion was motivated by the observation that in traces
obtained for programs running on snoopy caching
multiprocessor systems [6], different programs ex-
hibit vastly different input characteristics (in this case
write-run length). In particular, the inter-program
input variability was extremely high, while the intra-
program input variability was extremely low. This
suggests that an algorithm which adapts to the ob-
served input statistics can potentially converge to
near-optimal behavior.

We show that adaptive deterministic algorithms
of this type for snoopy-caching and for the spin-
block problem achieve competitive ratios approaching

e/(e - 1) if the input sequence is generated accord-
ing to a fixed probability distribution. We further
present a practical and simple version of the adaptive
algorithm which is also 3-competitive against a strong
adversary.

2 Snoopy Caching

2.1 The Model

A snoopy caching multiprocessor system is a system
in which a set of processors each with its own (snoopy)
cache are connected over a bus to each other and
to a large shared memory. We will assume that the
caches and large shared memory have infinite capac-
ity. There is a single address space used by all of
the processors; each location in this space is called a
satiable. The memory space is partitioned into blocks,
groups of variables of uniform size. We let p- 1 denote
the block size. We define the block snoopy caching
model, as in [9].

All of a processor’s memory requests are serviced
by its cache. The cost of reading a variable depends
on whether the block containing that variable is in the
requesting cache or not. If it is, then the read is exe-
cuted at no cost. If the block isn’t in the cache, then
the cache must send out a request for the appropri-
ate block. This block is then broadcast on the bus by
the cache currently containing the value of the block,
and all other caches listen to the bus and retrieve it.
The cost of this read is p bus cycles (one cycle for the
address and one cycle for each variable in the block).

The cost of a write is either 1 or 0 bus cycles, de-
pending on whether the block is shared or not. If the
block is shared, the new value and address of the vari-
able being written to must be broadcast on the bus
to maintain cache consistency. We will assume that
every write is preceded by a read, since if the cache
is holding the block it wishes to write to, this read is
free.

We call an on-line algorithm that decides when a
block should be invalidated a snoopy-caching algo-
tiZhm. The goal of this algorithm is to minimize the
number of bus cycles used. For efficiency, if a block is
shared, but only actively used by one cache, the other
caches should invalidate that block in order to elim-
inate the cost of doing updates. On the other hand,
there is a large penalty of p bus cycles for invalidating
a block from a cache which shortly thereafter needs
to access it. Previously, Karlin e2 al [9] discovered
a strongly Zcompetitive algorithm against a strong
adversary. We will now show that it is possible to im-

302

prove this ratio if the on-line algorithm is randomized We observe that the expected cost of algorithm A
and t.he adversary is weak. on sequence uk is

2.2 Randomized Algorithms
Snoopy Caching

for

For any constant p, define an associated constant ep
as follows:

1 p
ep =

(>
1+p .

Theorem 1 Consider a block snoopy caching mu&
tiprocessor system, with page site p - 1. There is an
on-line randomized snoopy caching algorithm A with
a competitive factor of

e AL-+ -
e,-1 ‘-O”e-l

against a weak adversary. In fact, if all blocks start
out shared, the expected cost of A’ on any sequence
equals ep/(ep - 1) times the optimal cost.

Proof: Assume initially that the multiprocessor
system consists of two caches and a single block B.
We may assume that initially block B is shared by
both caches, since all costs incurred prior to the time
this state is reached can be bounded by a constant.
Moreover, if the initial states are the same for the
on-line and off-line algorithms, this constant is 0.

Let VI: be any sequence of requests consisting of
k writes by one of the caches, interspersed with any
number of reads by that same cache, to some variable
in B, followed by a read by the other cache of some
variable in B. We call such a sequence a write run of
length k. Since any algorithm need not invalidate B
from either cache until it is written to by the other
cache, we can ignore any read subsequent to the one
terminating a write run. Hence any sequence u of
requests can be decomposed into subsequences of type
UE and so a randomized algorithm that achieves a
competitive factor of a on any sequence Bk achieves
a competitive factor of <y overall.

We construct a randomized algorithm for sequences
of type bk with the best competitive factor. The
choices available to the on-line algorithm for process-
ing sequence flk can be described by enumerating a
set of deterministic algorithms. Let Ai be the de-
terministic algorithm that drops the block from the
inactive cache after i updates by the active cache. A
randomized algorithm is just a choice of a probability
distribution ?r, where ?~i is the probability that the
randomized algorithm chooses algorithm Ai on any
write-run starting from the shared situation.

E(CA(Uk)) = c lri(p$- i) -i- (1 - c xi)).

l_<i<k l<i<k --

Since the optimal off-line algorithm has

co&k) =
k klp
P k>p

our goal is to choose values for ?~i such that

E(C&k)) I (l+ a)k k I P

E(CA(us)) < (1 +“)I’ k > P
(*)

and cr is minimized.

Setting the preceding inequalities to equalities and
solving the resulting difference equations, we obtain

a* (> i-l

?ri =

0’
P

i = l...p

otherwise

Solving for Q by setting Cl,.i.., Xi = 1, we get --

1 1
cY=

(1
1++ p_1=ep-

Therefore this probabilistic algorithm yields a com-
petitive factor of

e
- - x 1.58,

e- 1

To extend this analysis to multiple blocks, we take
the on-Iine algorithm which treats each block inde-
pendently as above. This yields an on-line algorithm
A for which

CA

where c is a constant multiple of the discrepancy be-
tween the initial states of the on-line and off-line al-
gorithms.

Finally, we describe the on-line algorithm for k
caches, which we call A’. At the beginning of each
write run, algorithm A’ selects a value i according to
the probabilities Ai, It broadcasts updates until the
write run exceeds i in length, and if this happens,
invalidates the block in all other caches.

To see that A’ achieves the same competitive factor,
we define a mapping between request sequences, u,
on k caches and request sequences u’ on 2 caches as
follows. Partition u into subsequences r; consisting of
operations by a single cache. The associated sequence

303

u’ consists of the concatenation of the sequences +
where r,! is the same set of reads and writes as in rj,
but with the requesting cache replaced by i (mod 2).
Trivially CA’(u) 5 CA(J) and C,,,(a) > C+(a’),
and the theorem is proved. q

Theorem 2 Let B be any on-line snoopy caching
algorithm in a block snoopy caching multiprocessor
system with page size p. Then there exists arbitrarily
expensive sequences 0 for which

WBW) > ep - -
C,,,(u) -e,-IG

Proof: Consider the result of executing algorithm
B on a sequence of type Ok. Suppose that algorithm
B has probability ai of dropping the block from the
inactive cache after i writes. Take y and algorithm
A as above. Let k be the smallest index for which

c l<i<k ai 5 C15i<k ri. Since the or; values were
chosen so as to set Giequalities (*) to equalities, it is
easy to verify that ECB(6k) 2 ECA(bk), After each
write run, select another E as above to extend the
sequence and complete the proof. •I

2.3 Randomized Algorithms for Lim-
ited Block Snoopy Caching

In this section, we extend the results for block snoopy
caching to the more realistic model of finite direct-
mapped caches. The slots that may contain blocks in
a cache are calIed cache lines. A direct-mapped cache
i uses a hash function hi(B) to determine the unique
cache line in which a block B will reside. If hi(B) =
h;(P), then cache i can contain at most one of the
blocks B and B’ at any time. Since different blocks
can occupy the same cache line, a block that is read
into a line may displace a block which was written
to privately. In this case, the line is dirty and must
be written back to main memory at a cost of p. This
model continues to assume that main memory has
infinite capacity, a realistic assumption since it must
be possible to have some clean copy of each shared
variable.

In the limited block snoopy caching model, a cache
grabs a block that is being read by another cache or
being written back if and only if that block was the
last to occupy its cache line; that is, only if the last op-
eration on this cache line was to invalidate this block.

Making the assumption that the adversary has to
use the same hash function as the on-line algorithm,
we can prove a strengthening of Theorem 1.

Theorem 3 Consider a limited block snoopy
caching multiprocessor system, with page sire p - 1.
There is an on-line randomized snoopy caching algo-
rithm A with a competitive factor of

e AL---+ -
ep - 1 p4ooe-l

against a weak adversary.

Proof: Without loss of generality we restrict our
attention to a single cache line. In this case, a write
run, Uk, is any sequence of requests consisting of k
writes by one of the caches, c, interspersed with any
number of reads by that same cache, to some variable
in B, followed either by a read by any other cache of
some variable in B or a read by c to a variable in a
block that collides with B. Every sequence of requests
can be decomposed into its write runs and its isolated
reads, the latter being either the result of collisions
or initial reads into a cache line. The optimal off-line
algorithm and our on-line algorithm incur the same
cost for all of the isolated reads.

The on-line algorithm A for the limited block model
uses the same probabilities as the block snooping al-
gorithm to determine how many updates to do in a
write run before invalidating.

To show that this algorithm achieves the same com-
petitive ratio, we map any sequence u on which it
operates to a sequence u’ in which the costs for u’
and u have the same optimal cost in the limited block
model, u’ is at least as expensive as u for the on-line
algorithm, and the costs of the write runs in u’ are
the same for both the block and limited block models.

Each write run in Q which terminates due to a col-
liding read, is replaced in u’ by the same write run
followed by a read for the block by main memory. If
the block was shared immediately before the colliding
read, then main memory contains a valid copy of the
block. Hence for both the off-line and on-line algo-
rithms, the added read by main memory replaces the
writeback; if it was necessary it costs p and if not, it’s
free.

Now consider a write run in d which terminates
with a read. If the line in the reading cache was dedi-
cated to some other block, then this write run is aug-
mented with p extra writes. We claim that adding
these writes does not change the optimal algorithm’s
cost. Indeed, since the terminating read causes that
block to become revalidated by every cache that pre-
viously held it, the optimal strategy on this write run
is to invalidate that block in all caches except for the
writing cache. Since we have added extra requests,
the on-line cost can not decrease, and since the write

304

run has length at least p, the cost of the write run in
both models is equal to the number of steps for which
the block is shared plus the cost of the re-read, p. 0

2.4 Adaptive Algorithms

Traces obtained for programs running on snoopy
caching multiprocessor systems show that different
programs exhibit vastly different write-run character-
istics. Specifically, the programs analyzed in [6] have
the property that either write runs are very short
(variables are actively being shared) or they are very
long (there is very little sharing going on). In the first
case, an algorithm like exclusive write (algorithm A1
above) performs best; in the second case, an algorithm
like pack-rat (algorithm A,) performs best.

Motivated by these observations, we studied the fol-
lowing problem. Suppose that the request sequence
is generated according to some unknown probability
distribution P. How well can an on-line algorithm
do?

We begin by observing that the distribution P is
completely characterized by knowing the probability
that a write run has length Ic. If Ai is the deterministic
algorithm that drops a block from the inactive cache
after i consecutive writes by the active cache, then it
is obvious that the best deterministic algorithm di to
use is that subscripted by i for which ECA;(P(P)) is
minimized, where a(P) is generated according to P.
Call the algorithm that minimizes this expected cost
A’.

Since in practice P is not known, the obvious ap-
proach is for the on-line algorithm to collect statistics
on write-run lengths, and on the fly recompute which
of the deterministic algorithms minimizes the cost. It
is clear that if the sequence is generated from a time-
independent distribution, then the sample statistics
will converge to their true values and the on-line al-
gorithm will eventually become A*.

The following theorem characterizes the competi-
tive ratio of A*.

Theorem 4 Let A’ be the deterministic algorithm
that minimizes the expected cost on request sequences
g(P), where a(P) is generated according to the time-
independent distribution P. Then

Proof: Since for all sequences cr,

the average over sequences with probabilities deter-
mined by P, yields

C riE(CAi(Q)) I SE (Copt(U>) -
i

But A* is that algorithm that minimizes

E (cAi(+ s ince a convex combination of positive
elements exceeds the minimum element, we obtain

E (CA’@)) I -+E (C,,,(u)).
eP

Cl

In practice, we feel that it should be sufficient to use
the last few write runs as a sample, that is, if the last
j write runs have lengths ir, iz,. . . , ii, then we will
approximate P with the distribution P’ consisting of
sequences Ui,,Ui,,..., ucj, each with probability l/j.
It is possible to show that the adaptive algorithm so
obtained is still competitive against a strong adver-
sary.

Theorem 5 Let A’ be the deterministic, on-line
algorithm that minimizes the expected cost for the dis-
tribution ‘P’ obtained by letting j = 1. Then A’ is
%competitive against a strong adversary.

Proof: The algorithm obtained by adapting to
the previous sample statistic is the following. Sup-
pose that the last write run had length 1. Then the
distribution P’ assumes that write runs have length 1
with probab,ility 1. Consequently, the algorithm that
minimizes the expected cost uses algorithm A, on the
next write run if 15 p and algorithm A1 if 1 > p.

To see that this algorithm is S-competitive, we sim-
ply observe that if Ap is used, then a ratio of 2 be-
tween on-line and offline costs is achieved [9]. On the
other hand, if A1 is used, then the previous write run
had length greater than p, and consequently the ad-
versary paid at least p for that write run. Hence, we
can charge our cost on the current write run to the
adversary’s cost on the previous write run, yielding
an overall competitive ratio of 3. 0

The larger the number of sample statistics used,
the better the algorithm will perform. In any case,
we believe the combination of the strong-adversary
competitiveness of this algorithm with its adaptive-
ness to the potential underlying request distribution
makes it eminently practical.

305

3 Spin-Block

3.1 The problem

Consider a process that is waiting for a lock. There
are two choices for the actions that may be taken:
The process can spin, at a cost proportional to the
length of time it spins, or it can block. The latter
action has some large cost C reflecting the cost of
restarting the process and restoring its state, usually
referred to as the coniezGswiM cost. The difficulty in
solving this problem is that the minimum-cost action
depends on how long it will be before the lock is freed,
information that is unavailable on-line. An on-line
algorithm for the spin-block problem must decide how
long a process should spin before it blocks.

It is fairly obvious that the spin-block problem is
a continuous version of the 2-cache, l-block snoopy
caching problem and as such it is trivial to construct
a deterministic on-line algorithm with cost at most
twice that of the optimal off-line algorithm-namely
have the process spin for an amount of time equal to
the cost of a context switch.

Theorem 6 There is no c-competitive algorithm
for the spin-block problem for c < 2 against a strong
adversary.

Theorem I There is a simple on-line random-
ized algorithm A for the spin-block problem which is
strongly e/(e - 1) -competitive against a weak adver-
sary.

Proof: Let r(t) be the density function of the
time before a process should block using algorithm A
and let cr7 denote the situation where the lock remains
held for time 7. Then the expected cost of the algo-
rithm A that uses density function r(t) to determine
how long a process should spin before blocking is

ECA(bT) =
J

T(t + C)n(t)dt + 7 O3 K(t)&.
0 J T

As in the case of snoopy caching, we would like to
choose r(t) so that

{

E(CA(UT)) I (I+ a)~ T 5 C
E(C.+,)) 4 (1 -k a)c 7- > c

and (Y is minimized.

Setting the preceding inequalities to equalities and
solving the differential equations that result from dif-
ferentiating twice with respect to 7, we obtain

0 5 t 5 C

otherwise

The resulting competitive factor is easily calculated
to be e/e - 1. ~1

The same results that hold for the adaptive setting
of snoopy caching hold for the adaptive setting of the
spin-lock problem. As before, the adaptive algorithm
collects statistics on spin-length times and chooses the
algorithm that minimizes the expected cost.

Theorem 8 Let A* be the deterministic algorithm
that minimizes the expected cost on lock-waiting time
sequences u(P), where u(P) is generated according to
a time-independent distribution P. Then

ECA+(P)> _< -+Z&(P).
e-

An algorithm that uses sample statistics of lock-
waiting times in order to estimate the distribution P
converges to e/(e - 1) competitive behavior.

Proof: The proof is identical to the proof of the-
orem 4 with summations replaced by integrals. q

The convergence of this algorithm to e/(e - 1) com-
petitive behavior depends on the fact that accurate
statistics can be generated by keeping track of the
entire history of lock-waiting times. A practical al-
ternative to this algorithm, similar to that for snoopy
caching, is one which only uses the last (or perhaps
last few) lock-waiting times in order to determine
what to do the next time a process requests a lock.

As in the snoopy caching case, the adaptive algo-
rithm A for deciding how long a process should spin
depends on the length of time 7 that the lock last re-
mained held. If 7 < C, then the process should spin
for a time equal to C, otherwise the process should
block immediately. Note once again that this is an in-
stance of choosing the algorithm that minimizes the
expected cost, under the assumption that the lock-
waiting time is equal to 7 with probability 1. Further-
more, algorithm A is 3-competitive against a strong
adversary. The proof of this fact is virtually identical
to the proof of theorem 5.

In practice, the most commonly implemented strat-
egy is to block immediately if the lock is not available,
always incurring cost C. It is desirable that an adap-
tive algorithm not cost substantially more than this
simple strategy. Assuming a certain independence in
the way processors acquire locks, we can show that
competitive advantage can be traded off against a
guarantee that the adaptive algorithm does not per-
form too much worse than the algorithm that always
blocks.

We choose a constant Q, with 0 < a 5 1, that deter-
mines the competitiveness and the bound on waiting

306

time. As before, the time that a process spins before
blocking depends on r. If 7 < oC, then the process
spins fcr a time equal to c&, otherwise it blocks im-
mediately. A large value of CY gives a more competitive
algorithm, while a smaller value guarantees that the
average waiting time is not much worse than C.

Now assume that the distribution of waiting times
is nonincreasing, that is, the probability of waiting
between a and b time units is at least as large as
the probability of waiting between a + k and b + k
time units. This would be the case if the time of lock
requests in one process are independent of the times
when locks are held by other processes, which is likely
to be nearly true in many applications.

Let f(t) be the density function for the distribution
of waiting times, and

P = J M f(t)& = Pr(7 > d).
CYC

With probability p, the algorithm A, blocks imme-
diately, and with probability 1 -p it spins for up to
time ctC. Thus the expected cost of waiting is . .

(J
ac

E(CA,) = pC+(l-P) tf(t)dt + p(C + OC) -
0

For fixed p, this cost is maximized (over non-
increasing distributions) when f is uniform between
0 and 6’. Thus

E(CA,) <pC+(l-P) (I-p)q+p(C+aC)
>

.

The value of p for which this cost is maximized can
be determined by differentiation to be

2
P =2*

Substituting in the previous formula and simplifying
gives

E(CA,) 5 C(l+ A)-

By choosing (Y = 0.5, for example, the expected cost
of the adaptive algorithm is bounded by l.OGC.

4 The 2-Server Problem

It has been shown that there is a strongly ‘HH,-
competitive algorithm against a weak adversary for
the k-server problem where the distances in the graph
are uniform. A natural question that arises is whether
there is such an algorithm for the k-server problem
where the distances are not uniform.

We answer this question in the negative by showing
that for 2 servers on a 3-vertex nonequilateral triangle
there is no 3/2-competitive algorithm.

Theorem 9 Let B be any on-line randomized algo-
rithm for the &server problem on a 3-vertex isosceles
triangle with distances d, d, and 1. Then there exists
an infinite sequence of requests u for which

E(CB(~)) 1
e2d-1-k &

(e2d-l- 1) + $j
- Gpt (6)

There is a randqmized S-server algorithm that
achieves this competitive factor.

Proof: Suppose A is the best on-line algorithm.
The idea of the lower bound proof is to explore the
tree of possible request sequences, maintaining for
each node in the tree a vector in which the ith co-
ordinate is the probability that A has a server at the
ith vertex.

By constructing. the optimal algorithm’s cost using
dynamic programming, we can determine positions in
the tree where we know with certainty the locations
of opt’s servers. These are points for which the cost
of being in some other state s is equal to the cost of
being in the desirable state plus the cost to switch
from the desirable state to the undesirable state. Call
this set of positions I<.

We claim that at each position in K, we may as-
sume that the on-line algorithm A has its servers in
the same locations as the off-line algorithm. If not, it
is possible to augment the sequence of requests termi-
nating at such a position (in K) with a subsequence
that makes the ratio between A’s cost and opt’s cost
larger. Specifically, suppose that after each subse-
quence which ends at a position k E I<, algorithm A
is covering one of opt’s vertices with probability less
than one. By alternating requests for the vertices cov-
ered by opt, one of two situations will be reached. If
there is always some E difference between the positions
of A and opt, then A’s cost will grow arbitrarily. On
the other hand, if A covers opt’s vertices with proba-
bility approaching 1, then A’s cost is eventually larger
than if it had moved to that position immediately.

Request sequence trees for certain graphs (including
isosceles triangles) have the property that every suffi-
ciently long request sequence contains a subsequence
beginning and ending with positions in K in which
opt is known to be in the same state. Suppose that
(Y is the competitive factor achieved by the on-line al-
gorithm. From each minimal subsequence in which
opt’s servers begin and end in the same state, we can
derive an inequality between the expected cost of the

307

on-line algorithm and ~)r times the cost of the off-line
algorithm. The variables in these inequalities are the
probabiiities that A will be in a given state at a given
time. The inequalities must all hold since otherwise
the corresponding subsequence could be repeated to
construct an infinitely long sequence with cost ratio
greater than Q. Our lower bound is then obtained by
minimizing cr subject to this set of linear constraints.
The upper bound is achieved with an algorithm using
the probabilities obtained from the minimization.

For isosceles triangles, inequalities can be derived
as follows. Suppose G is a triangle with vertices X,
Y, and Z, where the distance between X and Y is
one, and where 2 is distance d away from the other
vertices. In order to calculate the cost of aIgorithms,
we partition request sequences into phases. A new
phase begins if the location of opt’s servers is known
and if one of those servers is on Z. By the argument
above, we can assume that A’s servers are in the same
locations at the beginning of a phase. If A can achieve
a competitive factor cy in general, then it must be able
to achieve it in every phase. In discussing possible
request sequences, we will never consider requests for
vertices that A is covering with probability 1, because
such requests can not increase the expected cost ratio
between A and opt.

After each request an on-line algorithm A must
choose the probabilities with which it will cover the
vertices. Such probabilities can not be based on the
future. Furthermore, they need not consider requests
that preceded the time when A and opt occupied the
same vertices, because such requests can not affect
the ratio of costs in later phases. So the probability
that a particular vertex is covered depends only on
the requests in the current phase.

Let pi be the probability that A is covering Z after
the first i requests of a phase, assuming that Z has
not yet been requested. We can divide the analysis
of costs into two parts. Let u(i) denote A’s expected
cost on a phase that has i requests of vertices X or Y
before the first request at 2.

If i < 2d, the off-line optimal algorithm will shuttle
a server between X and Y. When the request at Z
arrives, opt is known to be covering Z and the previous
request, and the phase ends. It has a total cost of
i for the phase. Because opt’s final configuration is
known, A must also reach the same configuration. A’s
expected cost for the phase must then be

i-l

E(c~(ai)) = 2d+pi(l -2d)+zPj-
j=l

Alternatively, if i 1 2d, opt will begin the phase by

moving away from Z. When the request at Z arrives,
opt will move one server to Z, leaving the other to
cover whichever of X or Y is requested next. When
that next request arrives, the location of opt’s servers
is known, and the phase ends. Algorithm opt has
a total cost of 2d for the phase. After the first 2d
requests of X or Y, we know that opt is covering X
and Y, so algorithm A must cover the same vertices.
Its total expected cost for the X and Y requests is

Zd- 1

d+ C Pj*

j=l

When the request at Z finally arrives, A must cover it
by moving from X or Y, at a cost of d. At this point,
A can not know which vertex, X or Y, is covered by
opt. To minimize the cost ratio for the worst-case
choice, it must cover X and Y with equal probabil-
ity. This gives it an expected cost of l/2 for the final
request of the phase. A’s total cost for the phase is

2d- I

E(CA(Qi)) = 2d + l/2 + C pj.
j=l

Using these costs, it follows that the following in-
equalities hold if algorithm A achieves a cost ratio of
or on all request sequences:

E(C&)) _< a. i i < 2d
E(C~(gii)) < cy - 2d i 2 2d

To obtain the minimum possible LY, we set the pre-
ceding inequalities to equalities and solve the resulting
equations, yielding

Pi =(l-u)(&)i+o

and
eZd---1 -k &

tr = (e2&1 - 1) -t $j ’

This gives a lower bound on the competitive factor
for the isosceles triangle. By using the probabilities
obtained above, a randomized algorithm can achieve
the same factor. q

Theorem 10 Let B be any on-line probabilistic al-
gorithm for the S-server problem on a 3 vertex trian-
gle with distances 9, 4, and 5. Then there exists an
infinite sequence of requests u for which

EGW > 1652 m 1.55.
C,,,(u) - 1069

Proof: Similar to previous theorem. •I

308

References [13] Raghavan, P. and Snir, M. Memory vs. random-
ization in on-line algorithms. In ICALP, Italy,

[ll Berman, P., Karloff, H. J., and Tardos, G. A July 1989.

competitive three-server algorithm. First Annual
A CM-SIAM Symposium on Discrete Algorithms,

[14] Sleator, D. D. and Tarjan, R. E. Amortized ef-

to appear.
ficiency of list update and paging rules. CAChI,
28(2):202-208, 1985.

[2] Borodin, A., Linial, N., and Saks, M. An opti-
mal online algorithm for metrical task systems. In
19th Annual ACM Symposium on Theory of Com-
puting, pages 37.3-382, New York City, NY, May
1987.

[3] Borodin, A., Linial, N., and Saks, M. An optimal
online algorithm for metrical task systems. Sub-
mitted for publication.

[4] Chrobak, M., Karloff, H., Payne, T., Vish-
wanathan, S. New results on server problems.
First Annual ACM-SIAM Symposium on Discrete
Algorithms, to appear.

[5] Chrobak, M. and Larmore, L. L. A new approach
to the server problem. Manuscript.

[6] Eggers, S. J. and Katz, R. H. Evaluating the per-
formance of four snooping cache coherency proto-
cols. In Proceedings of 16th Annual International
Symposium on Computer Architecture, 1989.

[7] Fiat, A., Karp, R. M., Luby, M., McGeoch, L. A.,
Sleator, D. D., and Young, N. E. Competitive
paging aIgorilhms. Technical Report CMU-CS-88-
196, School of Computer Science, Carnegie Mellon
University, 1988.

[8] Irani, S. and Rubinfeld, R. A competitive ‘t-server
algorithm. Manuscript.

[9] Karlin, A. R., Manasse, M. S., Rudolph, L., and
Sleator, D. D. Competitive snoopy caching. Algo-
ridhmica, 3(1):79-119, 1988.

[lo] Manasse, M. S., McGeoch, L. A., and Sleator,
D. D. Competitive algortihms for on-line prob-
lems. In Proceedings of the 87th Annual ACM
Symposium on Theory of Computing, pages 322-
333, Chicago, Illinois, May 1988.

[ll] McGeoch, L. A. Algorithms for Two Graph Prob-
lems. PhD thesis, Carnegie Mellon University,
1987.

[12] McGeoch, L. A. and Sleator, D. D. A Strongly
Competitive Randomized Paging Algorithm. Tech-
nical Report CMU-CS-89-122, School of Com-
puter Science, Carnegie Mellon University, 1989.

309

