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Abstract 
Competitive analysis is concerned with comparing the 
performance of on-line algorithms with that of an op- 
timal off-line algorithm. For some problems, ran- 
domized on-line algorithms have yielded better per- 
formance ratios than deterministic on-line algorithms, 
assuming that the input sequences are generated by 
an adversary that has no knowledge about the re- 
sults of the coin tosses made by the algorithm. In 
this paper, we present new randomized on-line algo- 
rithms for snoopy-caching and the spin-block prob- 
lem. These algorithms achieve strongly competitive 
ratios approaching e/(e - 1) GZ 1.58, a surprising im- 
provement over the best possible ratio in the deter- 
ministic case, which is 2. We also consider the situ- 
ation when the request sequences for these’ problems 
are generated according to an unknown probability 
distribution. In this case, we show that deterministic 
algorithms that adapt to the observed request statis- 
tics also pay at most a factor of e/(e-1) more than the 
optimal off-line algorithm. Finally, we show that for 
the 2-server problem on a 3-vertex isosceles triangle, 
there is a lower bound on the competitive ratio with 
a limit of e/(e - 1). This is in contrast to the 2-server 
problem on an equilateral triangle where a strongly 
3/2-competitive randomized algorithm is known. 

1 Motivation and Results 

The amortized analysis of on-line algorithms for pro- 
cessing sequences of tasks in dynamic systems has 
been a subject of great interest in recent years. The 
approach taken is to compare the performance of a 
strategy that operates with no knowledge of the future 
with that of an optimal, clairvoyant strategy, that has 
complete knowledge of the future and operates op- 
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timally given that information. A large number of 
problems have been studied from this point of view, 
cf [l, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 143. 

On-line algorithms whose performance is within the 
smallest possible constant factor of the optimum off- 
line are said to be strung/y compeailiue. More formally, 
let A be a (possibly randomized) on-line algorithm, 
let u be an input sequence to the algorithm, and let 
ECA(U) be the expected cost A incurs when process- 
ing input sequence b. Let Gopt(u) be the cost incurred 
by the optimal off-line algorithm in processing r~. We 
consider two types of adversaries. 

Our first type of adversary is one that makes 
its request sequence without regard to the non- 
deterministic choices made by the on-line algorithm. 
An on-line algorithm A is said to be c-competitive 
against a weak adversary if there is a constant a such 
that for any fixed input sequence 6, 

EC,&) < c ’ C,,,(a) + a. 

The constant c is known as the competitive factor. 

The second type of adversary is one that can choose 
each input request depending on the choices made by 
the algorithm in servicing the previous requests. An 
on-line algorithm A is said to be c-competitive against 
a strong adversary if there is a constant u such that 
for any input sequence u generated in this way, 

ECA(U) 5 c . C,,,(u) + a. 

Finally, an algorithm is strongly c-competitive 
against a weak (rasp. strong) adversary if c is the 
smallest constant attained by any on-line algorithm. 

Observe that if the on-line algorithm is determinis- 
tic then a weak adversary can simulate a strong one. 

A natural and interesting question is whether there 
are problems for which the best competitive factor is 
smaller against weak adversaries than against strong 
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adversaries. Two dramatic results of this type have 
been obtained. The first, due to Borodin, Linial and 
Saks [3] shows that for an n-state metrical task sys- 
tem where all states are unit distance apart the com- 
petitive factor can be improved from O(n) against 
a strong adversary to 2X, (= O(logn)) against a 
weak adversary. A similar result due to McGeoch and 
Sleator [12] 1 slows that for the paging problem with 
memory size k (or equivalently a E-server problem 
with uniform distances), the competitive factor can 
be improved from k: to Xk. Fiat et al [7] showed that 
this is the best possible competitive factor against a 
weak adversary. 

In this paper we present new randomized algo- 
rithms for the snoopy-caching and spin-block prob- 
lems. For both of these problems, it is not possible 
to construct an on-line algorithm with a competitive 
ratio better than 2 against a strong adversary. Our 
randomized algorithms have competitive ratios which 
approach e/(e - 1) M 1.58. We also show that this is 
best possible against a weak adversary. An interest- 
ing fact about these results is that they are the first 
strongly-competitive algorithms against a weak ad- 
versary for a server problem on a non-uniform graph. 

We also present a lower bound result for the a-server 
problem. It is known that for the a-server problem on 
a graph with all distances equal, there is a strongly 
3/2-competitive algorithm against a weak adversary. 
We show that such a competitive ratio cannot be 
achieved on a graph with unequal distances. In par- 
ticular for the 2-server problem on a 3-vertex isosceles 
triangle, there is a lower bound on the competitive ra- 
tio greater than 1.5 and tending to e/(e - 1). We also 
show a lower bound greater than 1.54 on the com- 
petitive ratio for the 2-server problem on the 3-4-5 
triangle. 

Finally, we consider the question of how well a 
deterministic algorithm can perform if the input se- 
quence is generated according to some unknown but 
time-independent probability distribution. This ques- 
tion was motivated by the observation that in traces 
obtained for programs running on snoopy caching 
multiprocessor systems [6], different programs ex- 
hibit vastly different input characteristics (in this case 
write-run length). In particular, the inter-program 
input variability was extremely high, while the intra- 
program input variability was extremely low. This 
suggests that an algorithm which adapts to the ob- 
served input statistics can potentially converge to 
near-optimal behavior. 

We show that adaptive deterministic algorithms 
of this type for snoopy-caching and for the spin- 
block problem achieve competitive ratios approaching 

e/(e - 1) if the input sequence is generated accord- 
ing to a fixed probability distribution. We further 
present a practical and simple version of the adaptive 
algorithm which is also 3-competitive against a strong 
adversary. 

2 Snoopy Caching 

2.1 The Model 

A snoopy caching multiprocessor system is a system 
in which a set of processors each with its own (snoopy) 
cache are connected over a bus to each other and 
to a large shared memory. We will assume that the 
caches and large shared memory have infinite capac- 
ity. There is a single address space used by all of 
the processors; each location in this space is called a 
satiable. The memory space is partitioned into blocks, 
groups of variables of uniform size. We let p- 1 denote 
the block size. We define the block snoopy caching 
model, as in [9]. 

All of a processor’s memory requests are serviced 
by its cache. The cost of reading a variable depends 
on whether the block containing that variable is in the 
requesting cache or not. If it is, then the read is exe- 
cuted at no cost. If the block isn’t in the cache, then 
the cache must send out a request for the appropri- 
ate block. This block is then broadcast on the bus by 
the cache currently containing the value of the block, 
and all other caches listen to the bus and retrieve it. 
The cost of this read is p bus cycles (one cycle for the 
address and one cycle for each variable in the block). 

The cost of a write is either 1 or 0 bus cycles, de- 
pending on whether the block is shared or not. If the 
block is shared, the new value and address of the vari- 
able being written to must be broadcast on the bus 
to maintain cache consistency. We will assume that 
every write is preceded by a read, since if the cache 
is holding the block it wishes to write to, this read is 
free. 

We call an on-line algorithm that decides when a 
block should be invalidated a snoopy-caching algo- 
tiZhm. The goal of this algorithm is to minimize the 
number of bus cycles used. For efficiency, if a block is 
shared, but only actively used by one cache, the other 
caches should invalidate that block in order to elim- 
inate the cost of doing updates. On the other hand, 
there is a large penalty of p bus cycles for invalidating 
a block from a cache which shortly thereafter needs 
to access it. Previously, Karlin e2 al [9] discovered 
a strongly Zcompetitive algorithm against a strong 
adversary. We will now show that it is possible to im- 
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prove this ratio if the on-line algorithm is randomized We observe that the expected cost of algorithm A 
and t.he adversary is weak. on sequence uk is 

2.2 Randomized Algorithms 
Snoopy Caching 

for 

For any constant p, define an associated constant ep 
as follows: 

1 p 
ep = 

( > 
1+p . 

Theorem 1 Consider a block snoopy caching mu& 
tiprocessor system, with page site p - 1. There is an 
on-line randomized snoopy caching algorithm A with 
a competitive factor of 

e AL-+ - 
e,-1 ‘-O”e-l 

against a weak adversary. In fact, if all blocks start 
out shared, the expected cost of A’ on any sequence 
equals ep/(ep - 1) times the optimal cost. 

Proof: Assume initially that the multiprocessor 
system consists of two caches and a single block B. 
We may assume that initially block B is shared by 
both caches, since all costs incurred prior to the time 
this state is reached can be bounded by a constant. 
Moreover, if the initial states are the same for the 
on-line and off-line algorithms, this constant is 0. 

Let VI: be any sequence of requests consisting of 
k writes by one of the caches, interspersed with any 
number of reads by that same cache, to some variable 
in B, followed by a read by the other cache of some 
variable in B. We call such a sequence a write run of 
length k. Since any algorithm need not invalidate B 
from either cache until it is written to by the other 
cache, we can ignore any read subsequent to the one 
terminating a write run. Hence any sequence u of 
requests can be decomposed into subsequences of type 
UE and so a randomized algorithm that achieves a 
competitive factor of a on any sequence Bk achieves 
a competitive factor of <y overall. 

We construct a randomized algorithm for sequences 
of type bk with the best competitive factor. The 
choices available to the on-line algorithm for process- 
ing sequence flk can be described by enumerating a 
set of deterministic algorithms. Let Ai be the de- 
terministic algorithm that drops the block from the 
inactive cache after i updates by the active cache. A 
randomized algorithm is just a choice of a probability 
distribution ?r, where ?~i is the probability that the 
randomized algorithm chooses algorithm Ai on any 
write-run starting from the shared situation. 

E(CA(Uk)) = c lri(p$- i) -i- (1 - c xi)). 

l_<i<k l<i<k -- 

Since the optimal off-line algorithm has 

co&k) = 
k klp 
P k>p 

our goal is to choose values for ?~i such that 

E(C&k)) I (l+ a)k k I P 

E(CA(us)) < (1 +“)I’ k > P 
(*) 

and cr is minimized. 

Setting the preceding inequalities to equalities and 
solving the resulting difference equations, we obtain 

a* ( > i-l 

?ri = 

0’ 
P 

i = l...p 

otherwise 

Solving for Q by setting Cl,.i.., Xi = 1, we get -- 

1 1 
cY= 

( 1 
1++ p_1=ep- 

Therefore this probabilistic algorithm yields a com- 
petitive factor of 

e 
- - x 1.58, 

e- 1 

To extend this analysis to multiple blocks, we take 
the on-Iine algorithm which treats each block inde- 
pendently as above. This yields an on-line algorithm 
A for which 

CA 

where c is a constant multiple of the discrepancy be- 
tween the initial states of the on-line and off-line al- 
gorithms. 

Finally, we describe the on-line algorithm for k 
caches, which we call A’. At the beginning of each 
write run, algorithm A’ selects a value i according to 
the probabilities Ai, It broadcasts updates until the 
write run exceeds i in length, and if this happens, 
invalidates the block in all other caches. 

To see that A’ achieves the same competitive factor, 
we define a mapping between request sequences, u, 
on k caches and request sequences u’ on 2 caches as 
follows. Partition u into subsequences r; consisting of 
operations by a single cache. The associated sequence 
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u’ consists of the concatenation of the sequences + 
where r,! is the same set of reads and writes as in rj, 
but with the requesting cache replaced by i (mod 2). 
Trivially CA’(u) 5 CA(J) and C,,,(a) > C+(a’), 
and the theorem is proved. q 

Theorem 2 Let B be any on-line snoopy caching 
algorithm in a block snoopy caching multiprocessor 
system with page size p. Then there exists arbitrarily 
expensive sequences 0 for which 

WBW) > ep - - 
C,,,(u) -e,-IG 

Proof: Consider the result of executing algorithm 
B on a sequence of type Ok. Suppose that algorithm 
B has probability ai of dropping the block from the 
inactive cache after i writes. Take y and algorithm 
A as above. Let k be the smallest index for which 

c l<i<k ai 5 C15i<k ri. Since the or; values were 
chosen so as to set Giequalities (*) to equalities, it is 
easy to verify that ECB(6k) 2 ECA(bk), After each 
write run, select another E as above to extend the 
sequence and complete the proof. •I 

2.3 Randomized Algorithms for Lim- 
ited Block Snoopy Caching 

In this section, we extend the results for block snoopy 
caching to the more realistic model of finite direct- 
mapped caches. The slots that may contain blocks in 
a cache are calIed cache lines. A direct-mapped cache 
i uses a hash function hi(B) to determine the unique 
cache line in which a block B will reside. If hi(B) = 
h;(P), then cache i can contain at most one of the 
blocks B and B’ at any time. Since different blocks 
can occupy the same cache line, a block that is read 
into a line may displace a block which was written 
to privately. In this case, the line is dirty and must 
be written back to main memory at a cost of p. This 
model continues to assume that main memory has 
infinite capacity, a realistic assumption since it must 
be possible to have some clean copy of each shared 
variable. 

In the limited block snoopy caching model, a cache 
grabs a block that is being read by another cache or 
being written back if and only if that block was the 
last to occupy its cache line; that is, only if the last op- 
eration on this cache line was to invalidate this block. 

Making the assumption that the adversary has to 
use the same hash function as the on-line algorithm, 
we can prove a strengthening of Theorem 1. 

Theorem 3 Consider a limited block snoopy 
caching multiprocessor system, with page sire p - 1. 
There is an on-line randomized snoopy caching algo- 
rithm A with a competitive factor of 

e AL---+ - 
ep - 1 p4ooe-l 

against a weak adversary. 

Proof: Without loss of generality we restrict our 
attention to a single cache line. In this case, a write 
run, Uk, is any sequence of requests consisting of k 
writes by one of the caches, c, interspersed with any 
number of reads by that same cache, to some variable 
in B, followed either by a read by any other cache of 
some variable in B or a read by c to a variable in a 
block that collides with B. Every sequence of requests 
can be decomposed into its write runs and its isolated 
reads, the latter being either the result of collisions 
or initial reads into a cache line. The optimal off-line 
algorithm and our on-line algorithm incur the same 
cost for all of the isolated reads. 

The on-line algorithm A for the limited block model 
uses the same probabilities as the block snooping al- 
gorithm to determine how many updates to do in a 
write run before invalidating. 

To show that this algorithm achieves the same com- 
petitive ratio, we map any sequence u on which it 
operates to a sequence u’ in which the costs for u’ 
and u have the same optimal cost in the limited block 
model, u’ is at least as expensive as u for the on-line 
algorithm, and the costs of the write runs in u’ are 
the same for both the block and limited block models. 

Each write run in Q which terminates due to a col- 
liding read, is replaced in u’ by the same write run 
followed by a read for the block by main memory. If 
the block was shared immediately before the colliding 
read, then main memory contains a valid copy of the 
block. Hence for both the off-line and on-line algo- 
rithms, the added read by main memory replaces the 
writeback; if it was necessary it costs p and if not, it’s 
free. 

Now consider a write run in d which terminates 
with a read. If the line in the reading cache was dedi- 
cated to some other block, then this write run is aug- 
mented with p extra writes. We claim that adding 
these writes does not change the optimal algorithm’s 
cost. Indeed, since the terminating read causes that 
block to become revalidated by every cache that pre- 
viously held it, the optimal strategy on this write run 
is to invalidate that block in all caches except for the 
writing cache. Since we have added extra requests, 
the on-line cost can not decrease, and since the write 
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run has length at least p, the cost of the write run in 
both models is equal to the number of steps for which 
the block is shared plus the cost of the re-read, p. 0 

2.4 Adaptive Algorithms 

Traces obtained for programs running on snoopy 
caching multiprocessor systems show that different 
programs exhibit vastly different write-run character- 
istics. Specifically, the programs analyzed in [6] have 
the property that either write runs are very short 
(variables are actively being shared) or they are very 
long (there is very little sharing going on). In the first 
case, an algorithm like exclusive write (algorithm A1 
above) performs best; in the second case, an algorithm 
like pack-rat (algorithm A,) performs best. 

Motivated by these observations, we studied the fol- 
lowing problem. Suppose that the request sequence 
is generated according to some unknown probability 
distribution P. How well can an on-line algorithm 
do? 

We begin by observing that the distribution P is 
completely characterized by knowing the probability 
that a write run has length Ic. If Ai is the deterministic 
algorithm that drops a block from the inactive cache 
after i consecutive writes by the active cache, then it 
is obvious that the best deterministic algorithm di to 
use is that subscripted by i for which ECA;(P(P)) is 
minimized, where a(P) is generated according to P. 
Call the algorithm that minimizes this expected cost 
A’. 

Since in practice P is not known, the obvious ap- 
proach is for the on-line algorithm to collect statistics 
on write-run lengths, and on the fly recompute which 
of the deterministic algorithms minimizes the cost. It 
is clear that if the sequence is generated from a time- 
independent distribution, then the sample statistics 
will converge to their true values and the on-line al- 
gorithm will eventually become A*. 

The following theorem characterizes the competi- 
tive ratio of A*. 

Theorem 4 Let A’ be the deterministic algorithm 
that minimizes the expected cost on request sequences 
g(P), where a(P) is generated according to the time- 
independent distribution P. Then 

Proof: Since for all sequences cr, 

the average over sequences with probabilities deter- 
mined by P, yields 

C riE(CAi(Q)) I SE (Copt(U>) - 
i 

But A* is that algorithm that minimizes 

E (cAi(+ s ince a convex combination of positive 
elements exceeds the minimum element, we obtain 

E (CA’@)) I -+E (C,,,(u)). 
eP 

Cl 

In practice, we feel that it should be sufficient to use 
the last few write runs as a sample, that is, if the last 
j write runs have lengths ir, iz,. . . , ii, then we will 
approximate P with the distribution P’ consisting of 
sequences Ui,,Ui,,..., ucj, each with probability l/j. 
It is possible to show that the adaptive algorithm so 
obtained is still competitive against a strong adver- 
sary. 

Theorem 5 Let A’ be the deterministic, on-line 
algorithm that minimizes the expected cost for the dis- 
tribution ‘P’ obtained by letting j = 1. Then A’ is 
%competitive against a strong adversary. 

Proof: The algorithm obtained by adapting to 
the previous sample statistic is the following. Sup- 
pose that the last write run had length 1. Then the 
distribution P’ assumes that write runs have length 1 
with probab,ility 1. Consequently, the algorithm that 
minimizes the expected cost uses algorithm A, on the 
next write run if 15 p and algorithm A1 if 1 > p. 

To see that this algorithm is S-competitive, we sim- 
ply observe that if Ap is used, then a ratio of 2 be- 
tween on-line and offline costs is achieved [9]. On the 
other hand, if A1 is used, then the previous write run 
had length greater than p, and consequently the ad- 
versary paid at least p for that write run. Hence, we 
can charge our cost on the current write run to the 
adversary’s cost on the previous write run, yielding 
an overall competitive ratio of 3. 0 

The larger the number of sample statistics used, 
the better the algorithm will perform. In any case, 
we believe the combination of the strong-adversary 
competitiveness of this algorithm with its adaptive- 
ness to the potential underlying request distribution 
makes it eminently practical. 

305 



3 Spin-Block 

3.1 The problem 

Consider a process that is waiting for a lock. There 
are two choices for the actions that may be taken: 
The process can spin, at a cost proportional to the 
length of time it spins, or it can block. The latter 
action has some large cost C reflecting the cost of 
restarting the process and restoring its state, usually 
referred to as the coniezGswiM cost. The difficulty in 
solving this problem is that the minimum-cost action 
depends on how long it will be before the lock is freed, 
information that is unavailable on-line. An on-line 
algorithm for the spin-block problem must decide how 
long a process should spin before it blocks. 

It is fairly obvious that the spin-block problem is 
a continuous version of the 2-cache, l-block snoopy 
caching problem and as such it is trivial to construct 
a deterministic on-line algorithm with cost at most 
twice that of the optimal off-line algorithm-namely 
have the process spin for an amount of time equal to 
the cost of a context switch. 

Theorem 6 There is no c-competitive algorithm 
for the spin-block problem for c < 2 against a strong 
adversary. 

Theorem I There is a simple on-line random- 
ized algorithm A for the spin-block problem which is 
strongly e/(e - 1) -competitive against a weak adver- 
sary. 

Proof: Let r(t) be the density function of the 
time before a process should block using algorithm A 
and let cr7 denote the situation where the lock remains 
held for time 7. Then the expected cost of the algo- 
rithm A that uses density function r(t) to determine 
how long a process should spin before blocking is 

ECA(bT) = 
J 

T(t + C)n(t)dt + 7 O3 K(t)&. 
0 J T 

As in the case of snoopy caching, we would like to 
choose r(t) so that 

{ 

E(CA(UT)) I (I+ a)~ T 5 C 
E(C.+,)) 4 (1 -k a)c 7- > c 

and (Y is minimized. 

Setting the preceding inequalities to equalities and 
solving the differential equations that result from dif- 
ferentiating twice with respect to 7, we obtain 

0 5 t 5 C 

otherwise 

The resulting competitive factor is easily calculated 
to be e/e - 1. ~1 

The same results that hold for the adaptive setting 
of snoopy caching hold for the adaptive setting of the 
spin-lock problem. As before, the adaptive algorithm 
collects statistics on spin-length times and chooses the 
algorithm that minimizes the expected cost. 

Theorem 8 Let A* be the deterministic algorithm 
that minimizes the expected cost on lock-waiting time 
sequences u(P), where u(P) is generated according to 
a time-independent distribution P. Then 

ECA+(P)> _< -+Z&(P). 
e- 

An algorithm that uses sample statistics of lock- 
waiting times in order to estimate the distribution P 
converges to e/(e - 1) competitive behavior. 

Proof: The proof is identical to the proof of the- 
orem 4 with summations replaced by integrals. q 

The convergence of this algorithm to e/(e - 1) com- 
petitive behavior depends on the fact that accurate 
statistics can be generated by keeping track of the 
entire history of lock-waiting times. A practical al- 
ternative to this algorithm, similar to that for snoopy 
caching, is one which only uses the last (or perhaps 
last few) lock-waiting times in order to determine 
what to do the next time a process requests a lock. 

As in the snoopy caching case, the adaptive algo- 
rithm A for deciding how long a process should spin 
depends on the length of time 7 that the lock last re- 
mained held. If 7 < C, then the process should spin 
for a time equal to C, otherwise the process should 
block immediately. Note once again that this is an in- 
stance of choosing the algorithm that minimizes the 
expected cost, under the assumption that the lock- 
waiting time is equal to 7 with probability 1. Further- 
more, algorithm A is 3-competitive against a strong 
adversary. The proof of this fact is virtually identical 
to the proof of theorem 5. 

In practice, the most commonly implemented strat- 
egy is to block immediately if the lock is not available, 
always incurring cost C. It is desirable that an adap- 
tive algorithm not cost substantially more than this 
simple strategy. Assuming a certain independence in 
the way processors acquire locks, we can show that 
competitive advantage can be traded off against a 
guarantee that the adaptive algorithm does not per- 
form too much worse than the algorithm that always 
blocks. 

We choose a constant Q, with 0 < a 5 1, that deter- 
mines the competitiveness and the bound on waiting 
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time. As before, the time that a process spins before 
blocking depends on r. If 7 < oC, then the process 
spins fcr a time equal to c&, otherwise it blocks im- 
mediately. A large value of CY gives a more competitive 
algorithm, while a smaller value guarantees that the 
average waiting time is not much worse than C. 

Now assume that the distribution of waiting times 
is nonincreasing, that is, the probability of waiting 
between a and b time units is at least as large as 
the probability of waiting between a + k and b + k 
time units. This would be the case if the time of lock 
requests in one process are independent of the times 
when locks are held by other processes, which is likely 
to be nearly true in many applications. 

Let f(t) be the density function for the distribution 
of waiting times, and 

P = J M f(t)& = Pr(7 > d). 
CYC 

With probability p, the algorithm A, blocks imme- 
diately, and with probability 1 -p it spins for up to 
time ctC. Thus the expected cost of waiting is . . 

(J 
ac 

E(CA,) = pC+(l-P) tf(t)dt + p(C + OC) - 
0 

For fixed p, this cost is maximized (over non- 
increasing distributions) when f is uniform between 
0 and 6’. Thus 

E(CA,) <pC+(l-P) (I-p)q+p(C+aC) 
> 

. 

The value of p for which this cost is maximized can 
be determined by differentiation to be 

2 
P =2* 

Substituting in the previous formula and simplifying 
gives 

E(CA,) 5 C(l+ A)- 

By choosing (Y = 0.5, for example, the expected cost 
of the adaptive algorithm is bounded by l.OGC. 

4 The 2-Server Problem 

It has been shown that there is a strongly ‘HH,- 
competitive algorithm against a weak adversary for 
the k-server problem where the distances in the graph 
are uniform. A natural question that arises is whether 
there is such an algorithm for the k-server problem 
where the distances are not uniform. 

We answer this question in the negative by showing 
that for 2 servers on a 3-vertex nonequilateral triangle 
there is no 3/2-competitive algorithm. 

Theorem 9 Let B be any on-line randomized algo- 
rithm for the &server problem on a 3-vertex isosceles 
triangle with distances d, d, and 1. Then there exists 
an infinite sequence of requests u for which 

E(CB(~)) 1 
e2d-1-k & 

(e2d-l- 1) + $j 
- Gpt (6) 

There is a randqmized S-server algorithm that 
achieves this competitive factor. 

Proof: Suppose A is the best on-line algorithm. 
The idea of the lower bound proof is to explore the 
tree of possible request sequences, maintaining for 
each node in the tree a vector in which the ith co- 
ordinate is the probability that A has a server at the 
ith vertex. 

By constructing. the optimal algorithm’s cost using 
dynamic programming, we can determine positions in 
the tree where we know with certainty the locations 
of opt’s servers. These are points for which the cost 
of being in some other state s is equal to the cost of 
being in the desirable state plus the cost to switch 
from the desirable state to the undesirable state. Call 
this set of positions I<. 

We claim that at each position in K, we may as- 
sume that the on-line algorithm A has its servers in 
the same locations as the off-line algorithm. If not, it 
is possible to augment the sequence of requests termi- 
nating at such a position (in K) with a subsequence 
that makes the ratio between A’s cost and opt’s cost 
larger. Specifically, suppose that after each subse- 
quence which ends at a position k E I<, algorithm A 
is covering one of opt’s vertices with probability less 
than one. By alternating requests for the vertices cov- 
ered by opt, one of two situations will be reached. If 
there is always some E difference between the positions 
of A and opt, then A’s cost will grow arbitrarily. On 
the other hand, if A covers opt’s vertices with proba- 
bility approaching 1, then A’s cost is eventually larger 
than if it had moved to that position immediately. 

Request sequence trees for certain graphs (including 
isosceles triangles) have the property that every suffi- 
ciently long request sequence contains a subsequence 
beginning and ending with positions in K in which 
opt is known to be in the same state. Suppose that 
(Y is the competitive factor achieved by the on-line al- 
gorithm. From each minimal subsequence in which 
opt’s servers begin and end in the same state, we can 
derive an inequality between the expected cost of the 
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on-line algorithm and ~)r times the cost of the off-line 
algorithm. The variables in these inequalities are the 
probabiiities that A will be in a given state at a given 
time. The inequalities must all hold since otherwise 
the corresponding subsequence could be repeated to 
construct an infinitely long sequence with cost ratio 
greater than Q. Our lower bound is then obtained by 
minimizing cr subject to this set of linear constraints. 
The upper bound is achieved with an algorithm using 
the probabilities obtained from the minimization. 

For isosceles triangles, inequalities can be derived 
as follows. Suppose G is a triangle with vertices X, 
Y, and Z, where the distance between X and Y is 
one, and where 2 is distance d away from the other 
vertices. In order to calculate the cost of aIgorithms, 
we partition request sequences into phases. A new 
phase begins if the location of opt’s servers is known 
and if one of those servers is on Z. By the argument 
above, we can assume that A’s servers are in the same 
locations at the beginning of a phase. If A can achieve 
a competitive factor cy in general, then it must be able 
to achieve it in every phase. In discussing possible 
request sequences, we will never consider requests for 
vertices that A is covering with probability 1, because 
such requests can not increase the expected cost ratio 
between A and opt. 

After each request an on-line algorithm A must 
choose the probabilities with which it will cover the 
vertices. Such probabilities can not be based on the 
future. Furthermore, they need not consider requests 
that preceded the time when A and opt occupied the 
same vertices, because such requests can not affect 
the ratio of costs in later phases. So the probability 
that a particular vertex is covered depends only on 
the requests in the current phase. 

Let pi be the probability that A is covering Z after 
the first i requests of a phase, assuming that Z has 
not yet been requested. We can divide the analysis 
of costs into two parts. Let u(i) denote A’s expected 
cost on a phase that has i requests of vertices X or Y 
before the first request at 2. 

If i < 2d, the off-line optimal algorithm will shuttle 
a server between X and Y. When the request at Z 
arrives, opt is known to be covering Z and the previous 
request, and the phase ends. It has a total cost of 
i for the phase. Because opt’s final configuration is 
known, A must also reach the same configuration. A’s 
expected cost for the phase must then be 

i-l 

E(c~(ai)) = 2d+pi(l -2d)+zPj- 
j=l 

Alternatively, if i 1 2d, opt will begin the phase by 

moving away from Z. When the request at Z arrives, 
opt will move one server to Z, leaving the other to 
cover whichever of X or Y is requested next. When 
that next request arrives, the location of opt’s servers 
is known, and the phase ends. Algorithm opt has 
a total cost of 2d for the phase. After the first 2d 
requests of X or Y, we know that opt is covering X 
and Y, so algorithm A must cover the same vertices. 
Its total expected cost for the X and Y requests is 

Zd- 1 

d+ C Pj* 

j=l 

When the request at Z finally arrives, A must cover it 
by moving from X or Y, at a cost of d. At this point, 
A can not know which vertex, X or Y, is covered by 
opt. To minimize the cost ratio for the worst-case 
choice, it must cover X and Y with equal probabil- 
ity. This gives it an expected cost of l/2 for the final 
request of the phase. A’s total cost for the phase is 

2d- I 

E(CA(Qi)) = 2d + l/2 + C pj. 
j=l 

Using these costs, it follows that the following in- 
equalities hold if algorithm A achieves a cost ratio of 
or on all request sequences: 

E(C&)) _< a. i i < 2d 
E(C~(gii)) < cy - 2d i 2 2d 

To obtain the minimum possible LY, we set the pre- 
ceding inequalities to equalities and solve the resulting 
equations, yielding 

Pi =(l-u)(&)i+o 

and 
eZd---1 -k & 

tr = (e2&1 - 1) -t $j ’ 

This gives a lower bound on the competitive factor 
for the isosceles triangle. By using the probabilities 
obtained above, a randomized algorithm can achieve 
the same factor. q 

Theorem 10 Let B be any on-line probabilistic al- 
gorithm for the S-server problem on a 3 vertex trian- 
gle with distances 9, 4, and 5. Then there exists an 
infinite sequence of requests u for which 

EGW > 1652 m 1.55. 
C,,,(u) - 1069 

Proof: Similar to previous theorem. •I 
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