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Abstract. Wait-free implementations of shared objects tolerate the failure of processes, but not the
failure of base objects from which they are implemented. We consider the problem of implementing
shared objects that tolerate the failure of both processes and base objects.

We identify two classes of object failures: responsive and nonresponsive. With responsive failures, a
faulty object responds to every operation, but its responses may be incorrect. With nonresponsive
failures, a faulty object may also “hang” without responding. In each class, we define crash, omission,
and arbitrary modes of failure.

We show that all responsive failure modes can be tolerated. More precisely, for all responsive
failure modes ^, object types T, and t $ 0, we show how to implement a shared object of type T
which is t-tolerant for ^. Such an object remains correct and wait-free even if up to t base objects fail
according to ^. In contrast to responsive failures, we show that even the most benign non-responsive
failure mode cannot be tolerated. We also show that randomization can be used to circumvent this
impossibility result.

Graceful degradation is a desirable property of fault-tolerant implementations: the implemented
object never fails more severely than the base objects it is derived from, even if all the base objects
fail. For several failure modes, we show whether this property can be achieved, and, if so, how.
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1. Introduction

1.1. PROBLEM ADDRESSED. We consider concurrent systems in which asyn-
chronous processes communicate via typed linearizable shared objects. In such
systems, complex (shared) objects, such as queues and stacks, are implemented in
software from simple objects, such as registers and test&sets, which are often
supported in hardware. Traditional implementations (for example, Courtois et al.
[1971]) use lock-based techniques and are consequently not fault-tolerant: if any
process crashes while holding the lock, the other processes are effectively
prevented from accessing the implemented object. Wait-free implementations,
which have been the focus of much recent research, were introduced to overcome
this drawback [Lamport 1977]. An implementation is wait-free if every access by a
nonfaulty process is guaranteed a response, regardless of whether the other
processes are slow, fast, or have crashed.

Wait-free implementations of shared objects tolerate the failure of processes,
but not the failure of base objects from which they are implemented. We
consider the problem of implementing shared objects that tolerate the failure of
both processes and base objects.

We divide object failures into two broad classes: responsive and nonresponsive.
With responsive failures, a faulty object responds to every operation, but its
responses may be incorrect. With nonresponsive failures, a faulty object may also
“hang” without responding.

We divide the responsive class into three failure modes: crash, omission, and
arbitrary. An object that fails by crash behaves correctly until it fails and, once it
fails, it returns a distinguished response ' to every operation. Clearly, crash is
the most benign failure mode. The most severe responsive failure mode is the
arbitrary mode. Objects experiencing arbitrary failures may “lie”, that is, they
may return arbitrary responses. In terms of severity, omission falls between crash
and arbitrary. When an object fails by omission, it returns normal responses to
some operations and ' to others, and satisfies the following property: the object
would seem non-faulty if every operation that obtained the response ' were
treated like an incomplete operation that never obtained a response. Our study
of omission failures is motivated by the fact that implementations tolerating such
failures can be composed, but implementations tolerating the simpler crash
failures cannot be (this is explained in Section 7).

Similarly, we divide the nonresponsive class into NR-crash, NR-omission, and
NR-arbitrary failure modes. An object that fails by NR-crash behaves correctly
until it fails and, once it fails, it stops responding. An object that fails by
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NR-omission may fail to respond to the operations of an arbitrary subset of
processes, but continue to respond to the operations of the remaining processes
(forever). The behavior of an object that fails by NR-arbitrary is completely
unrestricted: it may not respond to an operation and, even if it does, the
response may be arbitrary.

An implementation ( is t-tolerant for failure mode ^ if the implemented
object remains wait-free and correct even if at most t base objects fail by ^. (We
use the term derived object for the implemented object and the term base objects
for the objects used in the implementation.) The resource complexity of ( is the
number of base objects used in (. ( is a self-implementation if all base objects are
of the same type as the derived object.

Consider a t-tolerant implementation for failure mode ^. By definition, a
derived object of this implementation is guaranteed to behave correctly even if
up to t base objects fail by ^. But what happens if more than t base objects fail
by ^? In general, the derived object may experience a more severe failure than
^. In other words, implementations may “amplify” failures: derived objects may
fail more severely than base objects. This undesirable behavior is prevented by
implementations that are “gracefully degrading”. An implementation is gracefully
degrading for failure mode ^ if it has the following property: if base objects only
fail by ^, then the derived object does not fail more “severely” than ^. Thus, if ^
is guaranteed to be the most severe failure mode that hardware objects may
experience, the graceful degradation property of an implementation makes it
possible to extend the same guarantee to software objects.

We study the problem of designing t-tolerant and/or gracefully degrading
implementations for the various responsive and non-responsive failure modes.
An independent work by Afek et al. [1992; 1995] has the same general goal, but
differs in many respects. We present a comparison of the two works in Section 8.

1.2. SUMMARY OF RESULTS. The three main topics studied are: tolerating
responsive failures, tolerating nonresponsive failures, and achieving graceful
degradation.

In the following, we say type T has an implementation from a set 6 of types if it
is possible to wait-free implement an object of type T from objects whose types
are in 6. (We use the typewriter font for the names of types.)

It is known that every type has an implementation from {consensus ,
register } [Herlihy 1988; 1991b; Plotkin 1989].1 Hence, if the types consen-
sus and register have t-tolerant implementations, so does every type. We
therefore focus on obtaining t-tolerant implementations of consensus and
register .

1.2.1. Tolerating Responsive Failures. We give t-tolerant self-implementations
of consensus for crash, omission, and arbitrary failures. For crash and omission
failures, our self-implementation is optimal requiring only t 1 1 base consensus
objects. For arbitrary failures, our self-implementation is efficient requiring O(t
log t) base consensus objects. We also give t-tolerant self-implementations of

1 The type consensus supports two operations, propose 0 and propose 1, and has the following
sequential specification: if propose v is the first operation, then every operation gets the response v.
The register supports read and write operations with the standard specification that a read returns
the most recently written value.
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register for crash, omission, and arbitrary failures. Combining the above
results with the universality results in Herlihy [1991b] and Plotkin [1989], we
conclude that every type T has a t-tolerant implementation (from {consensus ,
register }) for all responsive failure modes. Moreover, if T implements both
consensus and register , then T has a t-tolerant self-implementation. This
implies that familiar types such as (2-process) fetch &add , queue , stack ,
test &set , and (N-process) compare &swap, move, memory-to -memory swap
have t-tolerant self-implementations even for arbitrary failures.

1.2.2. Tolerating Nonresponsive Failures. An object that fails nonresponsively
may not respond to operations. Thus, if a process invokes an operation on an
object and waits for the response before proceeding further, then a nonrespon-
sive failure of the object can result in the process waiting for the response
forever! To overcome this difficulty, we allow a process to have pending
operations on more than one object. In other words, we allow a process to invoke
an operation on some object O1 and, without waiting for a response from O1, to
proceed to invoke an operation on a different object O2. Thus, it is conceivable
that t nonresponsive failures can be tolerated by invoking n operations in parallel
and waiting for n 2 t responses. Unfortunately, this is not the case. We show
that there is no 1-tolerant implementation of consensus even for NR-crash
failures, the most benign of the nonresponsive failure modes.2 This immediately
implies that any type T that implements consensus , such as fetch &add ,
queue , stack , test &set , compare &swap, move, sticky -bit , and memory-
to -memory swap, has no 1-tolerant implementation for NR-crash.

We ask whether randomization can be used to circumvent these impossibility
results. The answer is yes. Specifically, we show that register has a t-tolerant
(deterministic) self-implementation even for NR-arbitrary failures. Furthermore,
randomized implementations of consensus from register are well-known
(for example, see Aspnes [1990]). These two results, together with the universal-
ity results in Herlihy [1991b] and Plotkin [1989] imply that every type has a
randomized t-tolerant implementation from register even for NR-arbitrary
failures.

1.2.3. Achieving Graceful Degradation. If an implementation is gracefully
degrading for failure mode ^, the derived object never fails more severely than
^ provided that base objects fail only by ^ (this property holds even if all base
objects fail). Graceful degradation is clearly desirable. In fact, it also provides a
method for automatically boosting the fault-tolerance of an implementation: We
show that, given a 1-tolerant gracefully degrading self-implementation of any
type T for any failure mode ^, one can construct a t-tolerant gracefully
degrading self-implementation of T for ^.

We investigate the feasibility of designing implementations that are gracefully
degrading for crash and omission failure modes. We show that there is a large
class of types that have no gracefully degrading implementations for crash. This
class includes many common types, such as queue , stack , test &set , and

2 The impossibility of implementing a fault-tolerant consensus object from any finite set of base
objects, one of which may fail by NR-crash, is shown using the impossibility of solving the consensus
problem among a finite number of processes, one of which may crash [Fischer et al. 1985; Loui and
Abu-Amara 1987; Dolev et al. 1987].
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compare &swap. Intuitively, crash is so benign that it is impossible to ensure
that the implemented object does not fail more severely than crash even when
base objects fail only by crash. In contrast, for omission failures, we prove the
following universality result: Every type has a t-tolerant gracefully degrading
implementation from {consensus , register } for omission.

1.2.4. Conclusions. The following are our main conclusions: (1) It is feasible
to design deterministic implementations that tolerate even the most severe of the
responsive failures, viz., arbitrary failures, (2) Implementations cannot tolerate
even the simplest of non-responsive failures, viz., NR-crash failures, without the
use of randomization, and (3) Of the two benign failure modes, viz., crash and
omission, it is feasible to design gracefully degrading implementations for
omission, but not for crash. Accordingly, we give three fault-tolerant universal
constructions—a deterministic one for arbitrary failures, a randomized one for
nonresponsive arbitrary failures, and a deterministic one for omission failures
that also guarantees graceful degradation.

1.3. ORGANIZATION. In Section 2, we describe the model. In Section 3, we
define the responsive and non-responsive classes of failures, and the failure
modes within each class. We define the concepts of t-tolerant implementation
and graceful degradation in Section 4. The three main topics—tolerating respon-
sive failures, tolerating non-responsive failures, and the feasibility of graceful
degradation for crash and omission failure modes—are studied in Sections 5, 6,
and 7, respectively. In Section 8, we present a comparison with the results in
Afek et al. [1992; 1995].

2. Model

2.1. I/O AUTOMATA. Our description of I/O automata is brief. The reader is
referred to the work of Lynch and Tuttle [1988] for details.

An I/O Automaton is a nondeterministic automaton with the following compo-
nents: (i) a finite/infinite set of states, including a distinguished set of starting
states, (ii) a set of input events, (iii) a set of output events, (iv) a set of internal
events, and (v) a transition relation given by a set of tuples (s, e, s9), where s
and s9 are states, and e is an event.

Each triple (s, e, s9) in the transition relation is called a step, and it means
that, if the automaton is in state s, event e can occur and change the state to s9.
We say e is enabled in state s. An execution of an automaton A is a finite
sequence s0, e1, s1, e2, s2, . . . , en, sn or an infinite sequence s0, e1, s1, e2,
s2, . . . of alternating states and events such that s0 is a starting state and (si,
ei11, si11) is a step of A. In the former case, sn is the final state of the execution.
A history of an automaton is the subsequence of events in an execution.

A new automaton can be constructed by composing a set of “compatible”
automata. Let E be an execution of an automaton composed from A1, A2, . . . ,
Ak and H be the corresponding history. The history of a component Ai in E,
denoted by H uAi, is the subsequence of H consisting only of the events of Ai.

2.2. OBJECT TYPE. Every object has a type. The type specifies the expected
behavior of the object. More precisely, a type T is a tuple (OP, RES, G, t) where
OP and RES are sets of operations and responses respectively, G is a directed
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finite or infinite multi-graph in which each edge has a label of the form (op, res)
where op [ OP and res [ RES, and t is a history transformation function. We
refer to G as the sequential specification of T and the vertices of G as the states of
T. Intuitively, if there is an edge, labeled (op, res), from state s to state s9, it
means that applying the operation op to an object in state s may change the state
to s9 and return the response res. We explain the history transformation function
t later in Section 2.7.

A sequence s 5 (op1, res1), (op2, res2), . . . , (opl, resl) is legal from state s of T if
there is a path labeled s in G from the state s. T is deterministic if, for all states
s of T and for all operations op [ OP, there is at most one edge from s labeled
(op, res) (for some res [ RES). T is nondeterministic otherwise. T is total if, for all
states s of T and for all operations op [ OP, there is at least one edge from s
labeled (op, res) (for some res [ RES). In this paper, we restrict our attention to
total types. T is finite if it has only a finite number of states. T is infinite
otherwise.

The type consensus is central to this paper. Its sequential specification is in
Figure 1.

2.3. OBJECTS AND PROCESSES. Objects and processes are modeled as autom-
ata. Each object O has two attributes: a type T and a state s of T to which O is
initialized.

We assume that a process can be made to crash (by an invisible adversary) at
any point in an execution. We model this as follows: Every process P has a
distinguished state FAIL(P), an input event crash(P), and an output event
crashed(P). From any state, the input event crash(P) moves P to state FAIL(P)
and, once in state FAIL(P), no event moves P out of that state. The output event
crashed(P) is enabled only in FAIL(P).

Unless mentioned otherwise, we assume that a process is deterministic. This
implies that, for every state s of a process and event e, there is no more than one
s9 such that (s, e, s9) is a step of the process.

2.4. CONCURRENT SYSTEM. A concurrent system consisting of processes P1,
P2, . . . , Pn and objects O1, . . . , Om is defined as the automaton composed
from the process automata Pi, 1 # i # n, and the object automata Oj, 1 # j #
m. We write (P1, P2, . . . , Pn; O1, . . . , Om) to denote such a system.

Let Oj be an object of type T 5 (OP, RES, G, t). The input and output
events of Oj include invoke(Pi, op, Oj) and respond(Pi, res, Oj), respectively,
where Pi is a process and op [ OP. We call these events invocations and
responses, respectively. The input and output events of a process Pi include
respond(Pi, res, Oj) and invoke(Pi, op, Oj), respectively.

Let E be an execution of a concurrent system and H be the corresponding
history. A response r matches an invocation i in H if i is the most recent

FIG. 1. Sequential specification of consensus .
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invocation preceding r such that the process and object names of i and r agree.
An operation in H is a pair of events, an invocation and its matching response.3

An incomplete operation in H is an invocation with no matching response. History
H is complete if it has no incomplete operations. We define the relation ,H,
which reflects the partial “real time” order of operations in H, as follows. For
any two operations oper and oper9 in H, oper ,H oper9 if the response of oper
precedes the invocation of oper9. We say that oper precedes oper9 in H. Two
operations unrelated by ,H (i.e., neither operation precedes the other) are said
to be concurrent in H. History H is sequential if it has no concurrent operations.

We assume initially that a process is a single thread of control: after invoking
an operation on an object, it waits to receive the response before it invokes
another operation (on any object). We also assume that, for any process Pi and
object Oj, the interaction between Pi and Oj is proper: first Pi invokes an
operation on Oj, then Oj responds, and then Pi invokes on Oj, then Oj responds,
and so on. We model these assumptions as follows: Let H be the history
corresponding to an execution of a concurrent system. Recall that H uA denotes
the history of component A in H, that is, the subsequence of events in H which
belong to the component A. Thus, (H uPi) uOj denotes the subsequence of events
common to Process Pi and Object Oj. These events are invocations on Oj from Pi

and responses to Pi from Oj. History H is well-formed if, for all processes Pi and
objects Oj, the following conditions hold: (i) no prefix of H uPi has more than one
incomplete operation, and (ii) (H uPi) uOj begins with an invocation and has
alternating invocations and responses. Except in Section 6, where we study
non-responsive failures, we restrict our attention to well-formed histories of a
concurrent system.

When a process is restricted to be a single thread of control, it will block if an
object fails to respond to its invocation. Thus, it will be impossible to construct
fault-tolerant implementations in the presence of nonresponsive object failures.
Hence, in Section 6, where such implementations are sought, we relax Condition
(i) above and allow a process to have multiple incomplete operations. We
however continue to insist on Condition (ii) which implies that a process can
have no more than one incomplete operation on any one object.

2.5. FAIRNESS. An execution E of a concurrent system is fair if the following
conditions hold:

(1) If E is finite, then no internal or output event is enabled in the final state of
E.

(2) If E is infinite, then for each internal or output event e, E contains either
infinitely many occurrences of e or infinitely many states in which e is not
enabled.

2.6. LINEARIZABILITY. Linearizability requires that each operation, spanning
over an interval of time from the invocation of the operation to its response,
must appear to take effect at some instant in this interval [Herlihy and Wing
1990]. More precisely, let H be the history of some object in an execution of a

3 Thus, the term, operation, is overloaded. It will be, however, clear from the context whether a
particular use of this term refers to an element of OP of a type T 5 (OP, RES, G, t) or to a pair of
events in a history.
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concurrent system. Let T 5 (OP, RES, G, t) be a type and s be a state of T. A
linearization of H with respect to (T, s) is a complete sequential history S with the
following properties:

(1) S is legal from state s of T.
(2) S includes every complete operation in H.
(3) If invoke (Pi, op, 2) is an incomplete operation in H, then either S does not

include this incomplete operation or S includes a complete operation
(invoke(Pi, op, 2), respond(Pi, res, 2)) for some res [ RES. (Intuitively, this
captures the notion that some incomplete operations in H did not take
effect, while the others did.)

(4) S includes no operations other than the ones mentioned in 2 or 3.
(5) For all operations oper, oper9 in S, if oper ,H oper9 then oper ,S oper9.

(Thus, the order of non-overlapping operations in H is preserved in S.)

H is linearizable with respect to (T, s) if H has a linearization with respect to (T,
s). Let O be an object of type T, initialized to state s of T, and let H be the
history of O in an execution E of a concurrent system. We say that O is
linearizable in E if H is linearizable with respect to (T, s).

2.7. WELL-BEHAVEDNESS. It is tempting to say that an object is well behaved
in an execution if and only if it is linearizable in that execution. However, some
important objects that appeared in literature are not linearizable. Here are some
examples.

—Consider the type safe register , defined by Lamport [1986]. It supports
read and write operations and has the same sequential specification as
register : every read returns the value written by the most recent write.
However, in the presence of concurrent operations, a safe register extends
fewer guarantees than a (linearizable or “atomic”) register. In particular, if a
read operation on a safe register is concurrent with a write, then that read
operation can return an arbitrary response. Thus, the history H of a safe
register does not have to be linearizable. However, H satisfies the following
weaker property [Lamport 1986]. If H9 is the result of removing all read
operations in H that are concurrent with a write, then H9 is linearizable.

—Consider the type consensus with safe -reset [Herlihy 1991b]. It
supports a reset operation in addition to propose 0 and propose 1. Its sequential
specification is the same as that of consensus (see Figure 1) with one
addition: from any state, application of reset causes the state to change to S
and return the response ack. In using an object of this type, if a reset operation
is concurrent with a propose or another reset operation, then the object is
allowed to return arbitrary responses to all operations thereafter. Thus, the
history H of an object of type consensus with safe -reset does not have
to be linearizable. However, H satisfies the following weaker property [Herlihy
1991b]: If H9 is the maximal prefix of H in which no reset operation is
concurrent with any other operation, then H9 is linearizable.

—Consider the type 1-reader 1 -writer register . A history H of an object
of this type does not have to be linearizable if either more than one process
reads or more than one process writes. However, H satisfies the following
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weaker property: If H9 is the maximal prefix of H in which no more than one
process reads and no more than one process writes, then H9 is linearizable.

—Consider the type 1-reader 1 -writer safe register . A history H of an
object of this type satisfies the following property. Let H9 be the maximal
prefix of H in which no more than one process reads and no more than one
process writes. Let H0 be the result of removing all read operations in H9 that
are concurrent with a write. Then, H0 is linearizable.

In all these examples, given a history H of an object of type T, we required
that a transformation of H, not H itself, be linearizable with respect to T. This is
the motivation for including a history transformation function t as a component
in the 4-tuple defining a type. We are now ready to define well-behavedness. Let
O be an object of type T 5 (OP, RES, G, t) which is initialized to state s of T.
Let H be the history of O in an execution E of a concurrent system. We say that
O is well behaved in E if t(H) is linearizable with respect to (T, s).

For most types considered in this paper, such as consensus , register , and
queue , the history transformation function is the identity function. Thus, for
these types, well-behavedness is the same as linearizability. The following types
are the exceptions in this paper: 1-reader 1 -writer register , 1-reader
1-writer safe register , and consensus with safe -reset . The history
transformation functions for these types should be obvious from the above
discussion.

2.8. WAIT-FREEDOM AND CORRECTNESS. Recall that every process automaton
has a FAIL state. A process P crashes in an execution E of a concurrent system if
P’s state is FAIL(P) in any state of E. P is correct in E if it does not crash in E.
An object O is wait-free in E if the following condition holds: If E is fair, then
every invocation on O by a correct process has a matching response. An object O
is correct in E if O is wait-free and well-behaved in E. Object O fails in E if O is
not correct in E.

2.9. IMPLEMENTATION. Let T be a type and s be a state of T. Further, let + 5
(T1, T2, . . .) be a list of types (the list may be infinite and the types in the list
need not be distinct) and S 5 (s1, s2, . . .) be a list where si is a state of type Ti.
An implementation of (T, s) from (+, S) for processes P1, P2, . . . , PN is a
function ((O1, O2, . . .) satisfying the following properties:

(1) There exist process automata F1, F2, . . . , FN, known as the front-ends, such
that if 2 5 ((O1, O2, . . .), then 2 is the automaton (F1, F2, . . . , FN; O1,
O2, . . .).

(2) Front-ends Fi and Fj (i Þ j) have no common events.
(3) Let 2 5 ((O1, O2, . . .). Each input event invoke(Pi, op, 2) of 2 is matched

with an input event of Fi; each output event respond(Pi, res, 2) of 2 is
matched with an output event of Fi.

(4) Each output event crashed(Pi) of Process Pi is matched with the input event
crash(Fi) of the front-end Fi.

(5) Let O1, O2, . . . be distinct objects of types T1, T2, . . . , initialized to states
s1, s2, . . . , respectively. Then, 2 5 ((O1, O2, . . .) is an object of type T,
initialized to state s, with the following property: for every execution E of the
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concurrent system (P1, P2, . . . , PN; 2), if O1, O2, . . . are well-behaved in
E, then 2 is well-behaved in E.

Informally, the front-end Fi is represented by a set of access procedures
Apply (Pi, op, 2) (op [ OP(T)). Apply (Pi, op, 2) specifies how process Pi

should “simulate” the operation op on 2 in terms of operations on O1, O2, . . . .
We say that 2 is a derived object of the implementation (, and O1, O2, . . . are
the base objects of 2. The resource complexity of ( is the number of base objects
required by ( to implement a derived object.

Condition (1) above states that a derived object is constituted by base objects
and access procedures (front-ends). Condition (2) captures the notion that the
execution of a step of the access procedure by one process Pi cannot affect the
state of another process Pj. Condition (3) captures the notion that (i) invoking
an operation on 2 by process Pi activates the front-end Fi or, equivalently, begins
the execution of an access procedure, and (ii) the value returned by the front-end
(access procedure) Fi is the response of 2. Condition (4) captures our intuition
that when a process Pi crashes, the front end Fi of that process must stop
executing. Condition (5) ensures that a derived object is well behaved whenever
all its base objects are well behaved.

An implementation of (T, s) from (+, S) is a self-implementation if every type
in the list + is T. Thus, in a self-implementation, base objects are of the same
type as the derived object.

We say that ( is an implementation of (T, s) from a set 6 of types for N
processes if there is a list + 5 (T1, T2, . . .) of types and a list S 5 (s1, s2, . . .)
of states such that Ti [ 6, si is a state of Ti, and ( is an implementation of (T,
s) from (+, S) for N processes. We say that a type T has an implementation from
a set 6 of types for N processes if, for all states s of T, there is an implementation
of (T, s) from 6 for N processes. Finally, we say that T implements T9 if there is
an implementation of T9 from {T}.

2.10. WAIT-FREE IMPLEMENTATION. An implementation for N processes is
wait-free if every derived object 2 has the following property: if E is an execution
of (P1, P2, . . . , PN; 2) in which all base objects of 2 are wait-free, then 2 is
wait-free in E.

An implementation for N processes is k-bounded wait-free if it is wait-free and
every derived object 2 has the following property: For all executions of (P1,
P2, . . . , PN; 2) and for all Pi 1 # i # N, between an invocation on 2 by Pi and
its matching response, Pi has no more than k invocations on all base objects of 2
put together.

In this paper, we are primarily interested in wait-free implementations. From
now on, we will therefore write “implementation” and “k-bounded implementa-
tion” as shorthand for “wait-free implementation” and “k-bounded wait-free
implementation”, respectively.

3. Failure Modes

A failure mode describes the manner in which a failed object departs from correct
behavior. In this section, we define a spectrum of failure modes that fall into two
broad classes: responsive and nonresponsive.
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As we will see, a failed object 2 may sometimes return a distinguished
response '. If a process P receives ' from 2, it can immediately infer that 2 is
faulty. Thus, it is reasonable to assume that P does not invoke operations on 2
thereafter. We restrict our attention to executions in which this assumption
holds.

3.1. RESPONSIVE FAILURE MODES. An object experiencing a responsive fail-
ure responds to every invocation, even though the response may be incorrect.
Thus, responsive failure modes share the property that objects remain wait-free
even if they fail. We describe below three increasingly severe responsive failure
modes.

3.1.1. CRASH. Crash is the most benign of all failure modes, responsive or
nonresponsive. Informally, an object that fails by crash behaves correctly until it
fails and, once it fails, it returns a distinguished response ' to every invocation.
This failure mode is based on the premise that an object detects when it becomes
faulty and responds with ' thereafter.

Let 2 be an object of type T 5 (OP, RES, G, t), initialized to state s of T.
Object 2 fails in an execution E by crash if it is not well-behaved in E, but satisfies
the following properties:

(1) 2 is wait-free in E.
(2) Every response from 2 in E either belongs to RES or is ' (where ' is a

distinguished value not in RES). An operation that returns ' is an aborted
operation.

(3) Let * be the history of 2 in E, and let op and op9 be two completed
operations in *. If op precedes op9 and op is an aborted operation, then op9
is also an aborted operation.

(4) Let *9 be the history obtained by removing all aborted operations in *.
Then, t(*9) is linearizable with respect to (T, s).

Property (3) is the “once ', everafter '” property of crash. Property (4)
captures the notion that 2 behaves correctly until it fails and that aborted
operations do not take effect. Let us consider some examples. Let 5 be an object
of type register , initialized to 0.

—Consider the history * of 5 in Figure 2. (In the figure, a line segment
represents the duration of an operation, from invocation to response. A triple

FIG. 2. History of a register, initialized to 0.
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(Pi, op, res) over the line segment denotes that Pi is the invoking process, op is
the operation invoked, and res is the response from 5.) The failure of 5 is by
crash, as verified below. Removing aborted operations in * results in *9 5 e1

2,
e1

3, e2
2, e3

2, e2
3, e4

2. (Event ei
j denotes the ith event of process Pj.) Clearly, *9 is

linearizable with respect to (register , 0): e1
2, e2

2, e1
3, e2

3, e3
2, e4

2 is a
linearization. The history transformation function t for register is the
identity function. Thus, t(*9) 5 *9, and is linearizable with respect to
(register , 0). Thus, Property (4) holds in *. Other properties also hold and
are trivial to verify.

—Let & be the same history as in Figure 2 with one modification: P2’s read
returns 1 instead of 2. Clearly, &9, obtained by removing the aborted opera-
tions in &, does not result in a linearizable history. Thus, the failure of 5 in &
is not by crash.

3.1.2. OMISSION. We begin with the motivation for the omission failure
mode. Consider an implementation (, and a derived object 2 of (. Even if the
base objects of 2 may only fail by crash, 2 itself may experience a more severe
failure than crash. To see this, suppose that a base object o of 2 fails by crash.
Consider a process P that invokes an operation op on 2 and executes Apply (P,
op, 2). If, during the execution of Apply (P, op, 2), P accesses o, o returns ' to
P. This may cause Apply (P, op, 2) to terminate and also return '. Strictly after
this occurs, suppose that another process Q invokes some operation op9 on 2,
and that Apply (Q, op9, 2) is not required to access o. Then, while executing
Apply (Q, op9, 2), Q does not notice the failure of o. So Apply (Q, op9, 2)
terminates “normally” and returns a non-' response. Thus, 2’s behavior violates
the “once ', everafter '” property: 2 returned ' to P’s operation and a non-'
response to a strictly later operation by Q. We conclude that 2’s failure is more
severe than crash. Does this mean that 2’s failure is arbitrary? We now argue
that this is not the case.

Recall that after P receives ', we assume that P refrains from accessing 2
again. Thus, to Q, the above scenario is indistinguishable from one in which P
had crashed in the middle of the procedure Apply (P, op, 2), while accessing o.
Since the implementation ( (from which 2 is derived) is wait-free, 2 tolerates the
apparent crash of process P. Thus, 2’s response to Q must be correct. We
conclude that the failure of 2 is more severe than crash, but is not completely
arbitrary. Our model of omission, formally defined below, captures this type of
failure.

Let 2 be an object of type T 5 (OP, RES, G, t), initialized to state s of T.
Object 2 fails in an execution E by omission if it is not well behaved in E, but
satisfies the following properties:

(1) 2 is wait-free in E.
(2) Every response from 2 in E either belongs to RES or is '.
(3) Let * be the history of 2 in E. Let *9 be the history obtained by removing

the response events associated with the aborted operations in *. Then, t(*9)
is linearizable with respect to (T, s).

Suppose that an operation by process P receives the response ' from 2.
Property (3) states that this aborted operation must appear like an incomplete
operation to all processes other than P.
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Notice the subtle difference in the way we obtain *9 from * for crash and for
omission. For crash, both invocation and response events associated with aborted
operations are removed to obtain *9. For omission, only the response events
associated with aborted operations are removed. Let us consider some examples.

—Let 5 be an object of type register , initialized to 0. Consider the history *
of 5 in Figure 3. The failure of 5 is by omission, as verified below. Removing
the response event e2

1 of the aborted operation results in *9 5 e1
1, e1

2, e2
2, e3

2,
e4

2. *9 (and hence, t(*9)) is linearizable with respect to (register , 0): e1
2, e2

2,
e1

1, e, e3
2, e4

2 is a linearization, where e is a response event returning ack. Thus,
in the linearization of *9, the first read by P2 takes effect first, then the write
by P1 (which is aborted in * and incomplete in *9) takes effect, and then the
second read by P2 takes effect. This example shows that an aborted operation
may take effect a long time after it completed.

—Let & be the same history as in Figure 3 with one modification: the second
read by P2 returns 2 instead of 1. The failure of 5 in & is not by omission since
the history &9 obtained by removing e2

1 is clearly not linearizable.
—Same as the previous example, but suppose that 5 is of type safe register .

Recall that the function t for safe register removes all read operations
that overlap with a write. Thus, t(*9) 5 e1

1, and is obviously linearizable with
respect to (safe register , 0). (The empty sequence is a linearization of
t(*9).) Thus, Property (3) of omission holds. Other properties also hold and
are trivial to verify. Thus, 5 fails by omission in *.

3.1.3. Arbitrary. An object 2 fails in an execution E by the arbitrary failure
mode if it is not well-behaved in E, but is wait-free in E. Informally, 2 responds
to every invocation in E, but the responses may be arbitrary.

3.2. NONRESPONSIVE FAILURE MODES. With responsive failure modes, a
faulty object remains wait-free. Nonresponsive failure modes do not have this
property.

3.2.1. NR-CRASH. NR-crash is the most benign of all non-responsive failure
modes. Informally, an object that fails by NR-crash behaves correctly until it fails
(Property (1) below) and, once it fails, it never responds to any invocation
(Property (2) below).

An object 2 fails in an execution E by NR-crash if it is not wait-free in E, but
satisfies the following properties:

(1) 2 is well behaved in E.
(2) The total number of responses from 2 in E is finite.

FIG. 3. History of a register, initialized to 0.
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3.2.2. NR-OMISSION. An object 2 fails in an execution E by NR-omission if it is
not wait-free in E, but is well behaved in E.

NR-omission is more severe than NR-crash. In particular, an object that fails
by NR-omission does not necessarily satisfy Property (2) of NR-crash. Thus, the
object may not respond to invocations from some processes and always respond
to invocations from others.

3.2.3. NR-ARBITRARY. An object 2 fails in an execution E by NR-arbitrary if it
fails in E.

Thus, the behavior of an object that experiences an NR-arbitrary failure is
completely unrestricted. Such an object may not respond to an invocation; even if
it does, the response may be arbitrary.

4. Fault-tolerance and Graceful Degradation—Definitions and Properties

In the following, let ( be an implementation of (T, s) from (+, S) for processes
P1, P2, . . . , PN, where + 5 (T1, T2, . . .) and S 5 (s1, s2, . . .).

We say that ( is t-tolerant for failure mode ^ if it satisfies the following:

Let O1, O2, . . . be distinct objects of types T1, T2, . . . , initialized to states s1,
s2, . . . , respectively. Then, 2 5 ((O1, O2, . . .) is an object of type T,
initialized to state s, with the following property: for every execution E of the
concurrent system (P1, P2, . . . , PN; 2), if at most t objects among O1,
O2, . . . fail, and they fail by ^, then 2 is correct.

We say that ( is gracefully degrading for failure mode ^ if it satisfies the
following:

Let O1, O2, . . . be distinct objects of types T1, T2, . . . , initialized to states s1,
s2, . . . , respectively. Then, 2 5 ((O1, O2, . . .) is an object of type T,
initialized to state s, with the following property: for every execution E of the
concurrent system (P1, P2, . . . , PN; 2), if all faulty objects among O1,
O2, . . . fail by ^, then either 2 is correct or 2 fails by ^.

Let 2 be a derived object of an implementation that is both t-tolerant and
gracefully degrading for failure mode ^. The above definitions imply that: (i) if
at most t base objects of 2 fail, and they fail by ^, then 2 does not fail, and (ii) if
more than t base objects of 2 fail, and they fail by ^, then 2 may fail, but it does
not experience a more severe failure than ^.

4.1. COMPOSING FAULT-TOLERANT IMPLEMENTATIONS. Gracefully degrading
implementations can be composed as stated by the following lemma. Given a list
L of integers and an integer n, let MinSum(n, L) be the sum of the n smallest
integers in L. If L1 and L2 are lists, let L1 z L2 denote the concatenation of L1
and L2.

In the lemma below and in the rest of this paper, if we do not specify the
number of processes for which an implementation is intended, it should be
assumed that the implementation is for N processes, where N is arbitrary. Also,
we say that a type T has a t-tolerant gracefully degrading implementation if, for all
states s of T, there is a t-tolerant gracefully degrading implementation of (T, s).
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LEMMA 4.1.1 (COMPOSITIONAL LEMMA). Suppose that T has a t-tolerant imple-
mentation from + for failure mode ^, where + 5 (T1, T2, . . . , Tn) is a list of types.
Furthermore, suppose that each Ti has a ti-tolerant gracefully degrading implemen-
tation from +i for failure mode ^. Then we have:

(1) T has a t9-tolerant implementation from +9 for failure mode ^, where +9 5
+1 z +2 z . . . z +n and t9 5 MinSum(t 1 1, ^t1 1 1, t2 1 1, . . . , tn 1 1&)
2 1.

(2) If the t-tolerant implementation of T from + is gracefully degrading for ^, then
T has a t9-tolerant gracefully degrading implementation from +9 for failure
mode ^.

PROOF SKETCH. Let s be any state of T. By the statement of the lemma, (T,
s) has a t-tolerant implementation ( from (+, S) for failure mode ^, for some S
5 (s1, s2, . . . , sn) such that si is a state of Ti. For all i, let + i 5 (Ti1, Ti2, . . . ,
Tiji

). By the statement of the lemma, each (Ti, si) has a t i-tolerant gracefully
degrading implementation ( i from (+ i, S i) for failure mode ^, for some S i 5
(si1, si2, . . . , sij i

) such that sik is a state of Tik.
Let o11, . . . , o1j1

, . . . , on1, . . . , onjn
be objects of types T11, . . . , T1j1

, . . . ,
Tn1, . . . , Tnjn

, initialized to states s11, . . . , s1j1
, . . . , sn1, . . . , snjn

, respectively.
Define an implementation (9 as follows: (9(o11, . . . , o1j1

, . . . , on1, . . . , onjn
)

5 ((O1, . . . , On), where Oi 5 ( i(oi1, oi2, . . . , oiji
). Assume that each okl, if

it fails, only fails by ^. Since ( i is t i-tolerant, Oi fails only if at least t i 1 1
objects among oi1, . . . , oiji

fail. Furthermore, since ( i is gracefully degrading, Oi

can only fail by ^, no matter how many base objects of Oi fail. From this and the
fact that ( is t-tolerant for ^, it follows that ((O1, . . . , On) fails only if at least
t 1 1 objects among O1, . . . , On fail. Thus, for ((O1, . . . , On) to fail, at least
MinSum(t 1 1, ^t1 1 1, t2 1 1, . . . , tn 1 1&) 5 t9 1 1 objects among
o11, . . . , o1j1

, . . . , on1, . . . , onjn
must fail. In other words, (9 is a t9-tolerant

implementation of (T, s) from (+9, S9), where S9 5 S1 z S2 z . . . z Sn. This
completes the proof of the first part of the lemma.

Assume that the implementation ( is gracefully degrading for ^. Thus, if
O1, . . . , On (which are the base objects of 2) only fail by ^, then 2, if it fails,
only fails by ^. We have already argued that if objects o11, . . . , o1j1

, . . . ,
on1, . . . , onjn

only fail by ^, then each Oi, if it fails, only fails by ^. We conclude
that if objects o11, . . . , onjn

only fail by ^, then 2, if it fails, only fails by ^.
Thus, (9 is gracefully degrading for ^. This completes the proof of the second
part of the lemma. e

We now state a special case of the compositional lemma, obtained by setting
t 5 0 and @1 # i # n : t i 5 t. This lemma is used frequently in later sections.

COROLLARY 4.1.2. Suppose that T has a (0-tolerant) implementation from (T1,
T2, . . . , Tn). Furthermore, suppose that each Ti has a t-tolerant gracefully degrading
implementation from +i for failure mode ^, where +i is some list of types. Then we
have:

(1) T has a t-tolerant implementation from +1 z +2 z . . . z +n for failure mode ^.
(2) If the (0-tolerant) implementation of T from (T1, T2, . . . , Tn) is gracefully

degrading for ^, then T has a t-tolerant gracefully degrading implementation
from +1 z +2 z . . . z +n for failure mode ^.
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The compositional lemma can be used to enhance the fault-tolerance of a
self-implementation. This is the substance of the following corollary, obtained by
setting Ti 5 T, + i 5 +, and t i 5 t in Lemma 4.1.1. Below, we say that T has an
implementation of resource complexity n if, for all states s of T, (T, s) has an
implementation of resource complexity n.

COROLLARY 4.1.3. If T has a t-tolerant gracefully degrading self-implementation
( of resource complexity n for failure mode ^, then T has a (t2 1 2t)-tolerant
gracefully degrading self-implementation (9 of resource complexity n2 for ^.

Recursive application of the above corollary boosts the fault-tolerance of
self-implementations.

COROLLARY 4.1.4 (BOOSTER LEMMA). If T has a 1-tolerant gracefully degrad-
ing self-implementation of resource complexity k for failure mode ^, then T has a
t-tolerant gracefully degrading self-implementation of resource complexity O(tlog2k)
for ^.

4.2. GRACEFUL DEGRADATION FOR ARBITRARY FAILURES. We show that if T
has a t-tolerant k-bounded implementation, then T has a t-tolerant gracefully
degrading k-bounded implementation for arbitrary failures. Thus, if we know
how to obtain a bounded implementation, graceful degradation for arbitrary
failures comes automatically and at no extra cost.

Observe that if an implementation guarantees that the derived object is
wait-free whenever the base objects are wait-free, the implementation is grace-
fully degrading for arbitrary failures. The lemma below is based on this observa-
tion.

LEMMA 4.2.1. If T has a t-tolerant k-bounded implementation from + for
arbitrary failures, then T has a t-tolerant gracefully degrading k-bounded implemen-
tation from + for arbitrary failures.

PROOF SKETCH. Let s be any state of T. By the statement of the lemma, (T,
s) has a t-tolerant k-bounded implementation ( from (+, S), for some sequence
S of states. Define the implementation (9 as follows. In (9, a process applies an
operation op on the derived object 2 by first setting a local counter count to 0,
and then proceeding as in the implementation (. As the process executes the
steps of (, it increments count each time it applies an operation on a base object
of 2. If count reaches k and the implementation ( has not yet returned a
response, the process deduces that more than t base objects have failed (this
deduction is sound since ( is a t-tolerant k-bounded implementation), and
returns an arbitrary value as the response from 2 to its operation op.

Since ( is a correct t-tolerant implementation, it follows that (9 is also a
correct t-tolerant implementation. Clearly, (9 has the property that, if all base
objects are wait-free, the derived object is also wait-free. Hence (9 is gracefully
degrading for arbitrary failures. We conclude that (9 is a t-tolerant gracefully
degrading k-bounded implementation of (T, s) from (+, S) for arbitrary failures.
Hence, the lemma. e
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5. Tolerating Responsive Failures

In this section, we prove that it is feasible to design deterministic implementa-
tions that tolerate even the most severe of the responsive failures, viz., arbitrary
failures.

Herlihy [1991b] and Plotkin [1989] showed that one can implement a (wait-
free) object of any type using only consensus and register objects. Therefore, if
consensus and register have t-tolerant implementations, then every type has
a t-tolerant implementation. We therefore focus on fault-tolerant implementa-
tions of consensus and register in Sections 5.1 and 5.2, respectively.
Combining these with the universal implementations of Herlihy and Plotkin, we
obtain in Section 5.3 a deterministic fault-tolerant universal implementation that
tolerates arbitrary failures.

5.1. FAULT-TOLERANT IMPLEMENTATION OF CONSENSUS. In this section, we
present a self-implementation of consensus that is t-tolerant for both crash and
omission failures. This implementation requires t 1 1 base consensus objects
and is thus resource optimal. Following that, we present an efficient t-tolerant
self-implementation of consensus for arbitrary failures.

We begin with a brief discussion of why the design of t-tolerant implementa-
tions of consensus is non-trivial. Achieving consensus among processes, some
of which may fail, is a well-studied problem.4 However, the existing solutions to
this problem are for synchronous message passing systems in which a process can
“wait” to hear from other correct processes. In contrast, we study the consensus
problem for asynchronous shared-memory systems and we seek wait-free solu-
tions. Because of these differences, the problem of t-tolerant implementation of
consensus does not reduce to any previous problem considered in the litera-
ture.

The “State Machine” approach [Lamport 1978; Schneider 1990] of replicating
objects, applying an operation to all objects, and returning the majority response
is not useful in deriving t-tolerant implementations of consensus . For example,
consider the following implementation which uses 2t 1 1 base consensus objects
(O1, O2, . . . , O2t11) to tolerate the crash failure of any t of them. A process p
proposes a value vp to the derived consensus object 2 by proposing vp to each of
O1, O2, . . . , O2t11. At the end of this, p will have obtained the response 0 from,
say, n0 base objects, the response 1 from n1 base objects, and the response '

from 2t 1 1 2 n0 2 n1 base objects. p returns 0 (as the response of 2) if n0 .
n1. Otherwise, it returns 1. Unfortunately, as the following counterexample
demonstrates, this implementation is not t-tolerant for crash. Let t 5 2 and
suppose that processes p and q wish to propose 0 and 1, respectively, to the
derived consensus object 2. Consider the scenario in which events occur in the
following order: p proposes 0 to O1, O2, and O3; O1 and O2 fail by crash; q
proposes 1 to all of O1, O2, . . . , O5; p resumes and proposes 0 to O4 and O5. In
this scenario, p obtains three 0’s (from O1, O2, and O3), and two 1’s (from O4
and O5). Process q obtains two '’s (from O1 and O2), one 0 from O3, and two
1’s (from O4 and O5). By the above implementation, p returns 0 and q returns 1.
Thus, 2 does not satisfy the agreement property.

4 See, for example, Pease et al. [1980], Lamport et al. [1982], Fischer et al. [1986], Coan [1987],
Srikanth and Toueg [1987], Berman et al. [1989], Dolev et al. [1990], and Coan and Welch [1992].
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In the following, we first state the properties of a consensus object and then
present the implementations. We use the properties in proving our implementa-
tions correct.

5.1.1. Properties of consensus

consensus supports two operations, propose 0 and propose 1, and has the
sequential specification given in Figure 1. We will refer to the states S, S0, and
S1 of consensus as the uncommitted, 0-committed, and 1-committed states,
respectively. In this section, we state the properties that a consensus object
satisfies in executions. To state these properties, we need the following defini-
tions. Let 2 be an object of type consensus and let E be an execution of (P1,
P2, . . . , PN; 2).

—Object 2 satisfies integrity in E if and only if every response from 2 in E is
either 0 or 1.

—Object 2 satisfies weak integrity in E if and only if every response from 2 in E
is either 0, 1, or '.

—Object 2 satisfies validity in E if and only if the following holds in E. If there is
a response of v from 2 and v [ {0, 1}, then there is an invocation of propose
v on 2 preceding this response.

—Object 2 satisfies agreement in E if and only if the following holds in E. If 2
returns v1, v2 to two invocations, and v1, v2 [ {0, 1}, then v1 5 v2. (By this
definition, if 2 returns 0 to some processes and ' to all others, it still satisfies
agreement.)

The propositions below follow easily from the sequential specification of
consensus and the definitions of linearizability and omission failures.

PROPOSITION 5.1.1.1. Let 2 be an object of type consensus , initialized to the
uncommitted state. Let E be an execution of (P1, P2, . . . , PN; 2). Object 2 is correct
in E if and only if it is wait-free in E and satisfies integrity, validity, and agreement in
E.

PROPOSITION 5.1.1.2. Let 2 be an object of type consensus , initialized to the
uncommitted state. Let E be an execution of (P1, P2, . . . , PN; 2) in which 2 fails.
Object 2 fails by omission in E if and only if it is wait-free in E and satisfies weak
integrity, validity, and agreement in E.

In the following sections, we present several fault-tolerant implementations of
consensus . In describing these implementations, we write loc :5 Propose (P,
v, 2)5 to denote that process P invokes propose v on 2 and stores the response in
its local variable loc.

Implementing a consensus object 2 initialized to the 0-committed (respective-
ly, 1-committed) state is trivial: Propose (P, v, 2) simply returns 0 (respectively,
1). Thus, the only interesting case is to implement a consensus object initialized
to the uncommitted state. Consequently, throughout this paper, we use the
phrase “( is an implementation of consensus ” to mean “( is an implementa-
tion of (consensus , uncommitted state)”.

5 Throughout this paper, we write Propose (with uppercase “P”) if the operation is on a derived
object, and propose (with lowercase “p”) if it is on a base object.
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5.1.2. Tolerating Crash and Omission Failures. We present a t-tolerant self-
implementation of consensus for omission failures. The resource complexity is
t 1 1 and is therefore optimal. Since omission failures are strictly more severe
than crash, this self-implementation is also correct for crash.

Figure 4 presents a t-tolerant self-implementation of consensus for omission
failures. (In all our algorithms, we use indentation to convey the scope of an if
statement or a for statement.) This implementation uses t 1 1 base objects. A
process p proposes to the derived object 2 by accessing each of O1, O2, . . . ,
Ot11, in that order. At any point in the algorithm, p holds an estimate of the
eventual return value in estimatep. When p proposes its current estimate to a base
object Ok, if Ok returns a non-' response w different from p’s current estimate,
p changes its estimate to w. After accessing all t 1 1 base objects, p returns its
estimate as the response of the derived object 2.

THEOREM 5.1.2.1. Figure 4 presents a t-tolerant self-implementation of con-
sensus for omission failures.6 The resource complexity of the implementation is t 1
1 and is optimal.

PROOF. Let 2 be a derived object of the implementation, and O1, O2, . . . ,
Ot11 be its base objects. Consider an execution E in which at most t base objects
fail by omission, and the remaining objects are correct. We show that 2 is correct
in E.

(1) 2 satisfies validity. An easy induction on k, the variable in Figure 4, shows
that if estimatep equals some value u at any point in E, then there was a prior
invocation (from some process q) of Propose (q, u, 2). The induction will
use Proposition 5.2, and the fact that p does not change estimatep if a base
object returns '.

(2) 2 satisfies agreement. Since at most t base objects fail, there is an Ok (1 #
k # t 1 1) that is correct. So Ok returns the same response w [ {0, 1} to
every process that accesses it. This implies that for all p that access Ok,
estimatep 5 w when p completes the kth iteration of the loop. Since each
base object in Ok11, . . . , Ot11 is either correct or fails by omission in E, by
Propositions 5.1.1.1 and 5.1.1.2, each of these base objects satisfies validity.

6 Recall our convention that, if we do not mention the number of processes for which an
implementation is intended, then the implementation is for N processes, where N is arbitrary.

FIG. 4. t-tolerant self-implementation of consensus for omission.
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From these facts, it is easy to conclude from the implementation that
estimatep never changes value from the (k 1 1)st iteration onwards. Thus, 2
returns the same response w to every p.

(3) 2 satisfies integrity. Obvious.

Since a base object that fails by omission remains wait-free, it is clear that 2 is
wait-free in E. By Proposition 5.1.1.1, 2 is correct in E. It is obvious that the
resource complexity of t 1 1 of our self-implementation is optimal. e

We remark that the above implementation is not gracefully degrading. To see
this, suppose that vp 5 0 and vq 5 1, and all the t 1 1 base objects fail by crash
initially. It is easy to see that 2 returns 0 to p and 1 to q. Thus, 2 does not satisfy
agreement and, by Proposition 5.1.1.2, the failure of 2 is more severe than
omission. However, there is a t-tolerant self-implementation of consensus that
is also gracefully degrading (for omission). This implementation uses 2t 1 1 base
objects. In fact, 2t 1 1 is a lower bound on the resource complexity of any
t-tolerant gracefully degrading implementation of consensus for omission.
(The implementation and the lower bound can be found in Jayanti et al. [1996].)
In contrast to omission, as we will prove later in Section 7, consensus has no
t-tolerant gracefully degrading implementation for crash.

5.1.3. Tolerating Arbitrary Failures. In this section, we present a t-tolerant
self-implementation for arbitrary failures whose resource complexity is O(t log
t). This self-implementation, described in Figure 5, uses the divide-and-conquer
strategy: it implements a t-tolerant consensus object 2 from O1, a (t 2
1)/ 2-tolerant consensus object, O2, a (t 2 1)/ 2-tolerant consensus object,
and 10t 1 3 (0-tolerant) consensus objects—A0[1 . . . 3t 1 1], A1[1 . . . 3t 1
1], and B[1 . . . 4t 1 1]. Since a (base) consensus object that experiences an
arbitrary failure may return nonbinary responses, we always “filter” responses to
force them to be binary: procedure f -propose ( p, v, O) returns propose ( p, v,
O) if it is 0 or 1, and returns 0 otherwise.

Figure 6 illustrates the order in which the base objects of 2 are accessed by a
process proposing 0 on 2 (the access pattern for a process proposing 1 on 2 is
symmetric). Before presenting a formal correctness proof, we provide some
intuition for the implementation.

Consider an execution in which at most t base objects fail by the arbitrary
failure mode. Since O1 is (t 2 1)/ 2-tolerant and O2 is (t 2 1)/ 2-tolerant, at
least one of O1 and O2 is correct. The algorithm is based on this key observation.

The high-level intuition behind the implementation of Propose ( p, vp, 2) is
as follows. Process p proposes vp to O1 and then checks if there is evidence to
believe that O1 has failed. If there is no such evidence, p adopts the value
returned by O1 as the return value of Propose (p, vp, 2). Otherwise, p proposes
to O2 and adopts the value returned by O2 as the return value of Propose ( p,
vp, 2).

Process p uses objects A0[1 . . . 3t 1 1], A1[1 . . . 3t 1 1], and B[1 . . . 4t 1
1] to determine whether O1 has failed. O1 can fail in one of three ways: (i) by
returning a value outside {0, 1}, (ii) by returning a value v [ {0, 1} that was not
proposed by any process, or (iii) by returning 0 to some processes and 1 to other
processes. The first case is overcome by using f -propose as a “filter”. The
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second and third cases are detected with the help of A0[1 . . . 3t 1 1], A1[1 . . .
3t 1 1], and B[1 . . . 4t 1 1].

The failure detection provided by A0[1 . . . 3t 1 1], A1[1 . . . 3t 1 1], and
B[1 . . . 4t 1 1] is not perfect: if O1 fails, some processes may not detect the
failure. (However, it is never the case that, if O1 is correct, some process believes
that O1 is faulty.) Thus, a process p may detect that O1 failed, but a different
process q may not. Then, q decides the value, say v, returned to it by O1. Process
p, on the other hand, proposes to O2 and decides the value returned by O2. To
avoid disagreement between the decisions of p and q, our implementation
ensures that p proposes v (and not v# ) to O2. Since O2 is correct (this follows
from the fact that O1 is faulty), O2 returns v and, thus, p also decides v.

We state below two properties of our algorithm, which are central to under-
standing its correctness.

P1. If O1 is correct and O1 returns 0 to process p, then countp[0] $ 2t 1 1.
(The symmetric property, resulting from replacing 0 by 1, also holds.)

If O1 is correct and O1 returns 0, then some process q proposed 0 to O1
before any process got a response from O1. It follows from our implementa-
tion that (i) process q had proposed 0 to each of A0[1 . . . 3t 1 1] before it
proposed 0 to O1, and (ii) no process proposed 1 to any of A0[1 . . . 3t 1 1]
before q proposed 0 to O1. Thus, when p accesses the objects A0[1 . . . 3t 1

FIG. 5. Efficient t-tolerant self-implementation of consensus for arbitrary failures.

471Fault-Tolerant Wait-Free Shared Objects



1], every correct object in A0[1 . . . 3t 1 1] returns 0. Since at least 2t 1 1 of
the objects in A0[1 . . . 3t 1 1] are correct, we have countp[0] $ 2t 1 1.

P2. If O1 is correct and O1 returns v, then, for all processes p, WitnessCountp[v]
$ 3t 1 1.

If O1 is correct and O1 returns v to some process, then O1 returns v to every
process. By the implementation, every process proposes v to every object in
B[1 . . . 4t 1 1]. Since at least 3t 1 1 of the objects in B[1 . . . 4t 1 1] are
correct, we have WitnessCountp[v] $ 3t 1 1.

Thus, if a process p receives v from O1, countp[v] $ 2t 1 1, and Witness-
Countp[v] $ 3t 1 1, then O1 appears correct to p and, by line 13, p decides v. It
is still possible that some process q, using the above properties, detected O1 to
be faulty. However, since Av[1 . . . 3t 1 1] and B[1 . . . 4t 1 1] are consensus
objects and no more than t of them fail, we have countq[v] $ t 1 1 and
WitnessCountq[v] $ 2t 1 1. Thus, lines 12 through 18 of the implementation
ensure that q proposes v to O2. Since O2 is correct (this follows from the fact
that O1 is faulty), O2 returns v and, thus, q also decides v.

We now provide a more rigorous proof of correctness for the implementation.

THEOREM 5.1.3.1. Figure 5 presents a t-tolerant gracefully degrading self-imple-
mentation of consensus for arbitrary failures of resource complexity O(t log t).

PROOF. Since the implementation is bounded, by Lemma 4.2.1, it is gracefully
degrading for arbitrary failures. We now prove that the implementation is
t-tolerant.

Consider an execution E in which at most t base objects fail by the arbitrary
failure mode, and the remaining are correct. We show below, through a series of
lemmas, that 2 is correct in E; or equivalently (by Proposition 5.1.1.1), that 2

FIG. 6. Execution trace of a process proposing 0 on 2.
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satisfies validity, agreement, and integrity, and is wait-free in E. Proposition
5.1.1.1 is used very often in this proof. For brevity, we omit references to it.

LEMMA 5.1.3.2. If O1 fails in E, then O2 is correct in E.

PROOF. Suppose both O1 and O2 fail in E. Since O1 is derived from a (t 2
1)/ 2-tolerant implementation, at least (t 2 1)/ 2 1 1 base objects of O1 must
fail in E. Similarly, at least (t 2 1)/ 2 1 1 base objects of O2 must fail in E.
Thus, a total of (t 2 1)/ 2 1 (t 2 1)/ 2 1 2 . t base objects of 2 fail in E,
a contradiction to the definition of E. e

LEMMA 5.1.3.3. If O1 is correct in E, 2 satisfies validity and agreement in E.

PROOF. Suppose O1 is correct. Thus, O1 satisfies validity and agreement. By
the agreement property of O1, ans1p 5 ans1q for all p, q. Let v 5 ans1p. Thus,
every process proposes the same value v to every B[i] in Phase 3. Since at most t
objects in B[1 . . . 4t 1 1] fail, beliefp 5 v and WitnessCountp[beliefp] $ 3t 1 1
(for every p).

By the validity property of O1, some process q will have invoked propose (q,
v, O1) before any process gets the response v from O1. This implies that q will
have finished Phase 1 before any process begins Phase 3. Since at least 2t 1 1
objects in Av[1 . . . 3t 1 1] are correct, it follows that, for all p, countp[v] $
2t 1 1 by the end of Phase 4 of p. Thus, we have WitnessCountp[beliefp] $ 3t 1
1 and countp[beliefp] $ 2t 1 1 (for every p). Hence, every p decides v (the
proposal of q) by line 14. e

LEMMA 5.1.3.4. If O1 fails in E, 2 satisfies validity and agreement in E.

PROOF. Suppose O1 fails. Then, by Lemma 5.1.3.2, O2 is correct, and thus
satisfies validity and agreement. We need to consider two cases.

Case 1. Suppose some process p returns by line 14. This implies that
WitnessCountp[beliefp] $ 3t 1 1 and countp[beliefp] $ 2t 1 1. Since at most t
base objects fail, it follows that, for every q, WitnessCountq[beliefp] $ 2t 1 1 and
countq[beliefp] $ t 1 1. By line 12, this implies that beliefq 5 beliefp. Let V 5
beliefp. Since WitnessCountq[beliefq] $ 2t 1 1 and countq[beliefq] $ t 1 1, either
q returns beliefq 5 V by line 14 and we have agreement between p and q, or q
sets v9q to beliefq by line 16, making v9q equal to V. Thus, every q that does not
return by line 14 proposes v9q 5 V on O2. By the validity property of O2, ans2q

5 V, and q returns V by line 19. Again we have agreement between p and q.
To see that 2 satisfies validity, note that countp[beliefp] $ 2t 1 1 implies that

some process proposed beliefp 5 V on at least t 1 1 objects in Abeliefp
[1 . . . 3t 1

1].

Case 2. Suppose no process returns by line 14. Then, every q returns ans2q

by line 19. By the agreement property of O2, for all p, q, we have ans2p 5 ans2q.
Thus, 2 satisfies agreement. In the following, let ans 5 ans2p.

By the validity property of O2, some process p must have proposed ans to O2.
That is v9p 5 ans. In the algorithm, v9p equals either vp or beliefp. If v9p 5 vp, then
clearly 2 satisfies validity. If v9p 5 beliefp Þ vp, then p must have executed line
16. It follows that countp[beliefp] $ t 1 1. Since at most t objects in Abeliefp

[1 . . .
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3t 1 1] fail, some process q proposed vq 5 beliefp on some object in Abeliefp
[1 . . .

3t 1 1]. Thus, process q proposed vq on 2. Thus, 2 satisfies validity. e

LEMMA 5.1.3.5. The resource complexity of the implementation in Figure 5 is
O(t log t).

PROOF. Denoting the resource complexity of the t-tolerant self-implementa-
tion of consensus for arbitrary failures by f(t), we have the following recur-
rence: f(t) 5 2f(t/ 2) 1 2(3t 1 1) 1 (4t 1 1). Furthermore, f(1) 5 15 since
the implementation in Figure 5 requires fifteen consensus objects to build
a 1-tolerant consensus object.7 The lemma follows from solving this recur-
rence. e

It is obvious that 2 satisfies integrity and is wait-free in E. By Lemmas 5.1.3.3
and 5.1.3.4, 2 satisfies validity and agreement in E. Thus, by Proposition 5.1.1.1,
2 is correct in E. This completes the proof of Theorem 5.1.3.1. e

As we will see later, to obtain fault-tolerant implementations of generic types,
it is useful to have a fault-tolerant implementation of consensus with
safe -reset , not just of consensus . Let us first recall the type consensus
with safe -reset . Its sequential specification and its history transformation
function are described in Section 2.7. Intuitively, an object of this type is like a
consensus object, but it also supports the reset operation. Applying reset causes
the object to move to the uncommitted state. Thus, the object can be used for
multiple rounds of consensus by resetting it between rounds. However, the reset
operation is guaranteed to work only if it is executed in “isolation”: that is, if it is
not concurrent with another reset operation or a propose operation. Otherwise
the object may return arbitrary responses.

Figures 5 and 7, with the following modifications, present a t-tolerant grace-
fully degrading self-implementation of consensus with safe -reset . In
Figure 5, assume that objects A0[1 . . . 3t 1 1], A1[1 . . . 3t 1 1], and B[1 . . .
4t 1 1] are no longer just consensus objects, but are consensus-with-safe-reset
objects, initialized to the uncommitted state. Also, assume that O1 and O2 are
(t 2 1)/ 2-tolerant and (t 2 1)/ 2-tolerant consensus-with-safe-reset objects,
initialized to the uncommitted state.

7 See Jayanti [1996] for a 1-tolerant self-implementation of resource complexity 6.

FIG. 7. Reset procedure of the t-tolerant self-implementation of consensus with safe -reset
for arbitrary failures.
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THEOREM 5.1.3.6. Figures 5 and 7 present a t-tolerant gracefully degrading
self-implementation of consensus with safe -reset for arbitrary failures.

PROOF SKETCH. Let E be an execution in which a reset operation on 2 is not
concurrent with any other operation on 2. It is obvious that at the end of an
execution of Reset ( p, 2), all correct objects among O1, O2, A0[1 . . . 3t 1 1],
A1[1 . . . 3t 1 1], and B[1 . . . 4t 1 1] are in the uncommitted state. The
implementation of Propose ( p, vp, 2), as well as its proof of correctness, is the
same as before. e

5.2. FAULT-TOLERANT IMPLEMENTATION OF register . The type n-valued
register supports the operations read and write v (0 # v , n), and has a
simple sequential specification: read returns the last value written. We write
unbounded register for `-valued register , and boolean register for
2-valued register . If a result holds for n-valued register , for all finite n
and for n 5 ` , in stating that result we simply write register without
qualifying it as n-valued . The main result of this section is that register has a
t-tolerant gracefully degrading self-implementation for arbitrary failures.

First, we present a t-tolerant gracefully degrading self-implementation of
1-reader 1 -writer safe register in Figure 8.8 The implementation uses
2t 1 1 base registers. To read the derived register, the reader process Pr reads
all 2t 1 1 base registers and collects their responses in S. It then returns
mode(S), a value that occurs at least as many times in S as any other value. To
write a value v into the derived register, the writer process Pw simply writes v to
all 2t 1 1 base registers.

LEMMA 5.2.1. Figure 8 presents a t-tolerant gracefully degrading self-implemen-
tation of 1-reader 1 -writer safe register for arbitrary failures.

8 Recall that this type has the same sequential specification as register , but has a different history
transformation function, as explained in Section 2.7. Intuitively, if a read operation on an object of
this type overlaps with a write, then that read operation is allowed to return any value [Lamport
1986]. Furthermore, the object’s behavior is unrestricted if either more than one process invokes read
operations or more than one process invokes write operations.

FIG. 8. t-tolerant self-implementation of 1-reader 1 -writer safe register for arbitrary
failures.
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PROOF SKETCH. Since the implementation is bounded, by Lemma 4.2.1, it is
gracefully degrading for arbitrary failures. We now prove that the implementa-
tion is t-tolerant.

Let 5 be a derived register of the implementation, and R1, . . . , R2t11 be its
base registers. Let E be an execution in which at most one process, call it Pr,
reads 5, and at most one process, call it Pw, writes 5. Also, assume that at most
t base registers fail in E and they fail by the arbitrary failure mode. Consider a
read operation r on 5 by Pr that is not concurrent with any write operation on 5
by Pw. Let Apply (Pw, write v , 5) be the latest write operation that precedes r.
It is clear from the implementation that all correct base registers return v during
the operation r. Since there are at least t 1 1 correct base registers, it follows
that Pr receives v from at least t 1 1 base registers, and returns v. Hence, the
correctness of the implementation. e

There are many results presenting bounded implementations of one type of
register from another.9 Some of them (e.g., Lamport [1986], Singh et al. [1987],
and Schaffer [1988]), can be combined to implement a multi-reader, multi-writer,
linearizable register using 1-reader, 1-writer, safe registers. In our terminology,
this means that register has a bounded implementation from 1-reader
1-writer safe register . This implies, by Lemma 4.2.1, that register has
a 0-tolerant gracefully degrading implementation from 1-reader 1 -writer
safe register for arbitrary failures. Using this result and Lemma 5.2.1, and
applying Corollary 4.1.2, we conclude that register has a t-tolerant gracefully
degrading implementation from 1-reader 1 -writer safe register for
arbitrary failures. This trivially implies the following theorem.

THEOREM 5.2.2. register has a t-tolerant gracefully degrading self-imple-
mentation for arbitrary failures.

5.3. FAULT-TOLERANT IMPLEMENTATIONS OF GENERIC TYPES. In this section,
we describe how to obtain fault-tolerant gracefully degrading implementations of
generic types for arbitrary failures. Since arbitrary failures are more severe than
the benign crash and omission failures, these implementations tolerate such
benign failures as well. They are however not gracefully degrading for crash or
omission. We study the feasibility of gracefully degrading implementations for
benign failure modes in Section 7.

The theorems of this section depend on the universality results due to Herlihy
[1991b] and Plotkin [1989]. These results are stated below.

THEOREM 5.3.1 (HERLIHY). For all types T, there is a k such that T has a
(0-tolerant) k-bounded implementation from {consensus with safe -reset ,
unbounded register }.

Herlihy’s universal construction requires unbounded registers even to imple-
ment finite types. Plotkin’s construction, on the other hand, requires only
boolean registers in such a situation [Plotkin 1989]. (Jayanti and Toueg [1992]
achieve the same result as Plotkin, but with a more intuitive construction.)

9 See, for example, Peterson [1983], Lamport [1986], Vitanyi and Awerbuch [1986], Bloom [1987],
Burns Peterson [1987], Newman-Wolfe [1987], Peterson and Burns [1987], Singh et al. [1987],
Schaffer [1988], Vidyasankar [1988; 1989], and Haldar and Vidyasankar [1991].
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THEOREM 5.3.2 (PLOTKIN). For all finite types T, there is a k such that T has a
(0-tolerant) k-bounded implementation from {consensus with safe -reset ,
boolean register }.

From Plotkin’s theorem and Lemma 4.2.1, it follows that every finite type has
a (0-tolerant) gracefully-degrading implementation from {consensus with
safe -reset , boolean register } for arbitrary failures. Using this, together
with Theorems 5.1.3.6, 5.2.2, and Lemma 4.1.1, we obtain:

COROLLARY 5.3.3. Let T be any finite type.

—T has a t-tolerant gracefully degrading implementation from {consensus with
safe -reset , boolean register } for arbitrary failures.

—If each of consensus with safe -reset and boolean register has a
0-tolerant gracefully degrading implementation from T for arbitrary failures, then
T has a t-tolerant gracefully degrading self-implementation for arbitrary failures.

From Theorem 5.3.1 and Lemma 4.2.1, it follows that every type has a
(0-tolerant) gracefully-degrading implementation from {consensus with
safe -reset , unbounded register } for arbitrary failures. Using this, to-
gether with Theorems 5.1.3.6, 5.2.2, and Lemma 4.1.1, we obtain:

COROLLARY 5.3.4. Let T be any type.

—T has a t-tolerant gracefully degrading implementation from {consensus with
safe -reset , unbounded register } for arbitrary failures.

—If each of consensus with safe -reset and unbounded register has a
0-tolerant gracefully degrading implementation from T for arbitrary failures, then
T has a t-tolerant gracefully degrading self-implementation for arbitrary failures.

We now apply the above corollaries to show that several common types have
t-tolerant self-implementations for arbitrary failures. However, to do this, we
have to first show that common types implement both consensus with
safe -reset and register .

It is known that fetch &add , queue , stack , and test &set implement
consensus with safe -reset for two processes, and that compare &swap,
memory-to -memory move (henceforth, move), and memory-to -memory swap
(henceforth, m-m swap) implement consensus with safe -reset for any
number of processes [Herlihy 1991b; Kleinberg and Mullainathan 1993].10 These
are all bounded implementations and, by Lemma 4.2.1, are gracefully degrading
for arbitrary failures.

We claim that compare &swap, move, m-m swap, and test &set implement
1-reader 1 -writer boolean safe register , and that fetch &add ,
queue , and stack implement 1-reader 1 -writer unbounded safe reg-
ister . The implementations claimed above are bounded and are easy to obtain.
We therefore omit their descriptions. (See Jayanti et al. [1996] for an implemen-
tation of 1-reader 1 -writer boolean safe register from test &set .)

10 An object of type move consists of a pair of cells and supports operations with which either cell can
be read or written, or the contents of one cell copied to the other. An object of type m-m swap is
similar, but instead of a move operation, it supports a swap operation that swaps the contents of the
two cells.
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As already mentioned, it is known that register has a bounded implementa-
tion from 1-reader 1 -writer safe register . From these results, we
conclude that boolean register has a bounded implementation from each of
compare &swap, move, m-m swap, and test &set , and that unbounded
register has a bounded implementation from each of fetch &add , queue ,
and stack . By Lemma 4.2.1, these implementations are gracefully degrading for
arbitrary failures.

From the above, we have

COROLLARY 5.3.4. compare &swap, move, and m-m swap have t-tolerant
self-implementations for arbitrary failures.

COROLLARY 5.3.5. queue , stack , test &set , and fetch &add have t-
tolerant self-implementations for arbitrary failures. These implementations are for
two processes.

6. Tolerating Nonresponsive Failures

So far we have considered objects that remain responsive (i.e., wait-free) even if
they fail. Thus, after invoking an operation, a process could afford to wait for a
response before proceeding to invoke the next operation. Consequently, there
has been no need so far for a process to have more than one incomplete
operation at any time. With nonresponsive failures, the situation is different.
Since a failed object may not respond, waiting for a response could block the
process forever. To overcome this difficulty, we allow a process to access base
objects “in parallel”. In other words, a process can have multiple incomplete
operations at any time. However, we still restrict a process to have no more than
one incomplete operation on any particular object.

The ability to access base objects in parallel allows us to build a t-tolerant
implementation of register , even for NR-arbitrary failures. In contrast, we
show that consensus does not have an implementation that can tolerate the
failure of a single base object, even if we assume that the faulty object can only
fail by NR-crash and even if we do not restrict the number or the type of base
objects that can be used in the implementation. Consequently, test &set ,
compare &swap, queue , stack , and several other common types, which can
implement consensus , have no fault-tolerant implementations for any nonre-
sponsive failure mode. However, we show that randomization can be used to
circumvent this impossibility result: Every type has a t-tolerant randomized
implementation from register , even for NR-arbitrary failures. These results
are the subject of this section.

6.1. IMPOSSIBILITY OF FAULT-TOLERANT IMPLEMENTATION OF CONSENSUS. In
this section, we first prove that consensus has no 1-tolerant implementation for
NR-crash. We then define an extremely weak nonresponsive failure mode, called
unfairness to a known process, and prove that consensus has no 1-tolerant
implementation even for this failure mode.

In each case, to prove that a certain implementation ( does not exist, we show
that if ( exists, it would violate the well-known impossibility result due to Loui
and Abu-Amara [1987] and Dolev et al. [1987]. This result is about the consensus
problem for n processes, defined informally as follows. Each process Pi is initially
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given an input vi [ {0, 1}. Each correct process Pi must eventually decide a
value di such that (i) di [ {v1, v2, . . . , vn}, and (ii) for all processes Pi and Pj

that decide, di 5 dj.

THEOREM 6.1.1 (LOUI AND ABU-AMARA, DOLEV, DWORK, AND STOCKMEYER).
The consensus problem for n processes has no solution if processes may communi-
cate only via registers and at most one process may crash.

THEOREM 6.1.2. There is no 1-tolerant implementation of consensus , even for
two processes, for NR-crash.

PROOF. Suppose, for contradiction, there is a finite list + 5 (T1, T2, . . . ,
Tl) of types and a list S 5 (s1, s2, . . . , sl) of states such that there is a
1-tolerant implementation ( of consensus from (+, S), for two processes, for
NR-crash. We will use this implementation to obtain a protocol for the consensus
problem for l 1 2 processes. This protocol will require only registers for
communication between processes and solves the consensus problem even if at
most one process may crash.

Consider the concurrent system S consisting of l 1 2 processes, named { p1,
p2} ø {qj u 1 # j # l}, and 4l 1 1 registers, named {invocation(i, j),
response( j, i) u 1 # i # 2, 1 # j # l} ø {decision}. We claim that the
consensus problem for processes in S is solvable, even if at most one process may
crash and processes communicate exclusively via the registers in S. The following
is the protocol. Let vi [ {0, 1} be the initial input of pi. The basic idea consists
of two steps:

(1) Let O1, O2, . . . , Ol be objects of type T1, T2, . . . , Tl, initialized to states
s1, s2, . . . , sl, respectively. Let 2 5 ((O1, . . . , Ol). Thus, 2 is a consensus
object that can be shared by two processes. Moreover, by definition of (, 2
remains correct even if one of its base objects fails by NR-crash.

(2) In system S, process qj (1 # j # l ) simulates the base object Oj, and
process pi (i 5 1, 2) simulates the execution of Propose ( pi, vi, 2) on the
derived object 2.

The details of the protocol are given below. Here, decision is used as a
multi-writer multi-reader register. All other registers are used as 1-reader
1-writer registers: pi writes invocation(i, j) and qj reads it; qj writes response( j, i)
and pi reads it.

Initialize all 4l 1 1 registers to '. Process pi simulates Propose ( pi, vi, 2) as
follows. If Propose ( pi, vi, 2) requires pi to invoke some operation op on Oj, pi

appends op to the contents of invocation(i, j). (Since pi is the only process that
writes invocation(i, j), appending op to the previous contents can be performed
in one step.) If Propose ( pi, vi, 2) requires pi to check if a response to some
outstanding invocation on Oj has arrived, pi checks if a response has been
appended by qj (which simulates Oj) to response( j, i). If Propose ( pi, vi, 2)
returns a value v, pi first writes v in decision register, and then decides v. In
addition to (and concurrently with) the above, pi periodically checks if the
register decision contains a non-' value. If so, it decides that value.

Process qj simulates the base object Oj as follows. Periodically qj checks the
registers invocation(1, j) and invocation(2, j), in a round-robin fashion. If qj

notices that some operation op has been appended to invocation(i, j), qj
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simulates the application of op to Oj (using the sequential specification of the
type Tj) and appends the corresponding response to response( j, i). In addition to
(and concurrently with) the above, qj periodically checks if the register decision
contains a non-' value. If so, it decides that value.

The above simulation protocol solves the consensus problem among the l 1 2
processes in the concurrent system S, even if one of them crashes. To see this,
consider any execution E of the concurrent system S in which at most one
process crashes. Let E9 be the corresponding “simulated” execution of the
derived object 2. Note that the crash of one process in S corresponds to the
NR-crash of at most one (simulated) base object of the (simulated) derived
object 2 in E9. Since (, the consensus implementation from which 2 is derived,
is 1-tolerant for NR-crash, 2 is correct in E9 (despite the NR-crash of one of its
base objects). Thus, by Proposition 5.1, 2 satisfies integrity, validity, and agree-
ment, and is wait-free in E9. Since 2 is wait-free (in E9), if pi does not crash,
Propose ( pi, vi, 2) eventually returns some value v (in E9). Since 2 satisfies
integrity, v [ {0, 1}. Since 2 satisfies validity, v is either v1 or v2. Since 2
satisfies agreement, Propose ( p1, v1, 2) and Propose ( p2, v2, 2) never return
different values. Thus, from the protocol, p1 and p2 do not write different values
in register decision. Since at most one process crashes, at least one of p1 and p2
will eventually write a binary value v in register decision. Since all correct
processes periodically check the decision register, they eventually decide v.

We showed that we can use ( to solve the consensus problem in system S. This
contradicts Theorem 6.1.1. Thus, ( cannot exist. e

We can strengthen the above result as follows: Suppose that at most one base
object may fail and that it can only do so by being “unfair” (i.e., by not
responding) to at most one process. Furthermore, suppose that the identity of
this process is a priori “common knowledge” among all the processes. Even with
this extremely weak failure mode, called unfairness to a known process, we can
prove the following (the proof can be found in Jayanti et al. [1996]):

THEOREM 6.1.3. There is no 1-tolerant implementation of consensus , even
for two processes, for unfairness to a known process.

From the above two theorems we have:

COROLLARY 6.1.4. If a type T implements consensus for two processes, then
T has no 1-tolerant implementation, for two processes, for NR-crash or for
unfairness to a known process.

As mentioned in Section 5.3, consensus has an implementation, for two
processes, from each of the following types: compare &swap, fetch &add ,
move, queue , stack , sticky -bit , m-m swap, and test &set . Thus, we
have:

COROLLARY 6.1.5. None of the following types has a 1-tolerant implementation,
for two processes, for NR-crash or for unfairness to a known process:
compare &swap, fetch &add , move, queue , stack , sticky -bit , m-m
swap, and test &set .
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6.2. FAULT-TOLERANT IMPLEMENTATION OF register . In contrast to the
above impossibility results, we show in this section that register has a
t-tolerant self-implementation even for NR-arbitrary failures.

First, we present a t-tolerant self-implementation of 1-reader 1 -writer
safe register in Figure 9. The implementation uses 5t 1 1 base registers. To
read the derived register, the reader process Pr invokes read on each base
register (Pr delays this read if its previous read on the base register is still
incomplete). When Pr gets responses from 4t 1 1 base registers, which are
collected in the multi-set Responses, it returns mode(Responses). (Recall that
mode(S) is a value that occurs at least as many times in S as any other value.) To
write a value v into the derived register, the writer process Pw invokes write v on
each base register (again, the writer delays invoking this write if its previous write
on the base register is still incomplete). The writing of the derived register
completes when the writer receives the response ack from 4t 1 1 base registers.

In the implementation, the reader and the writer maintain three sets each in
their local memory. Pending is the set of base registers on which the process has
incomplete operations. Invoked is the set of base registers on which the process
has already invoked operations in the current execution of the operation on the
derived object. Responses is the set of responses, from base registers, to the

FIG. 9. t-tolerant self-implementation of 1-reader 1 -writer safe register for NR-arbitrary
failures.
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invocations made during the current execution of the operation on the derived
object.

LEMMA 6.2.1. Figure 9 presents a t-tolerant self-implementation of 1-reader
1-writer safe register for NR-arbitrary failures.

PROOF SKETCH. Let 5 be a derived register of the implementation, and
R1, . . . , R5t11 be its base registers. Let E be an execution in which at most one
process Pr reads 5, and at most one process Pw writes 5. Also, assume that at
most t base registers fail in E and that they fail by the NR-arbitrary mode.
Consider a completed read operation r on 5 by Pr that is not concurrent with
any write operation on 5 by Pw. Let Apply (Pw, write v , 5) be the latest write
operation that precedes r. We will refer to this operation as w. From the
implementation, it is clear that, of the base registers on which write v was
invoked during w, 4t 1 1 base registers responded. Let Sw denote the set of
these 4t 1 1 base registers. Similarly, it is clear that, of the base registers on
which read was invoked during r, 4t 1 1 base registers responded. Let Sr denote
the set of these 4t 1 1 base registers. Let S 5 Sr ù Sw. Clearly, uS u $ 3t 1 1.
Since we assumed that at most t base registers fail in E, there are at least 2t 1 1
correct base registers in S. From the implementation, it is clear that each correct
base register in S responds with v to the invocation of read by Pr during r. Thus,
at the end of r, v occurs at least 2t 1 1 times in the multi-set Responsesr. This
implies that r returns v. Hence, the correctness of the implementation. e

As mentioned in Section 5.2, it is known that register has an implementa-
tion from 1-reader 1 -writer safe register . Using this result and Lemma
6.2.1, and applying Corollary 4.1.2,11 we conclude that register has a t-tolerant
implementation from 1-reader 1 -writer safe register for NR-arbitrary
failures. This implies the following theorem.

THEOREM 6.2.2. register has a t-tolerant self-implementation for NR-
arbitrary failures.

6.3. RANDOMIZED FAULT-TOLERANT IMPLEMENTATIONS OF GENERIC TYPES.
So far, we assumed that processes are deterministic. Suppose instead that
processes have access to “fair coins”. A process can toss a coin and, based on the
outcome of the toss, choose its step. Furthermore, let us informally define a
randomized implementation as an implementation in which every correct process
completes its operation on the derived object in a finite expected number of
operations on the base objects. Interestingly, every type has a randomized
implementation from register [Herlihy 1991a], but most types have no
(deterministic) implementations from register [Herlihy 1991b]. In the follow-
ing, we present a generalization of the former result.

consensus with safe -reset has a randomized implementation from
register [Aspnes 1990]. Together with Theorem 6.2.2, this implies that
consensus with safe -reset has a t-tolerant randomized implementation
from register for NR-arbitrary failures. Combining this with Theorem 6.2.2,
and Theorems 5.5 and 5.6 of Herlihy and Plotkin, we have

11 Observe that every implementation is automatically gracefully degrading for NR-arbitrary failures.
Thus, we are able to apply Corollary 4.1.2.
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THEOREM 6.3.1. Every finite type has a t-tolerant randomized implementation
from boolean register for NR-arbitrary failures. Every infinite type has a
t-tolerant randomized implementation from unbounded register for NR-
arbitrary failures.

Thus, if a finite (respectively, infinite) type T implements boolean regis-
ter (respectively, unbounded register ), then T has a t-tolerant randomized
self-implementation for NR-arbitrary failures. As mentioned in Section 5.3, each
of test &set , compare &swap, move, and m-m swap implements boolean
register , and each of fetch &add , queue , and stack implements un-
bounded register . Thus, each of the above types has a t-tolerant randomized
self-implementation even for NR-arbitrary failures.

7. Graceful Degradation for Benign Failure Modes

Graceful degradation is a desirable property of implementations: it ensures that
an implemented object never fails more severely than any of its components.
Furthermore, if fault-tolerant implementations are gracefully degrading, then
they can be composed (Lemma 4.1.1) and their degree of fault-tolerance can be
automatically boosted (Corollary 4.1.4). In this section, we investigate the
feasibility of achieving graceful degradation for the benign crash and omission
failure modes. We identify a class of “order sensitive” types that includes many
common types such as queue , stack , test &set , and compare &swap, and
prove that no type in this class has a fault-tolerant gracefully degrading imple-
mentation for crash. In contrast, we show that graceful degradation for omission
is achievable in a strong sense: For omission, every type has a t-tolerant
gracefully degrading implementation from every universal set of types. (A set S
of types is universal if every type has an implementation from S.) Thus, the
message of this section is that gracefully degrading implementations are feasible
for omission failures, but not for crash failures.

7.1. GRACEFUL DEGRADATION FOR CRASH. In this section, we identify a class
of “order-sensitive” types and present two negative results with respect to
achieving gracefully degrading implementations of these types for crash.

A type T 5 (OP, RES, G, t) is order-sensitive if it is deterministic, t is the
identity function, and there is a state s with the following property. There exist
operations op, op9 (not necessarily distinct) in OP and values u, v, u9, v9 in RES
such that each of (op, u), (op9, u9) and (op9, v9), (op, v) is legal from state s of
T, and u Þ v and u9 Þ v9. Intuitively, when an object 2 of type T is in the state
s, and two processes p and q invoke operations op and op9, respectively,
concurrently on 2, they can both determine, based on the return values, the
order in which their operations are linearized. It is easy to see that every
order-sensitive type implements consensus for two processes.

queue is an example of an order-sensitive type. To see this, let s be the state
in which there are two elements 5 and 10 in the queue (5 at the front), and let
both op and op9 be deq. Now we have u 5 5, u9 5 10, v9 5 5, and v 5 10.
Thus, u Þ v and u9 Þ v9, as required. compare &swap, consensus , stack ,
and test &set are some other examples of order-sensitive types.

A type is non-order-sensitive if it is deterministic and is not order-sensitive.
Examples of non-order-sensitive types include register , sticky -bit , move,
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and m-m swap. Thus, while every order-sensitive type implements consensus
for two processes, not every type that implements consensus for two processes
is order-sensitive. In other words, the set of order-sensitive types is a proper
subset of the set of types that implement consensus for two processes.
Hereafter, we will refer to the latter set as CONS2.

We now present two theorems for crash and discuss their implications before
the proofs.

THEOREM 7.1.1. Let T be any order-sensitive type and 6 be any set of non-
order-sensitive types. T has no gracefully degrading implementation from 6 for crash.

This negative result is significant in two ways. First, it holds even though we
are not requiring the implementation to be fault-tolerant. Second, the set of
non-order-sensitive types includes some universal types, such as sticky -bit ,
move, and m-m swap. The result holds despite the inclusion of such powerful
types in 6.

Requiring a derived object to inherit the crash failure semantics of its base
objects is even more difficult if we add the requirement that the derived object
be 1-tolerant: even if we do not restrict the types of primitives available in the
underlying system, such implementations do not exist for many objects of
interest. This is the substance of the next theorem.

THEOREM 7.1.2. There is no 1-tolerant gracefully degrading implementation of
any order-sensitive type for crash.

The above two theorems raise serious concerns about the “practicality” of the
crash mode: even if “hardware” objects are designed to fail only by crash,
“software” objects usually don’t. The omission mode does not have this severe
limitation. In fact, we show in the next subsection that, for any t $ 0, every type
has a t-tolerant gracefully degrading implementation from every universal set of
types for omission. In other words, implementations preserving the omission
failure semantics of the underlying system always exist. This is a formal justifica-
tion for adopting the omission failure mode.

We remark that there are no obvious ways to strengthen Theorem 7.1.2. For
instance, consider the statement “There is no 1-tolerant gracefully degrading
implementation of any type in CONS2 for crash”.12 This statement is false. In
fact, even the weaker version “There is no 1-tolerant gracefully degrading
implementation of any type in CONS2 from any set of non-order-sensitive types
for crash” does not hold: We can show that sticky -bit has a t-tolerant
gracefully degrading implementation from {sticky -bit , register } for crash.

Since sticky -bit belongs to CONS2, and both sticky -bit and register
are non-order-sensitive, such an implementation is a counter-example to the
above statement. The details of this implementation are long and tedious, and
are therefore omitted.

We now prove Theorem 7.1.1. The proof of Theorem 7.1.2 is similar and can
be found in Jayanti et al. [1996].

12 This statement is stronger than Theorem 7.1.2 since, as remarked earlier, the set of order-sensitive
types is a proper subset of CONS2.
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PROOF OF THEOREM 7.1.1. Suppose that the theorem is false. Then, there is
an order-sensitive type T which has a gracefully degrading implementation from
some set of non-order-sensitive types for crash. For type T, let op, op9, s, u, v,
u9, v9 be as in the definition of an order-sensitive type. It follows that there is a
list + 5 (T1, T2, . . . , Tn) of nonorder-sensitive types and a list S 5 (s1,
s2, . . . , sn) of states (si is a state of Ti) such that (T, s) has a gracefully
degrading implementation ( from (+, S) for crash. We arrive at a contradiction
after a series of lemmas involving bivalency arguments [Fischer et al. 1985] and
indistinguishable scenarios.

Let 2 5 ((O1, O2, . . . , On), where O1, O2, . . . , On are objects of type T1,
T2, . . . , Tn, initialized to states s1, s2, . . . , sn, respectively. Thus, 2 is a
(derived) object of type T, initialized to state s. Consider the concurrent system
consisting of processes p, q and the object 2. In the following, we will refer to a
state of the concurrent system as a configuration. Let C0 denote a configuration
in which 2 is in state s and processes p, q are about to execute Apply ( p, op, 2)
and Apply (q, op9, 2), respectively.

LEMMA 7.1.3. Suppose all base objects are correct. For any interleaving of the
steps in the complete executions of Apply ( p, op, 2) and Apply (q, op9, 2), either
Apply ( p, op, 2) returns u and Apply (q, op9, 2) returns u9, or Apply ( p, op, 2)
returns v and Apply (q, op9, 2) returns v9.

PROOF. In the linearization of the history of object 2, either Apply ( p, op, 2)
immediately precedes Apply (q, op9, 2), or Apply (q, op9, 2) immediately
precedes Apply ( p, op, 2). This, together with the definitions of u, u9, v, v9, and
the fact that T is a deterministic type, implies the lemma. e

Let C denote a configuration reached from C0 after some interleaving of
(partial) executions of Apply ( p, op, 2) and Apply (q, op9, 2). We say C is
X-valent if, in the absence of base object failures, Apply ( p, op, 2) returns X, no
matter how the steps of Apply ( p, op, 2) and Apply (q, op9, 2) interleave when
execution resumes from C. By Lemma 7.1.3, if C is X-valent, either X 5 u or
X 5 v. C is monovalent if C is either u-valent or v-valent. C is bivalent if it is
neither u-valent nor v-valent.

LEMMA 7.1.4. C0 is bivalent.

PROOF. Starting from C0, if p completes all the steps of Apply ( p, op, 2)
before q starts Apply (q, op9, 2), then Apply ( p, op, 2) returns u. Thus, C0 is
not v-valent.

Similarly, starting from C0, if q completes all the steps of Apply (q, op9, 2)
before p starts Apply ( p, op, 2), then Apply (q, op9, 2) returns v9. Thus, by
Lemma 7.1.3, when Apply ( p, op, 2) completes, it returns v. Thus, C0 is not
u-valent.

Since C0 is neither u-valent nor v-valent, it is bivalent. e

We say C9 is a reachable configuration from C if, starting from the configura-
tion C, there is some interleaving of the steps of p and q such that C9 is the
configuration at the end of that interleaving. Given a configuration C, let C( p)
denote the configuration that results when p takes a single step of Apply ( p, op,
2) from C. C(q) is similarly defined.
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LEMMA 7.1.5. There is a bivalent configuration Ccrit reachable from C0 such
that Ccrit( p) and Ccrit(q) are both monovalent.

PROOF. Interleave the steps of Apply ( p, op, 2) and Apply (q, op9, 2) as
shown in Figure 10. Since 2 is wait-free, the repeat . . . until loop in the figure
must terminate after a finite number of iterations. Let Ccrit be the value of C just
when the loop terminates. It is easy to verify that Ccrit satisfies the properties
required by the lemma. e

Since Ccrit is bivalent, Ccrit( p) and Ccrit(q) cannot both be X-valent for the
same X. Thus, either Ccrit( p) is u-valent and Ccrit(q) is v-valent, or Ccrit( p) is
v-valent and Ccrit(q) is u-valent. Without loss of generality, we will assume the
former.

LEMMA 7.1.6. The enabled steps of p and q in Ccrit access the same base object.

PROOF. Suppose not. Then (Ccrit( p))(q) and (Ccrit(q))( p) are identical
configurations, and yet, the former is u-valent and the latter v-valent. This is
impossible since u Þ v. e

Assume that Ok is the base object mentioned in the above lemma, and
Apply ( p, oper, Ok), Apply (q, oper9, Ok) are the enabled steps of p and q
respectively in Ccrit. Since Ok is an object of a non-order-sensitive type, either
Apply (q, oper9, Ok) returns the same value whether applied in Ccrit or Ccrit( p),
or Apply ( p, oper, Ok) returns the same value whether applied in Ccrit or
Ccrit(q). In the following, we will deal with the former case. The latter case can
be handled similarly and is omitted.

LEMMA 7.1.7. Consider

Scenario S1 (Starts from the configuration Ccrit)

(1) Process q takes the step Apply (q, oper9, Ok).
(2) Process p completes the execution of Apply ( p, op, 2).
(3) All base objects O1, O2, . . . , On fail by crash.
(4) Process q resumes and completes the execution of Apply (q, op9, 2).

Then Apply ( p, op, 2) returns v and Apply (q, op9, 2) returns v9.

PROOF. Since q takes the step from Ccrit, and Ccrit(q) is v-valent, and no base
object failures occur before p completes the execution of Apply ( p, op, 2) in
Item 2, Apply ( p, op, 2) returns v in Item (2) of the scenario.

Suppose Apply (q, op9, 2) returns '. Since ( is gracefully degrading, 2 must
either be correct or fail by crash. Given that Apply ( p, op, 2) returns a non-'

FIG. 10. Reaching a critical bivalent configuration.
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response, this requires that Apply ( p, op, 2) precedes Apply (q, op9, 2) in the
linearization order. Doing so, however, implies that (op, v) is legal from state s
of T. This is false since (op, u) is the only sequence legal from state s of T, and
v Þ u. Thus Apply (q, op9, 2) cannot return '.

Suppose Apply (q, op9, 2) returns w, where ' Þ w Þ v9. Since in the
linearization, either Apply ( p, op, 2) precedes Apply (q, op9, 2), or Apply (q,
op9, 2) precedes Apply ( p, op, 2), it follows that either (op, v), (op9, w) or (op9,
w), (op, v) is legal from state s of T. This is false since (op, u), (op9, u9) and
(op9, v9), (op, v) are the only sequences legal from state s of T, and u Þ v, w Þ
v9 Þ v.

We conclude that Apply (q, op9, 2) must return v9. e

LEMMA 7.1.8. Consider

Scenario S2 (Starts from the configuration Ccrit)

(1) Process p takes the step Apply(p, oper , O k).

(2) Process q takes the step Apply (q, oper9, Ok).
(3) Process p resumes and completes the execution of Apply ( p, op, 2).
(4) All base objects O1, O2, . . . , On fail by crash.
(5) Process q resumes and completes the execution of Apply (q, op9, 2).

Then Apply ( p, op, 2) returns u and Apply (q, op9, 2) returns v9.

PROOF. Since p takes the step from Ccrit, Ccrit( p) is u-valent, and no base
object failures occur before p completes the execution of Apply ( p, op, 2) in
Item 3, Apply ( p, op, 2) returns u in Item (3) of the scenario. Since Scenario
S2 is indistinquishable to q from Scenario S1, Apply (q, op9, 2) returns v9 as in
S1. e

Neither (op, u), (op9, v9) nor (op9, v9), (op, u) is legal from state s of T.
Hence, the execution in Lemma 7.1.8 is not linearizable. Thus, the failure of 2 in
S2 is not by crash. We conclude that ( is not a gracefully degrading implemen-
tation for crash, a contradiction. This concludes the proof of Theorem 7.1.1. e

7.2. GRACEFUL DEGRADATION FOR OMISSION. We now study the feasibility of
achieving gracefully degrading implementations for omission. A set 6 of types is
universal if every type has an implementation from 6. An example of such a set is
{consensus with safe -reset , register } [Herlihy 1991b]. The main result
of this section is the graceful degradation theorem for omission, stated as follows:
Every type has a t-tolerant gracefully degrading implementation from every
universal set of types for omission. We prove this result through three key
lemmas. Below, we list these lemmas and explain how they are used in proving
the main result.

—Lemma 7.2.1.1. Every 0-tolerant implementation can be transformed into a
0-tolerant implementation that is gracefully degrading for omission.

—Lemma 7.2.2.4. register has a t-tolerant gracefully degrading self-implemen-
tation for omission.

—Lemma 7.2.3.3. consensus with safe -reset has a t-tolerant gracefully
degrading implementation from {consensus with safe -reset , regis-
ter } for omission.
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The steps involved in obtaining the graceful degradation theorem for omission
are as follows (in the steps below, the failure mode is implicitly assumed to be
omission):

Step (1) Every type has a 0-tolerant implementation from {register , consen-
sus with safe -reset }. (This follows from Herlihy’s universality
result [Herlihy 1991b].)

Step (2) Every type has a 0-tolerant gracefully degrading implementation from
{register , consensus with safe -reset }. (This follows from Step
(1) and Lemma 7.2.1.1.)

Step (3) register has a t-tolerant gracefully degrading self-implementation.
(This is Lemma 7.2.2.4.)

Step (4) consensus with safe -reset has a t-tolerant gracefully degrading
implementation from {register , consensus with safe -reset }.
(This is Lemma 7.2.3.3.)

From Steps (2), (3), and (4), and Corollary 4.1.2, we conclude that every type has
a t-tolerant gracefully degrading implementation from {register , consensus
with safe -reset } for omission. From this conclusion, Steps (5) and (6) below,
and the compositional lemma (Lemma 4.1.1), we have the main theorem: Every
type has a t-tolerant gracefully degrading implementation from every universal
list of types for omission.

Step (5) register has a 0-tolerant gracefully degrading implementation from
any universal set of types.
By definition of a universal set of types, register has a 0-tolerant
implementation from such a set. This, together with Lemma 7.2.1.1,
implies Step (5).

Step (6) consensus with safe -reset has a 0-tolerant gracefully degrading
implementation from any universal set of types.
The reasoning is the same as for Step (5).

We now prove the three lemmas mentioned above.

7.2.1. A Transformation to Realize Graceful Degradation. We present a trans-
formation & such that if ( is any 0-tolerant implementation, then &(() is a
0-tolerant implementation which is gracefully degrading for omission. For all
implementations (, &(() is obtained as follows. Let 2 be a derived object of
&((). A process P applies an operation op on 2 as in the implementation (.
However, as P executes the procedure to apply op on 2, if some base object of 2
returns ' to P, P immediately terminates its operation on 2 and returns ' as the
response of 2 to op.

LEMMA 7.2.1.1. Let T be a type, s be a state of T, and ( be a 0-tolerant
implementation of (T, s) from (+, S), for processes P1, . . . , PN. Then, &(() is a
0-tolerant gracefully degrading implementation of (T, s) from (+, S), for processes
P1, . . . , PN, for omission.

PROOF SKETCH. In the absence of base object failures, it is obvious that a
derived object of &(() behaves identically as a derived object of (. Since ( is a
0-tolerant implementation of (T, s), it follows that &(() is also a 0-tolerant
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implementation of (T, s). We now show that &(() is gracefully degrading for
omission. In the following, let T 5 (OP, RES, G, t).

Let 2 be a derived object of &((). Let E be an execution of (P1, . . . , PN; 2)
in which (i) one or more base objects of 2 fail, (ii) each base object that fails,
fails by omission, and (iii) if a process gets the response ' from 2, that process
does not subsequently invoke an operation on 2. We claim that if 2 fails in E, it
fails by omission. This claim implies that &(() is gracefully degrading for
omission. To prove the claim, we must show that all three properties stated in the
definition of omission hold for 2 in the execution E. Property (2), that every
response of 2 is from RES ø {'}, is obvious. We verify Properties 1 and 3
below.

Let H(E) denote the history in execution E. Let Hproc 5 H(E) u{P1, . . . ,
PN}, the subsequence of H(E) consisting of the events of processes. Thus, Hproc

contains the internal events of processes, invocations of processes on 2 and on
the base objects of 2, and the responses from 2 and from the base objects of 2.13

Construct a sequence H9proc from Hproc as follows: for all response events e which
correspond to a base object O returning ' to a process P, replace e with
Crash(P) and remove all events of P following e. Intuitively, by transforming
Hproc to H9proc, we “shift the blame” from the base object O, by stopping O from
returning ' to P, to the process P, by crashing P after P’s invocation on O. We
claim that there exists an execution E9 of (P1, . . . , PN; 2) such that H9proc 5
H(E9) u{P1, . . . , PN}. (We leave the proof of this claim to the reader.)

We make two claims below which, together, imply that each base object of 2 is
correct in the execution E9. The justification of each claim follows its statement.
We write H(E, O) to denote the subsequence of events in E, consisting of only
invocations on O and responses from O.

—Each base object O is well behaved in E9. We assumed earlier that either O is
correct in E or O fails by omission in E. Suppose that O is correct in E. Then,
from the definition of E9, H(E, O) 5 H(E9, O). Thus, O is correct also in
E9. In particular, O is well behaved in E9.

Suppose that O fails by omission in E. Let H9(E, O) be the history obtained
by removing response events associated with the aborted operations in H(E,
O). By Property 3 of omission, t(H9(E, O)) is linearizable with respect to (T9,
s9), where T9 is the type of O and s9 is the state of T9 to which O was
initialized. From the definition of E9, observe that H(E9, O) 5 H9(E, O). It
follows that t(H(E9, O)) is also linearizable with respect to (T9, s9). That is,
O is well behaved in E9.

—Each base object O is wait-free in E9. We assumed earlier that either O is
correct in E or O fails by omission in E. Suppose that O is correct in E. Then,
from the definition of E9, H(E, O) 5 H(E9, O). Thus, O is correct also in
E9. In particular, O is wait-free in E9.

13 Recall that 2 5 (F1, . . . , FN; O1, . . . , OM) where F1, . . . , FN are the front-ends and O1, . . . ,
OM are the base objects of 2. Thus, strictly speaking, if Hproc 5 HEu{P1, . . . , PN}, Hproc does not
contain invocations on Oi’s or responses from Oi’s. However, in this proof sketch, we will refer to the
events of Fi as the events of Pi. Thus, Hproc contains the events of Pi’s and also the events of Fi’s.

489Fault-Tolerant Wait-Free Shared Objects



Suppose that O fails by omission in E. By Property 1 of omission, O is
wait-free in E. From the definition of E9, observe that if O responds to an
invocation by a process P in E, but does not respond to the corresponding
invocation by process P in E9, then P is crashed in E9. From the above, we
conclude that O is wait-free in E9.

Thus, all base objects are correct in E9. It follows that 2 is correct in E9. In
particular, 2 is wait-free and well behaved in E9.

We now argue that 2 is wait-free in E. Assume, for a contradiction, that it is
not. Then, E is infinite and there is a process P such that P is correct in E and P
has an incomplete operation on 2 in E. We claim that, in E, P did not receive
the response ' from any base object of 2. Because, if it did, P would return ' as
the response of 2 and would not subsequently invoke an operation on 2; thus, P
would have no incomplete operation on 2 in E, a contradiction. Thus, in E, P is
correct, P never receives ' from any base object of 2, and P has an incomplete
operation on 2. From this and the definition of E9, P is correct in E9 and P has
an incomplete operation on 2 in E9. Furthermore, since E is infinite, so is E9.
The above two facts imply that 2 is not wait-free in E9. This contradicts the
conclusion reached in the previous paragraph. Thus, 2 is wait-free in E and,
consequently, Property 1 of omission holds for 2 in E.

Let H9(E, 2) be the history obtained by removing response events associated
with the aborted operations in H(E, 2). From the definition of E9, observe that
H(E9, 2) 5 H9 (E, 2). We already concluded that 2 is well-behaved in E9; that
is, t(H(E9, 2)) is linearizable with respect to (T, s). It follows that t(H9(E, 2))
is also linearizable with respect to (T, s). The latter implies that Property 3 of
omission holds for 2 in E. This completes the proof of the lemma. e

7.2.2. Graceful Degradation for register . We show that register has a
t-tolerant gracefully degrading self-implementation for omission. The following
are the steps involved:

S1. We present a 1-tolerant gracefully degrading self-implementation of
1-reader 1 -writer safe register .

S2. As mentioned before, it is known that there is a 0-tolerant implementation
of register from 1-reader 1 -writer safe register . It follows from
Lemma 7.2.1.1 that there is a 0-tolerant gracefully degrading implementation
of register from 1-reader 1 -writer safe register .

S3. Combining the results in Steps S1 and S2 with Corollary 4.1.2, we obtain a
1-tolerant gracefully degrading self-implementation of register . By
Booster Lemma, this can be turned into a t-tolerant gracefully degrading
self-implementation of register .

Figure 11 presents a 1-tolerant gracefully degrading self-implementation of
1-reader 1 -writer safe register . The implementation uses four base
registers. The reader process Pr maintains a local variable FAILEDr to remember
the faulty base registers it has so far encountered. The writer process Pw similarly
maintains FAILEDw. To read the derived register, Pr reads each base register
that has so far not appeared faulty to it. It adds base registers that return ' to
the set FAILEDr and collects the responses from other base registers in the
multi-set ValuesRead. If, at the end, Pr has detected two or more base registers to
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be faulty, it returns '. Otherwise it returns mode(ValuesRead), a value that
occurs at least as many times in ValuesRead as any other value. To write a value
v in the derived register, the writer process Pw writes v in each base register that
has so far not appeared faulty to it. Like Pr, Pw also adds base registers that
return ' to the set FAILEDw. If, at the end, Pw has detected two or more base
registers to be faulty, it returns '. Otherwise it returns ack.

We now prove that the implementation is correct. Consider the concurrent
system 6 5 (Pr, Pw; 5), where 5 is a derived object of the implementation. Let
R1, R2, R3, and R4 be the base objects of 5. We present two lemmas below. The
first proves that it is a gracefully degrading implementation of 1-reader
1-writer safe register , and the second proves that it is 1-tolerant.

LEMMA 7.2.2.1. Let E be any execution of 6 that satisfies the following:

A1. Pr invokes only Read operations on 5 and Pw invokes only Write operations
on 5.

A2. If a process (Pr or Pw) gets the response ' from 5, it does not subsequently
invoke an operation on 5.

A3. If a base object of 5 fails, it fails by omission.

Then, if 5 fails in E, it fails by omission.

PROOF. To prove the lemma, it suffices to show that 5 satisfies Properties 1,
2, and 3 of omission in E. By A3, each base object of 5 either fails by omission or
is correct in E. It follows that each base object is wait-free in E. From this and
the implementation, it is easy to see that 5 is wait-free in E. Thus, 5 satisfies
Property 1 of omission in E. Property 2 of omission, that every response from 5
is either ' or from RES, is obvious. Below, we verify that 5 satisfies Property 3
of omission in E.

FIG. 11. 1-tolerant gracefully degrading self-implementation of 1-reader 1-writer safe
register for omission

491Fault-Tolerant Wait-Free Shared Objects



Let H be the history of 5 in E. Let H9 be obtained by removing response
events in H that return '. (As a result, a read operation r and a write operation
w, which are not concurrent in H, may become concurrent in H9. This will
happen if w returned ' and w preceded r in H.) To verify that 5 satisfies
Property 3 of omission in E, it suffices to show that, in the history H9, every
complete read operation, which is not concurrent with a write operation, returns
the most recent value written.

Let r be any complete read operation in H9 that is not concurrent with a write
operation in H9. Let V be the response returned by r. Let Apply (Pw, write V9,
5), denoted by w, be the latest write operation in H9 that precedes r. By
construction of H9 and the fact that r and w are complete operations in H9, we
have (i) V Þ ' and (ii) w returned ack (as opposed to '). Let Fr be the value of
FAILEDr at the end of the read operation r in E. Since r returned V Þ ', it
follows from the implementation that uFru # 1. Let Fw be the value of FAILEDw

at the end of w. Since w returned ack, it follows from the implementation that
uFwu # 1. Let S 5 {R1, R2, R3, R4} 2 (Fr ø Fw). The above implies that either
uS u . 2 or Fr 5 1 and uS u 5 2. Also, when the reader Pr reads a register R [ S
during the execution of r, it is obvious that R returns V9. Therefore, at the end of
r, either V9 occurs at least three times in ValuesRead, or V9 occurs exactly twice
in ValuesRead and Fr 5 1. In either case, at the end of r, mode(ValuesRead) 5
V9. Hence, r returns V9. We conclude that V 5 V9. In other words, every
complete read operation in H9, which is not concurrent with a write operation in
H9, returns the most recent value written. This verifies that 5 satisfies Property
3 of omission in E. Hence, the lemma. e

LEMMA 7.2.2.2. Let E be any execution of 6 which satisfies conditions A1, A2,
and A3 listed in the previous lemma. Additionally, assume that at most one base
object of 5 fails in E. Then, 5 is correct in E.

PROOF. We have to show that 5 is well-behaved and wait-free in E. Consider
any complete read operation r in E that is not concurrent with a write operation.
Let Apply (Pw, write V , 5) be the latest write operation in E that precedes r.
Since at most one base object fails, it is obvious that Pr reads V from at least
three base registers during the execution of r. Hence the value returned by the
read operation r is V. This implies that 5 is well behaved in E.

Each base register Ri either fails by omission or is correct in E. In either case,
Ri is wait-free in E. From this and the implementation, it is obvious that 5 is
wait-free in E. e

LEMMA 7.2.2.3. Figure 11 presents a 1-tolerant gracefully degrading self-imple-
mentation of 1-reader 1 -writer safe register for omission.

PROOF. Immediate from Lemmas 7.2.2.1 and 7.2.2.3. e

By the reasoning presented in Steps S1, S2, and S3 earlier, we have:

LEMMA 7.2.2.4. register has a t-tolerant gracefully degrading self-implemen-
tation for omission.

7.2.3. Graceful Degradation for consensus with safe -reset . We present
a t-tolerant gracefully degrading implementation of consensus with safe -
reset from {consensus with safe -reset , register } for omission. We
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begin by stating two propositions that characterize the type consensus with
safe -reset . These propositions will be useful when we prove the correctness of
our implementation. For ease of stating the propositions, we need some defini-
tions.

In the following, let 2 be an object of type consensus with safe -reset ,
initialized to the uncommitted state. Let E be an execution of (P1, P2, . . . , PN;
2). As just mentioned, if a reset overlaps with any other operation, including
another reset operation, 2 can behave in an unrestricted manner, though still
responsive. This leads us to define f(E) to be the maximal prefix of E in which
a reset operation is not concurrent with any other operation.

—Object 2 satisfies integrity in E if and only if every response from 2 to a
propose operation in f(E) is either 0 or 1, and every response from 2 to a
reset operation in f(E) is ack.

—Object 2 satisfies weak integrity in E if and only if every response from 2 to a
propose operation in f(E) is either 0, 1, or ', and every response from 2 to a
reset operation in f(E) is either ack or '.

An epoch of 2 in E is any of the following: (i) a subsequence of f(E)
beginning with the event immediately following the response of a reset operation
to the event immediately preceding the invocation of the next reset operation, or
(ii) the prefix of f(E) up to the event immediately preceding the first invocation
of reset, or (iii) the suffix of f(E) ranging from the event immediately following
the response of the last reset in f(E). Notice that there may be several epochs of
2 in E. An epoch is clean if every operation (reset or propose) that precedes the
epoch returns a non-' response. Thus, all operations which complete before the
start of a clean epoch return non-' responses. Notice that if 2 satisfies integrity
in E, then every epoch of 2 in E is clean.

—Object 2 satisfies epoch-validity in E if and only if the following holds. If 2
returns a response v to a propose operation in some clean epoch and v [ {0,
1}, then there is an invocation of propose v on 2, in the same epoch,
preceding this response.

—Object 2 satisfies epoch-agreement in E if and only if the following holds. If 2
returns v1, v2 to two propose operations in some clean epoch and v1, v2 [ {0,
1}, then v1 5 v2. (By this definition, if 2 returns 0 to some processes and ' to
all others, it still satisfies epoch-agreement.)

Notice how these definitions generalize the ones in Section 5.1.1. The propo-
sitions below follow easily from the specification of consensus with safe -
reset , and the definitions of linearizability and omission failures. These propo-
sitions are similar to Propositions 5.1.1.1 and 5.1.1.2.

PROPOSITION 7.2.3.1. Let 2 be an object of type consensus with safe -
reset and let E be an execution of (P1, P2, . . . , PN; 2). Object 2 is correct in E if
and only if 2 is wait-free in E and satisfies integrity, epoch-validity, and epoch-
agreement in E.

PROPOSITION 7.2.3.2. Let 2 be an object of type consensus with safe -
reset and let E be an execution of (P1, P2, . . . , PN; 2) in which 2 fails. Object 2
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fails by omission in E if and only if it is wait-free in E and satisfies weak-integrity,
epoch-validity, and epoch-agreement in E.

Figure 12 presents a t-tolerant gracefully degrading implementation of con-
sensus with safe -reset from {consensus with safe -reset , regis-
ter } for omission. The implementation uses 2t 1 1 consensus-with-safe-reset
objects (O1, O2, . . . , O2t11) and 2t 1 1 t-tolerant gracefully degrading boolean
registers (51, 52, . . . , 52t11). (By Lemma 7.2.2.4, 5 i’s can be implemented
from registers.) The register 5 i is set to 1 if any process detects Oi to be faulty,
that is, if any process obtains the response ' from Oi. The following is an
important running feature of our implementation: If, during the execution of an
operation on the derived object 2, a process P gets a response of ' from any 5 i,
P returns ' as the response of 2. This is justified on the basis that 5 i is
t-tolerant, and thus, more than t base objects of 5 i must have failed for 5 i to
fail. Since 2 needs to be only t-tolerant, 2 may fail and return ' if more than t
base objects of 2 fail, or equivalently, if any 5 i fails. We now describe the
procedures Reset (Pi, 2) and Propose (Pi, vi, 2).

To reset 2, a process Pi first reads all 5k’s and collects the identities of the
faulty objects among {O1, O2, . . . , O2t11}. Pi then resets each nonfaulty object
in {O1, O2, . . . , O2t11}. If, during this resetting, an object Ok responds with '

FIG. 12. t-tolerant gracefully degrading implementation of consensus with safe-reset for
omission
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to Pi, Pi writes 1 in 5k to record the fact that Ok is faulty. At the end of this, Pi

returns with the response ack.
To propose vi to 2, a process Pi first reads all 5k’s and collects the identities

of the faulty objects among {O1, O2, . . . , O2t11}. At any point in the algorithm,
Pi holds an estimate of the eventual return value in estimatei. To start with,
estimatei is set to vi. Pi then goes through O1, O2, . . . , O2t11, in that order, and
performs the following steps on each of them. If Ok is known to be faulty, Pi

does not access Ok; it simply pretends that Ok returned '. Otherwise, Pi

proposes its current estimate to Ok. If Ok returns ', Pi writes 1 in 5k to record
the fact that Ok is faulty. If Ok returns a non-' response different from Pi’s
current estimate, Pi deduces that all of O1, O2, . . . , Ok21 have failed.
Accordingly, Pi sets each location in its local vector Vi[1 . . . (k 2 1)] to ' and
changes its estimate to the response it received from Ok. This deduction by Pi is
an important step of the algorithm and is intuitively justified as follows: Suppose
that some Ol(1 # l # k 2 1) were correct. By the integrity and epoch-
agreement properties of Ol, every process would receive the same non-'
response, call it est, in that epoch from Ol. Thus, every process will have the
same estimate est, at the end of accessing Ol. Furthermore, since even objects
that fail by omission satisfy epoch-validity and epoch-agreement, if a base object
in Ol11

. . . O2t11 returns a non-' response in that epoch, the response must be
est. Thus, we conclude that, if Ok returns a response in {0, 1} which is different
from Pi’s current estimate, objects O1, O2, . . . , Ok21 are faulty. At the end of
accessing all 2t 1 1 base objects, if Pi believes that no more than t base objects
failed, it returns its current estimate. Otherwise, it returns '.

LEMMA 7.2.3.3. Figure 12 presents a t-tolerant gracefully degrading implementa-
tion of consensus with safe -reset from {consensus with safe -reset ,
register } for omission.

PROOF. Let 5 i (1 # i # 2t 1 1) be a derived object of the t-tolerant
gracefully degrading implementation of register (such an implementation
exists by Lemma 7.2.2.4). Let Ri,1, Ri,2, . . . , Ri,m be the base registers of 5 i.
Let 2 be derived from the implementation in Figure 12 using O1, O2, . . . , O2t11
and 51, 52, . . . , 52t11. Thus, O1, O2, . . . , O2t11 and Ri, j (1 # i # 2t 1 1,
1 # j # m) are the base objects of 2. Consider an execution E of (P1, P2, . . . ,
PN; 2) in which all base objects that fail, fail by omission. Let % be a clean epoch
of 2 in E. Let FAILED(%) be the set of all Oj (1 # j # 2t 1 1) such that some
process had written 1 in 5 j before epoch % started. Thus, FAILED(%) is the
subset of {O1, O2, . . . , O2t11} that failed before the start of %. We make the
following observations.

O1. For each base object O [ {O1, O2, . . . , O2t11} 2 FAILED(%), % is a
clean epoch of O.

O2. In epoch %, no process invokes an operation on a base object in
FAILED(%).

O3. In the execution of Propose (Pi, vi, 2), at the end of the kth iteration of
the for-loop (1 # k # 2t 1 1), estimatei [ {0, 1}, and Vi[1 · · k] contains
only '’s and estimatei’s.
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We now use these observations to show that 2 satisfies the required properties
in E.

(1) 2 is wait-free. Recall that base objects that fail by omission remain wait-free.
From this and the implementation, it is obvious that 2 is wait-free.

(2) 2 satisfies epoch-validity. Suppose that an execution of Propose (Pi, vi, 2) in
epoch % returns v [ {0, 1}. (Let eret denote the event of completion of this
execution.) It follows that, during this execution, some base object Oj returns
v to Pi when Pi performs propose (Pi, estimatei, Oj). Let ef denote the first
response event in % in which a base object among {O1, O2, . . . , O2t11}
returns the response v. Let Of be the base object associated with the event
ef. By O2, Of [ {O1, O2, . . . , O2t11} 2 FAILED(%). By O1, % is a clean
epoch of Of. Since Of either is correct of fails by omission, by Propositions
7.2.3.1 and 7.2.3.2, Of satisfies epoch-validity. That is, there is an invocation
of propose (Pl, v, Of) in % before the response event ef. From the
implementation and the definition of ef, this invocation of propose (Pl, v,
Of) is possible only during the execution of Propose (Pl, v, 2). Thus, the
invocation of Propose (Pl, v, 2) precedes the invocation of propose (Pl, v,
Of), which, in turn, precedes ef. Furthermore, ef precedes eret. This implies
that the invocation of Propose (Pl, v, 2) precedes eret. We conclude that 2
satisfies epoch-validity in E.

(3) 2 satisfies epoch-agreement. Suppose that, in %, there is an execution of
Propose (Pi, vi, 2) and one of Propose (Pj, vj, 2), which return 0 and 1,
respectively. We will refer to these executions as exec1 and exec2. From O3
and the implementation, it follows that Vi has at least t 1 1 0’s at the end of
exec1. Similarly, Vj has at least t 1 1 1’s at the end of exec2. This implies that
there is a k (1 # k # 2t 1 1) such that Ok returns 0 when Pi performs
propose (Pi, estimatei, Ok) in exec1 and returns 1 when Pj performs
propose (Pj, estimatej, Ok) in exec2. By O2, Ok [ {O1, O2, . . . , O2t11} 2
FAILED(%). It follows from O1 that % is a clean epoch for Ok. Since Ok

either is correct or fails by omission, by Propositions 7.2.3.1 and 7.2.3.2, Ok

satisfies epoch-agreement. This contradicts the earlier conclusion that Ok

returns 0 to Pi and 1 to Pj. We conclude that 2 satisfies epoch-agreement in
E.

(4) 2 satisfies weak integrity. Obvious.
(5) 2 satisfies integrity if at most t base objects fail. Suppose that no more than t

base objects of 2 fail. For all j, 1 # j # 2t 1 1, since 5 j is t-tolerant, 5 j

will be correct. It follows from the implementation that every reset operation
on 2 in E returns ack. We now make some observations to show that every
propose operation on 2 in f(E) returns either 0 or 1. In the following, let %
be any (not necessarily clean) epoch of 2 in E.

(a) Let Ok1
, Ok2

, . . . , Okl
(k1 , k2 , . . . , kl) be all the base objects

among {O1, O2, . . . , O2t11}, which are correct in E. Since at most t
fail, we have l $ t 1 1.

(b) From the fact that Ok1
is correct in E, it is easy to verify that % is a clean

epoch for Ok1
. Since Ok1

is correct and % is a clean epoch for Ok1
, by

Proposition 7.2.3.1, Ok1
satisfies integrity and epoch-agreement in epoch

%. Thus, there is a v [ {0, 1} such that every propose operation on Ok1
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in epoch % returns v. This implies that, for every execution of Pro-
pose (Pi, vi, 2) in %, estimatei 5 v at the end of k1 iterations of the
for-loop.

(c) For all 1 # j # l, Okj
is correct in E. From this, it is easy to verify that

% is a clean epoch for Okj
. Since Okj

is correct and % is a clean epoch for
Okj

, by Proposition 7.2.3.1, Okj
satisfies integrity, epoch-validity, and

epoch-agreement in epoch %. In particular, if every process that proposes
to Okj

in epoch % proposes the value v, then Okj
returns only v in %.

(d) Let Oj [ {O1, O2, . . . , O2t11} 2 {Ok1
, Ok2

, . . . , Okl
}. By definition,

Oj fails by omission in E, returning ' to some process. Let P be the first
process to receive ' from Oj and let oper denote the execution of P’s
operation on the derived object 2 during which P received ' from Oj.
Consider the following two cases. In the first case, assume that Oj

returned ' to P before epoch % started. Since oper is from an earlier
epoch than %, it follows that oper completed before % started. This
implies that P wrote 1 in 5 j before the start of epoch %. It follows from
the implementation that no process invokes an operation on Oj in epoch
%. In the second case, assume that Oj never returned ' to any process
before the start of epoch %. Then, it is easy to see that % is a clean epoch
for Oj. Thus, by Proposition 7.2.3.2, if every process that proposes to Oj

in epoch % proposes the value v, Oj returns either v or ' in %.

Consider any execution of Propose (Pi, vi, 2) in epoch %. We claim that
estimatei 5 v at the end of k1 iterations of the for-loop and the value of
estimatei does not change in the subsequent iterations. The claim follows
directly from the above observations and the fact that a process does not
change its estimate if a base object Oj returns '. This claim, together with
the fact that Ok1

, Ok2
, . . . , Okl

are correct, implies that, at the end of the
execution, (i) estimatei 5 v and (ii) for all 1 # j # l, Vi[kj] 5 v. From the
implementation, it follows that Propose (Pi, vi, 2) returns v. We conclude
that 2 satisfies integrity.

From (1), (2), (3), and (4) above, and Proposition 7.2.3.2, we conclude that
either 2 is correct in E or 2 fails by omission in E. Thus, the implementation is
gracefully degrading for omission. From (1), (2), (3), and (5) above, and
Proposition 7.2.3.1, we conclude that if at most t base objects of 2 fail in E, and
they fail by omission, then 2 is correct in E. Thus, the implementation is
t-tolerant for omission. This completes the proof of the lemma. e

7.2.4. Graceful Degradation Theorem for Omission. From the previous three
lemmas, and the argument presented at the beginning of Section 7.2, we have

THEOREM 7.2.4.1. Every type has a t-tolerant gracefully degrading implementa-
tion from every universal set of types for omission.

8. Related Work

In an independent work, Afek et al. [1992; 1995] consider the problem of coping
with shared memory subject to memory failures. Informally, each failure is
modeled as a faulty write. The following failure modes are considered:
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(A) There is a bound m on the total number of faulty writes.
(B) There is a bound f on the total number of data objects that may be affected

by memory failures, and a bound k on the number of faulty writes on each
faulty object. A different failure model is obtained for k 5 `.

In our terminology, these failure modes are responsive. The second one, with
k 5 `, corresponds to our arbitrary failure mode.

Afek et al. [1992] focus on fault-tolerant implementations of the following
types of objects: safe, atomic, binary, and V-valued register from various types
of registers; N-process test &set from N-process test &set and bounded
register ; and N-consensus from read -modify -write (RMW). Afek et al.
[1992] also give a universal fault-tolerant implementation from unbounded RMW,
based on Herlihy’s universal implementation. The main differences between
Afek et al. [1992] and this paper are as follows:

(1) Afek et al. [1992] does not consider any non-responsive failure mode.
(2) Amongst the responsive failure modes, benign ones, such as crash and

omission, are also not considered in Afek et al. [1992].
(3) This paper does not consider failure modes that bound the number of times

faulty objects can fail (in Afek et al. [1992], each “faulty write” is counted as
a failure).

(4) The two approaches to modeling failures appear to be fundamentally
different. There is no direct way to model benign failures, such as crash and
omission failures, with “faulty writes”. On the other hand, our approach—
defining how each faulty object deviates from its type—is not suited to
handle Model A above.

(5) This paper introduces the concept of graceful degradation, and presents
several related results, in particular, for crash and omission failure modes.
For arbitrary failures, graceful degradation reduces to the “strong wait-
freedom” concept introduced in Afek et al. [1992].

(6) In the Open Problems section of Afek et al. [1992], it is stated:

“It would be particularly interesting to implement memory-fault tolerant data
objects directly from similar, faulty objects, such as test-and-set from test-and-
set, without using atomic registers, or read-modify-write from read-modify-
write, without using an unbounded universal construction.”

It is interesting to note that both of these types do have fault-tolerant
self-implementations. For bounded RMW, this is a direct consequence of
Corollary 5.3.3. For N-process test &set , one can combine the fault-tolerant
implementation of test &set from {test &set , bounded register }
[Afek et al. 1992], with the implementation of bounded register from
test &set presented in Jayanti et al. [1996].

(7) The existence of a fault-tolerant self-implementation of consensus , shown
in this paper, does not follow from the results in Afek et al. [1992].

(8) The fault-tolerant implementation of N-process test &set from
{test &set , bounded register }, shown in Afek et al. [1992], does not
follow from our results (when N . 2).
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