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Abstract

Distributed applications often use quorums in order to guar-
antee consistency. With emerging world-wide communica-
tion technology, many new applications (e.g., conferencing
applications and interactive games) wish to allow users to
freely join and leave, without restarting the entire system.
The dynamic voting paradigm allows such systems to define
quorums adaptively, accounting for the changes in the set of
participants. Rrrthermore, dynamic voting was proven to be
the most available parad@rn for maintaining quorums in un-
reliable networks. However, the subtleties of implementing
dynamic voting were not well understood; in fact, many of
the suggested protocols may lead to inconsistencies in case
of failur~. Other protocols severely limit the availability in
case failures occur during the protocol.

In this paper we present a robust and efficient dynamic
voting protocol for unreliable asynchronous networks. The
proto;ol consistently maintains the primary component in a
distributed system. Our protocol allows the system to make
progress in cases of repetitive failures in which previously
suggested protocols block. The protocol is simple to imple-
ment, and-its communication requirements are small.

1 Introduction

Numerous fault tolerant dietributed systems, e.g., ISIS [5],
use the primary component 1 paradigm to allow a subset of
the processes to function when failures occur. A majority
(or quorum) of the processes is usually chosen to be the
primary component. In unreliable networks this is problem-
atic: Repeated failures may cause majorities to further split
up, leaving the system without a primary component. To
overcome this problem, the dynamic voting paradigm was

suggested.
The dynamic voting paradigm defines quorums adap-

tively: When a partition occurs, if a majority of the previous
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1A component is sometimeB called a partition. In our terminology,
a partition splits the network into several components.
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quorum is connected, a new and possibly smaller quorum is
chosen. Thus, each newly formed quorum must contain a
majority of the previous one, but not necessarily a majority
of the sites. Stochastic models analyeis [16], simulations [20],
and empirical results [4] show that dynamic voting is more
available than any other parzdgm for maintaining a primary
component.

Another important benefit of the dynamic voting paradigm
is in its flexibility to support a dynamically changing set of
processes. With emerging world-wide communication tech-
nology, new applications wish to allow users to freely join
and leave. Using dynamic voting, such systems can dynam-
ically account for the changes in the set of participants.

In this paper we present a robust and efficient protocol
for maintaining a primary component using dynamic vot-
ing in an asynchronous environment, where processes and
communication links may fail. By recording historical in-
formation, our protocol aIlows the system to make progress
where previously suggested protocols either block or require
a cold start of the entire system, or lead to inconsistencies.
Our protocol’s communication and memory requirements
are small and it is simple to implement. It may be incorpo-
rated in many distributed applications that make progress
in a primary component, e.g., replication algorithms [18, 11],
transaction management [17], and even infrastructure sys-
tems like the ISIS toolkit [5].

If a failure occurs in the course of the protocol, some
previously suggested protocols (e.g., [16, 1]) block until
all the members of the last quorum become reconnected,
while our protocol requires only a majority of the members
that attempted to form the last quorum to become recon-
nected in order to make progress. Blockktg until all the
members reconnect significantly reduces the availability, es-
pecially in failure-prone environments (for which dynamic
voting is most suitable) and in applications with a dynamic
set of participants, where a waited upon process might have
voluntarily left the system. Furthermore, the analyses of
the availability of dynamic voting do not take the possibil-
ity of blocking into consideration, and therefore the actual
availability of these protocols is lower than expected.

Unlike some previous protocols, e.g., the dynamic voting
protocols implemented in ISIS and Horus2 [21], our protocol
recovers from situations in which the primary component
was lost (e.g., when the primary component partitions into
three minority groups) without requiring a cold start of the
entire system.

‘The [21] protocol was implemented in a previous version of Horus.
The current membership protocol of Horus is majority based, and
does not employ dynamic voting.
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The challenge in designing consistent dynamic voting
protocols is in coping with failures that occur while the pro-
cesses are trying to form a new primary component (i.e.,
form a new quorum). Uncareful handling of such cases may
lead to inconsistencies when there are different knowledge
levels at different sites. When partitions occur, such knowl-
edge differences are inevitable: Once a site detaches, it is
impossible for other sites to know whether it received a spe-
cific message before its detachment, or not. Some past pro-
tocols (e.g., [9, 20, 11]) lead to inconsistent results in such
cases, as demonstrated by the following typical scenario:

The systems consists of five processes: a, b, c, d and e.
The system partitions into two components: a, b, c and
d, e.

a, b and c try to form a new quorum. To this end, they
exchange messages.

a and b form the quorum {a, b, c}, assuming that pro-
cess c does so too. However, c detaches before receiv-
ing the last message, and therefore is not aware of this
quorum.

a and b notice that c detached, therefore form a new
quorum {a, b} which is a majority of {a, b, c}.

Concurrently, c connects with d and e, and they form
the quorum {c, d, e} (a majority of {a, b, c, d, e}).

The system now contains two live quorums, which may
lead to inconsistencies.

Our protocol overcomes the difficulty demonstrated in
the scenario above by maintaining another level of knowl-
edge. The protocol guarantees that if a and b succeed in
forming {a, b, c}, then c is aware of this possibility. Fkom c’s
point of view, the quorum {a, b, c] is ambiguous: It might
have or might have not been formed by a and b. In general,
every process records, afong with the last quorum it formed,
later quorums that it attempted to form but detached be-
fore actually forming them. These ambiguous quorums (or
ambiguous attempts) are taken into account in later at-
tempts to form a quorum. Some previously suggested pro-
tocols avoid inconsistencies by running Two Phase Commit
([16, 13]), or similar mechanisms ([I]) that cause processes
to block when their latest quorum is ambiguous. These pro-
tocols do not record historical information, and therefore,
in case of failures, must consider all possible histories. This
imposes severe limit at ions on the system’s progress,

In [19], a three phase consensus protocol [7] is employed
in order to aflow a majority to resolve ambiguous quorums.
This protocol is similar to the majority based Three Phase
Commit (3PC) [22, 17] protocols. This induces a high over-
head that makes the protocol infeasible for use in practice:
When a majority of the previous quorum reconnects, [19] re-
quires at least five communication rounds in order to resolve
the previous quorum and form a new one. Our protocol
avoids such excessive communication by using pipelining:
the status of past ambiguous quorums is resolved during
the installation of new quorums. Thus, when a majority of
the previous quorum reconnects, only two communication
rounds are required in order to form a new quorum. This
requires our protocol to record several ambiguous quorums
in case failures cascade.

Unfortunately, recording all ambiguous quorums is not
feasible: The number of ambiguous quorums a process might

need to record may be exponential in the number of partic-
ipating processes. In Section 7 we rule-out a simple mech-
anism that records only the latest ambiguous quorums; we
demonstrate that in order to preserve consistency it may
be necessary to consider an ambiguous quorum even if it is
followed by an exponential number of ambiguous attempts.
Taking a huge number of quorums into consideration limits
the possibility of progress in the system, and may cause the
system to block. An important contribution of our work is
in providing a simple “garbage collection” mechanism for
reducing the number of quorums that a process needs to
record to at most n, where n is the number of processes in
the system. Practically, the number of quorums a process
may need to consider is expected to be very small. Thus, our
protocol achieves a good balance between the historical data
it stores, the restrictions on the ability to make progress in
the system and the number of communication rounds.

The main criticism of the dynamic voting paradigm is
that there can be situations where almost all of the pro-
cesses in the system are connected but cannot form a new
quorum because of the potential existence of a past sur-
viving quorum held by a single process. To prevent such
situations, our protocol sets a lower bound, x, on the size of
quorums. This way, every component containing more than
n- z members (where n is the number of processes in the
system) can always form a quorum, regardless of past events
in the system. We developed a novel mechanism for provid-
ing this feature in environments that allow new processes to
join on the fly.

The rest of this paper is organized as follows: In Section 2
we formally define the requirements of a primary component
maintenance service. In Section 3 we describe the computa-
tion environment model. The primary component protocol
is described in Section 4. In Section 5 we provide an in-
tuition to the correctness of the protocol, and in Section 6
we evaluate its efficiency. In Section 7 we rule-out a triv-
ial and efficient garbage collection mechanism. In Section 8
we present a novel mechanism that always allows connected
components of a larger size than a user-defined threshold to
form a primary component, in environments that allow new
processes to join on the fly. Section 9 concludes the paper,

2 Problem Definition

In this paper we present a primary component maintenance
service, that allows a group of processes to form a primary
component in a consistent way. Such a service is required to
impose a totaf order on all the primary components formed
in the system. When using a static quorum system, the
order is easily provided using the following property: “ev-
ery two primary components intersect”. Unfortunately, dy-
namic quorum systems do not possess this property. In-
stead, a total order on primary components is defined by
extending the causal order on components that d, i intersect.

Formally: Let P and P’ be two primary components.
If j E P n P’, and j participates in both of these primary
components, i.e., attempts to form both, then j participates
in one of P and P’ before the other 3. If j part Icipates in
P first, we denote the transitive closure of this relation by:
P < P’. The requirement from a dynamic paradigm for
maintaining primary components is that < is a total order.
Since a process is a member of at most one component at
any given time, the totaf order on primary components im-
plies that at any given time there is at most one live and

‘A process does not participate in two quorums concurrently.
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connected primary component in the system.

3 The Model

The initial primary component in the system consists of a
core group of processes, WO, that is known to all the pro-
cesses in VVO. The core group is typically the initial config-
uration on which the system manager runs a protocol (e.g.,
the sites running a distributed datab=e). The set of all the
processes that may run the protocol is unknown to any of
the processes in advance, and thus the configuration may
change dynamically. Processes that do not belong to WO
are aware of the fact that they are not members of the core
group.

The processes are connected by an asynchronous com-
munication network. The system model allows for the fol-
lowing communication network changes: messages may be
lost, failures may partition the network into disjoint com-
ponents, and previously disjoint components may re-merge.
Sites may crash and recover; recovered processes come up
with their stable storage intact’.

Maintaining the primary component is typically decou-
pled into two separate problems: fkst, determining the set of
connected prmeaaes, and second, deciding whether a set of
processes is the primary component. Like other dynamic
voting protocols, our paper focuses on solving the latter
problem, amuming a separate mechanism that solves the
former.

Our dynamic voting protocol assumes a membership mech-
anism no stronger than those assumed in [9, 14,20, 16, 11, 1].
Each process is equipped with an underlying membership
module, e.g., [2, 3, 12, 8]. When the membership mod-
ule senses failures or recoveries, it reports to the process of
the new membership, i.e., the set of processes that are cur-
rently assumed to be connected. Furthermore, our protocol
assumes that every message is received in the membership
in which it was sent. This can be achieved either by re-
fraining from sending messages while a membership change
takes place, or by d=arding old messages that arrive after a
membership change. In order to discard messages from pre-
vious memberships, the protocol needs to provide a unique
membership identifier (which will be added to all the mes-
sages sent in this membership). These requirements may be
fulfilled by a simple and efiicient membership protocol, e.g.,
the one round protocol in [8], which terminates after one
communicant ion round.

As shown in [6], it is impossible to reach agreement upon
the current membership in an asynchronous system. Hence,
we do not assume that the membership reports accurately
reflect the network situation, nor is the membership reported
atomically to all the processes. The dynamic voting protocol
we present is correct (i.e., guarantees a total order on pri-
mary components) regardleas of whether the membership
mechanism is live and accurate or not. The liveness of the
protocol (its ability to form new primary components when
the network situation changes) depends on the accuracy and
liveness of this membership mechanism.

4 The Primary Component Protocol

We present a protocol for maintaining the primary com-
ponent in an asynchronous system. Initially, the primary
component in the system is the core group, WO. Whenever a

4If the stable storage in destroyed because of a severe disk error,
the protocol remains correct but its availability is reduced.

membership change is reported, the notified members invoke
a new session of the protocol, trying to form a new primary
component. If they succeed, then at the end of the session
they form a new primary component P, which persists until
the next membership change. Each process independently
invokes the protocol once it receives the membership mes-
sage.

In this section, we present a simplified version of the
protocoi in which the members of the core group, Wo, have
a special status: every quorum in the system must contain
a threshold of members from WO. In Section 8 we modify
the protocol to eliminate this special status.

4.1 Dynamic Quorums

Our protocol uses dynamic voting to determine when a group
of processes is an eligible quorum. Originally, dynamic vot-
ing was implemented by allowing a majority of the previ-
ous quorum to become the new quorum. Dynamic linear
voting [14], optimizes this scheme by breaking ties between
groups of equal size using a linear order, t, imposed on all
the potential processes in the system. We extend dynamic
linear voting with another parameter: Min-Quorum, the
minimum quorum size allowed in the system. Imposing a
minimum quorum size allows large groups of processes to be
eligible quorums regardless of the system’s history.

We define a predkate Sub. Quorum (S, T), that is TRUE

iff 2’ can become the new quorum in the system, given that
the previous quorum was S. Formally, Sub-Quorum(S, T)
IS TRUE iff

1. IT fl WOI z Min-Quorum, and

2. ● IT n SI > [S[/2, or

● 12’nS\ = lS1/2 and 3P ~ TnS such that Vg c S\T
C(p) > L(q), or

● IT n WOI > IWO I - Min.Quorum.

It is e~y to see that the dynamic linear voting scheme
has the following properties

1. If Sub-Quorum(S, T) then S fl T # (b.

2. If Sub- Quorum (S, T) and Sub-Quomm(S, T’) then
TnT’ #0.

Note that every quorum in the system must contain at
least Min-Quorum members of WO. In Section 8 we relax
this restriction, and require, instead, that a quorum will
contain Min-Quorum processes.

4.2 Variables and Notat”hm

The protocol is conducted in sessions, and the sessions are
numbered. A session S of the protocol is identified by its
membership, S. M, and session number, S.lV. Each process
p maintains the following variables:

ls-Primw-~p is a boolean variable that is TRUE iff the cur-
rent membership is the primary component in the sys-
tem. If p E WO, then it is initialized to TRUE, and
otherwise to FALSE.

Sessaon-Numberp is the current session number. This vari-
able is initialized to O.
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Last .PrimaryP is the last primary component that process
p formed (i.e., the membership and Session. Nunaber of
the session in which the last primary component was
formed). If p ● wO then it is initialized to (WO, O) ~d
otherwise to (co, –1)5.

Ambiguous .Sessionsp is the set of ambiguous sessions that
process p attempted to form after p participated in
Last-PrimaryP. For each ambiguous session (or at-
tempt) S in this set, p maintains an associative array
S.A. For every q E S.M: if p knows that q formed
S then S.A(q) = 1; if p knows that q did not form S
then S.A(q) = –1 and otherwise S.A(q) = O. The set
of ambiguous sessions is initially empty.

Last -FormedP is an associative array. For each q that p
participated in a session with, Last _FormedP(q) is the
last session (membership and number) that p formed
and q was a member of. Initially, if p, q E Wo then
Last _ForrnedP(q) is (WO,O). Otherwise, it is (co, -l).

We use the following notation:

●

●

●

●

&t is the membership as reported in the membership
message that invoked the current session of the proto-
col. The membership is a list of processes.

Max-Session is: IXI=pEM (Session JJumberP).

Max.Primar9 is: Last -PrimaryP s.t.
Lcast_PrirnaryP.iV = maxq~~ (Last -Prirnary~ .ZV).

Max_Ambiguous-Sessions is:
UPEM(A i Ambiguous_SessionsP s.t.
A.N > Max_Primary.N).

In order to simplify notations, we extend the definition of
the Sub_Quorum predicate to sessions. For a pair of sessions
S1, S2, the predicate Sub-Quorum(Sl, S2) is defined to be:
Sub-Quorum(Sl.M, S2.M).

4.3 The Protocol

Whenever a membership change is reported, the notified
members invoke a new session of the protocol. Each ses-
sion of the protocol is conducted in three steps: In the first
step the connected processes exchange information about
quorums in paat sessions. In csse the membership protocol
involves message exchange among the members, this infor-
mation can be piggybacked onto the membership protocol
messages, thus no extra communication round is needed.
The second step is the attempt step. Each process uses the
information it received in the first step to make an indepen-
dent decision whether the current membership is an eligible
quorum. If it is, the member attempts to form the session: it
computes the session number, records the session and sends
em attempt message to the rest of the members. In the last
step, the processes form the new quorum: They declare the
session as a primary component, and no longer record pre-
ceding sessions.

If a process receives a membership message in the course
of a session, it aborts the session and invokes a new ses-
sion. Once the membership stabilizes, sessions are no longer
aborted. If the expected messages fail to arrive from some
of the members, then the primary component protocol is
blocked until a membership change is reported.

‘We extend the definition of the Sub-Quorum predicate so that
Sub-Quorum(co, T) is FALSEfor every set T.

Intuitively, the purpose of the attempt step is to guaran-
tee that if a process p forms a session ~, then afl the other
members of F recorded F as an ambiguous session. Thus,
if some members of % detach before the last step, they will
take % into account in future attempts to form a quorum.

In order to avoid recording an exponential number of
ambiguous sessions, our protocol employs a “garbage col-
lection” mechanism that reduces the number of ambiguous
sessions recorded concurrently to the number of processes in
the system. A process deletes ambiguous sessions when it re-
solves their status, i.e., discovers whether they were formed
by arty member or not. In order to resolve a session, a pro-
cess needs to learn about the session status at other mem-
bers. The rules for learning and resolving ambiguous ses-
sions are described in Section 4.4. These rules arc employed
during the attempt step. The protocol is formally described
in Figure 1.

In each step of the protocol, when a process changes any
of its private variables, it must write the change to a stable
storage before responding to the message that caused the
changee. The primary component formed in Step 3 remains
the primary component in the system until another mem-
bership change occurs. Notice that when a process forms a
primwy component, it no longer stores previous ambiguous
sessions.

The protocol presented here is efficient: In each session
of the protocol, each process sends two mult icsat messages,
one of which may be piggybacked on a membership proto-
col message. The protocol is symmetric: processes multicast
messages to all other processes. Such a protocol is efficient
assuming a hardware broadcast /multicaat mechanism. For
networks in which efficient mult icsst is not avai Iable, it is
straightforward to convert our protocol to work in a cen-
tralized fashion by appointing a coordinator for each ses-
sion. The coordinator may be chosen deterministically, for
example, the first member of the current membership (in lex-
icographical order). In the centralized version, each process
sends two messages to the coordinator, and the coordinator
multicasts two messages to the other processes.

4.4 Resolving Ambiguous Sessions

A process can delete ambiguous sessions upon resolving
their status. The resolution is based on determining whether
an ambiguous session was formed by one of its members: If
an ambiguous session was not formed by any of its members,
then it is safe to delete it from Ambiguoudlessions. On the
other hand, if an ambiguous session was formed by some
member, then the other members adopt this session: They
declare the session as a primary component, and no longer
record ambiguous sessions that precede it. The resolution
rules are described in Figure 2.

The resolution rules require a process p to learn whether
an ambiguous session that p records was formed by one of its
members. This is achieved by collecting the session status
from other session members during the first step of future
sessions of the protocol. Process p applies the information it
gathered to its Ambiguous_Sessions set during the attempt
step. The learning rules are formally described in Figure 3.

81f the storage is destroyed because of a severe disk crash, the
process may recover with its LastJ+imar~ = (co, -l). This limits
the availability, but does not affect the correctness.
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1. Set Is.%imary to FALSE.
Send your Se.wion.Number, Ambiguous_ Sessions, Last_Primary and Last -Formed to all the members of M.

2. Attempt step: Upon receiving this information from aH members of M:

. Update Ambiguous-Sessions according to the learning rules described in Figure 3.

c Apply the resolution rules described in Figure 2.

● Compute Maz.Session, Max-Primary, and Max_Ambiguous_Sessi ens.

● if (Sub- Quorum (Maz_Primary. M, M) and
((VS E Max-Ambiguous-Sessions) Sub-Quorum(S.M, M)))
then “attempt the session:”

– Set Session-Number to Maz-Session+l.
– Append to Ambiguous-Sessions the session S = (M, Session-Number), with S.A(q) = O for every q E S.M

s.t. q #p, and S.A(q) = –1.

– Send attempt message to every member of M.

else terminate this session with ~s-Primary=FA LSE.

3. Form step: Upon receiving an attempt message from all members of M set:

● Last-Primary = (A4, Session-Number), and

● Ambiguous.Sessions = 0, and

● Is-Ptimary=TRUE, and

● Vq G Al Last -FormedP(q) = Last.Ptimary.

Figure 1: A Session of the Protocol Executed by Process p

The Resolution Rules:
Adoption If p c 7.M and Last-PrimaryP.N < 7.N, and p learns that session $ was formed by one of its members then:

Process p sets Last-PrimaryP to F and Vq c TM p sets Last-FormedP (q) = F.

Deletion If p learns that an ambiguous session S was not formed by any of its members, or if p learns that a session .F,
where F.N z S.N and p 6 7.M, was formed by one of its members, then:
Process p deletes S from Ambiguous_ SessionsP.

Figure 2: The Resolution Rules

5 Correctness of the Protocol

In this section, we provide an intuition to the correctness
of the protocol. In Section 5.1 we show how our protc-
CO1overcomes the typical problematic scenario described in
Section 1.

In Section 5.2 we outline the protocol’s correctness proof.
The detailed correctness proof appears in the full paper [10].
In the correctness proof, we do not rely on the accuracy of
the underlying membership service; the protocol provides a
total order on primary components even when the member-
ship doea not correctly reflect the network situation.

5.1 Overcoming The Typical Problematic Scenario

We now demonstrate that our protocol overcomes the prob-
lematic scenario of Section 1.

. The systems consists of five processes a, b, c, d, e. The
system partitions into two components: a, b, c and d, e.

. a, b and c try to form a new quorum. To this end, they
exchange messages.

. a and b form the quorum {a, b, c}, assuming process c
does so too. However, c detaches before receiving the
last message, and therefore does not form this quorum.
Yet, c records this session in Ambiguous _Sessiorwc.

● a and b notice that c detached, therefore form a new
quorum {a, b} which is a majority of {a, b, c}.

● Concurrently c connects with d and e. {c, d, e} is not a
majority of {a, b, c} that c records, therefore c, d, and
e cannot form a new quorum.

The system contains only one live quorum {a, b}.

5.2 Correctness Proof Outline

In order to show that the protocol is correct, we have to show
that the transitive closure of the order between intersecting
formed sessions’ is a total order. The correctness proof is
based on the following claims:

1.

2.

Every two intersecting formed sessions have different
session numbers.

If two attempted seasions have a common attempt in
Maz-Ambiguous-Sessions U Max-Primary then these
sessions intersect.

7A formed session is a session that at least one of its members hae
formed. The initial primary component (W’o, 0) is also considered a
formed session.
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Process p learns the status of process g w.r.t. session S during a session S’, where S.N < S’ .N and p, q E S.M n
S’ M, if during S’ p executes the attempt step. Process p learns accordingly:

● If Last _Formedq (p). N = S.N then p learns that process q formed session S.

● If Last _Formedq (p). N < S.N then p learns that process q did not form session S,

Process p learns that session S was not formed by any of its members if

● p doesn’t form S, and learns from all the other session members that they did not form session S either, or

● There exist a session S“ and a process q, where S.N < S’ .N and p, q c S.M fl S’ .M, such that durinE S’, q does
not consider S to be ambiguous or formed. Formally:

– Last -Primaryq .N < S.N or
(Last .Primaryq .N = S.N and Last.Prirnaryq.M # S. M), and

– S # Ambiguous -Sessionsq, and
—p executes the attempt step of the protocol during S’.

Figure 3: Learning Rules

3. Let S be a formed session, and let Maz-Primary com-
puted in S be X. Let FO, FI, ..., Fk be a sequence
of formed sessions (ordered by session numbers) s.t.
F = Fo, and for every O < z S k, F.N < F;.N < S.N,
and F:. 1 and F, intersect. Then, Sub_@ orum(~k, S)
holds.

4. Let S be an attempted session, and let F be a formed
session, s.t. 3. N is the maximal value among formed
sessions with a sessions number smaller than S.N. Then,
F is the only formed session with this session number,
and Sub_Quorum (F, S) holds.

The third and fourth claims are proved by induction. It
is derived from the fourth claim that every formed session
has a unique session number, and that two successive formed
sessions intersect. We conclude that the transitive closure
of the order between intersecting formed sessions is a total
order.

6 Evaluating the Efficiency

Our protocol assumes a simple underlying membership pro-
tocol, which may be conducted in one communication round
(e.g., [8]). Each session of our protocol is conducted in
two communication rounds, one of which may be conducted
by piggybacking information on the messages sent by the
membership protocol. Thus, in each session of the symmet-
ric protocol, a total of 2n messages are multicast by all the
processes, where n is the number of processes participating
in this session. In the centralized version of the protocol,
a total of 4n point to point messages are sent. Once the
membership stabilizes, our protocol terminates within one
session, in which it resolves past ambiguous quorums and
also forms a new quorum (if possible).

In this section we prove that a process records concur-
rent Iy at most n ambiguous sessions in the worst case, In
practice, the number of ambiguous sessions is expected to
be very small, since whenever a new quorum is successfully
formed, all the ambiguous sessions are discarded.

We now prove that if a process p attempts to form two
ambiguous sessions with a process q, then during the later
session p can learn q’s status w.r.t, the former session, Note
that after p learns a session’s status as recorded by every
session member, p can resolve the status of a session. There-
fore, in case p cannot resolve a session’s status, there is at

least one session member with which p does not hare a later
attempt, This property linearly bounds the number of un-
resolved ambiguous sessions a process records concurrently.

Lemma 1 At each process, the value oj Session. Number is
iocreased whenever the process attempts to form a sesston.

Proofi Immediate from the protocol. ❑

Lemma 2 Let p be a process and Al, Az two ambiguous
sessions, such that AI .N < AZ .N and both Al and A2 are

in Ambiguous -SessionsP. If there exists a process q such that

q ● Al. M n A2.M, then p learned whether q foymed session
A] before p attempted to forvn session AZ.

Proof By induction on the difference A2N – i, ,N,

●

●

Base case: A2.N – Al N = 1. According t,, the proto-
col, a process attempts to form a session m Step 2 of
the protocol, after the process received the Last. Formed
arrays from all session members and applied the learn-
ing rules as follows:

1. If Last -Formedq (p).N < Al .N then p learned
that q did not form Al.

2. If Last _Formedq (p) .N = Al .N then p learned
that q formed Al.

Notice that Last .Forrnedq (p) N > AI N is ~mpossible,
Otherwise, process q formed Last -Forrnedq, p), and pro-
cess p attempted to form it. Hence, by Lemma 1,
Al N < Last-Formedq(p).N < A2, N, in c{,ntradiction
with Session-Number being an integer.

General case: We assume the induction hypothesis
holds for Az.N – A1.N < k, and prove for A2.N –
Al .N = k. Since A2 E Ambiguous -SesswnsP, p re-
ceived Last _Formedq (p) during session AZ, and learned
as follows:

1.

2.

If Last _Formedq (p) N ~ Al .N then as in the
base case, p learned whether q formed Al.

Otherwise, Last _For-medq (p) .N > AI N. Hence,
there exists a formed session Fi such that:

– A1.N < F,.N < A2.N, and



– p,q E Fi.Mj and
– q formed F,.

According to the protocol, since q formed Fi, F, E
Arnbiguous.Sessions upon ending Fi. Moreover,
F, .N – A] .N < k. I-fence from the induction hy-
pothesis p learned whether q formed A: before
attempting to form Fi, hence before attempting
to form AZ o

Theorem 1 Process p records concurrently at most n –

hftn.Quorum + 1 ambiguous sessions, where n is the number

Ofprocesses that participate in an execution Of the protocol.

ProoE Assume to the contrary that p concurrently records
in Ambiguous. SessionsP n — Min_Quoram + 2 ambiguous
sessions, Al, ..., An- M,.41.0~~+2, such that (VI $ i <
~ – &fin_Quomm + 2) Ai.N < Ai+l .N8, Since Ai w still
ambiguous, p did not learn whether some member of Ai
formed it or not. Hence, by Lemma 2, there is at least
one member of Ai that is not a member of any session
Aj E Ambiguous-Sessionsp for j > i. Consequently, for
each i, there are at least i processes that do not partic-
ipate in any session Aj where j > i. In particular, af-
ter recording sessions Al,. . . . An- Mm-Q. orwn+l, there are at
least n- Min_Quorum + 1 members that are not members of
An_M,m-Quo,.*+z. Therefore A~- M,~_Qti0,”~+2.f14 consists

of less than Min-Quorum members, and An– M,._Qu0~”~+2
is not a legal session, a contradiction. •l

7 Ruling Out a Trivial Approach

The the typical problematic scenario depicted in Section 1
raised the need to consider attempts to form a session, even
though they didn’t succeed. Still it might seem that it is
enough that each member records only the last attempt it
failed to form, instead of recording a list of attempts. The
example below demonstrates that this approach does not
work. In fact, we show that in order to preserve consistency
it may be necessary to consider an attempt even if it is
followed by an exponential number of attempts.

Conaider the following execution:

The core group WO consists of processes pi,. . ., pu~.

For each process, Last.Primary = (WO, O), and
Ambiguous_Sessions =0.

In session S1 = ({PI,. . . . p2k+l}, 1), P2k+l forms ses-
sion S1, while PI, . . . , P2k attempt to form SI and de-
tach before actuafly forming it.

Let G = WO \ SI .M. Denote: A =
(2k~1)

There are A different sub-sets of G of size’ k, denot~d
Gl,..., GA,. Note that A is exponential in IWOI.

The execution continues with sessions S2, . . , SA s,t. Vi,
2 ~ i s A, session S, is conducted as follows:

. S:’s s-ion number is i.

● Si’s membership is {pi, . ,pk+l} U G:-l.

● Maz-Primary of SI is (WO,O).

‘By Lemma 1, the order requirement is always fulfilled.

●

●

Conditions: Sub_ Quorum( Wo, S; .M) is TRUE, and
Vj < i Sub- Quorum(S], S,) is TRUE.

Actions: WI , . . . . Dk armend Si to their
Ambiguous -Sess~o~s ~~ts. All other members of S, de-
tach before performing the Attempt Step, therefore do
not append S, to their Ambiguous _Sessions sets.

If pl, . . . .pk delete SI from their i4mbiguous-Sessions

sets after A sessions then two primary components may be
formed concurrently, as shown below.

●

●

Session SA+l whose membership consists of
{Pk+l,.. ,p2k+i} is a sub-quorum of S,,
which is h4az-Primary according to pzk+1 (hence a
sub-quorum of W. is not needed). Therefore it is a
legal new quorum, and all its members form it suc-
cessfully.

Session S;+, whose membership consists of
WO \ Sh+z .M is a sub-quorum of both (WO,O) and of
sessions Sz to SA. Therefore this session is also a legal
new quorum, and all its members form it successfully.

Hence, a trivial garbage collection mechanism that deletes
only a number of least recent sessions cannot reduce the
number of recorded sessions to sub-exponential, while pre-
serving consistency. Our protocol uses a sophisticated garbage
collection mechanism that reduces the number of recorded
sessions to be at most linear in the number of processes.

8 Dynamically Changing Quorum Requirements

The definition of Sub-Quorum presented in Section 4.1 re-
quires every quorum to contain at least Min-Quorum mem-
bers of IWO,in order to always allow a group of more than
[WOI– Min-Quorum members of WO to make progress. This
requirement restricts the availability if some members of WO
leave the system. In this section we eliminate the special sta-
tus of the members of WO: we afways allow a group of more
than n – A4in-Quorum processes to make progress, where
n is the “current” number of processes in the system. We
present a novel mechanism for providing this feature, in en-
vironments which allow new processes to join on the fly.

Allowing n to change dynamically is subtle because the
truth value of the Sub-Quorum predicate changes with time.
For example, Sub_ Quorum(S, T’) may be initially TRUE be-
cause T cent ains more than lkVoI—Min -Quorum members of
Wo, but later, as the set of participants increases, the truth
value of Sub- Quorum(S, T) may become FALSE. Therefore,
n must be increased with care, and new processes may not
immediately be taken into account. New processes are in-
serted into the “set of participants” using the two new vari-
ables described below:

W is the set of participants taken into account in the new
Min-Quorum requirement. W is initialized to WO, and
new processes are inserted into this group when they
participate in a formed session.

A is the set of processes that have not been admitted into
W yet. A is initialized to the empty set if p E WO, and
otherwise to contain p itself.

These variables are used to evaluate the Sub-Quorum
predicate. Below we describe how these variables are main-
tained in the course of the primary component protocol
(cf. Section 4). At the beginning of each step in a session
S of the protocol, every process p executes the following. .
operations:
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1.

2.

3.

In the first step, p sends WP and AP to every member
of s.

‘i”heAttempt Step: Upon receiving responses from ev-
ery member of S, p updates WP and AP aa follows:

● Set WP to lJ~c~,~ Wq

● Set AP to (U~~~,~ Aq) \ WP,

The Min. Quorum requirement is evafuated aa follows:

● S is an eligible quorum only if IS.A4 fl WpI >
Min. Quorum.

. IflS, &f fl(Wp UAp)l > lWp UApl —Min_Quorum,
then for every session S’ that p records, the truth
value of Sub. Quorurn(S’, S) is TRUE, regardless
of past quorums.

The Form Step: Upon receiving an attempt message
from every member of S:

● Set Wp to WP u (Ap n S. M).

● Set Ap to AP \ SM.

This mechanism allows the system to adjust the quorum
requirements in the protocol to the dynamically changing
set of process. We prove the correctness of the resulting
protocol in the full paper [10].

Jajodia and Mutchler [15] suggest a similar idea in their
hybrid algorithm. The hybrid approach combines dynamic
voting in large quorums with static voting in quorums of
size three, ruling out quorums consist ing of a single process.
Neither approach is strictly better than the other: There
are situations in which our approach allows the system to
make progress while the hybrid approach does not, and vice
versa. However, the hybrid algorithm of [15] applies the
hybrid approach to the algorithm of [16] and uses two phase
commit to avoid inconsistencies.

9 Conclusions

We presented a dynamic voting protocol for consistently
maintaining primary components in an asynchronous failure-
prone system. Our protocol is more available than previ-
ously suggested protocols, in that it allows progress in more
cases. The protocol is efficient and does not require a cold
start of the system in order to recover from severe system
failures.

Our protocol always allows connected components of a
larger size than a user-defined threshold to form a primary
component. We developed a novel mechanism for providing
this feature in environments that allow new processes to join
on the fly.
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