
Distrib. Comput. (1999) 12: 209–223

c© Springer-Verlag 1999

A simple and fast asynchronous consensus protocol
based on a weak failure detector
Michel Hurfin, Michel Raynal

IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France (e-mail:{hurfin, raynal}@irisa.fr)

Received: August 1997 / Accepted: March 1999

Summary. The Consensus problem is a fundamental pa-
radigm for fault-tolerant asynchronous systems. It abstracts
a family of problems known as Agreement (or Coordina-
tion) problems. Any solution to consensus can serve as a
basic building block for solving such problems (e.g., atomic
commitment or atomic broadcast). Solving consensus in an
asynchronous system is not a trivial task: it has been proven
(1985) by Fischer, Lynch and Paterson that there is no deter-
ministic solution in asynchronous systems which are subject
to even a single crash failure. To circumvent this impossi-
bility result, Chandra and Toueg have introduced the con-
cept of unreliable failure detectors (1991), and have studied
how these failure detectors can be used to solve consen-
sus in asynchronous systems with crash failures. This paper
presents a new consensus protocol that uses a failure detector
of the class♦S . Like previous protocols, it is based on the
rotating coordinator paradigm and proceeds in asynchronous
rounds. Simplicity and efficiency are the main characteristics
of this protocol. From a performance point of view, the pro-
tocol is particularly efficient when, whether failures occur
or not, the underlying failure detector makes no mistake (a
common case in practice). From a design point of view, the
protocol is based on the combination of three simple mech-
anisms: a voting mechanism, a small finite state automaton
which manages the behavior of each process, and the possi-
bility for a process to change its mind during a round.

Key words: Asynchronous distributed systems – Consen-
sus problem – Crash failures – Fault-tolerance – Unreliable
failure detectors

1 Introduction

It is now well recognized that agreement problems are
fundamental when designing fault-tolerant distributed sys-
tems. Among those, atomic commitment and ordered re-
liable broadcast (or atomic broadcast) are the most often
encountered. In both cases, correct processes have to take a
consistent decision. In the first case, processes are data man-
agers and they have to agree in order to commit or to abort

effects of a transaction [10]. In the second case, processes
have to agree on a single delivery order for a given set of
messages [2].

All these practical agreement problems have been ab-
stracted into a basic problem, namely theConsensusprob-
lem. More precisely, each process is endowed with a value
that it proposes to the others, and all correct processes must
agree on a common decision value, which has to be one
of the proposed values. When the only failures considered
are process crashes, this problem has relatively simple solu-
tions in synchronous distributed systems. Unfortunately this
is not the case in asynchronous distributed systems. In these
systems the most famous result is a negative one. The so-
called FLP (Fischer-Lynch-Paterson) result [9] states that it
is impossible to design a deterministic algorithm solving the
consensus problem in an asynchronous distributed system
which is subject to even a single processcrash failure. In-
tuitively, this is because (in an asynchronous setting) it is
impossible to safely distinguish a very slow process (or a
process with which communications are very slow) from
a crashed process. This impossibility result has challenged
and motivated researchers to find a set of minimal properties
that, when satisfied in an asynchronous distributed system,
make the consensus problem solvable (with a deterministic
algorithm). Minimal synchronism [6], partial synchrony [8]
and unreliable failure detectors [4] constitute answers to this
challenge.

In this paper, we are interested in solving the consen-
sus problem, in the presence of process crash failures, in an
asynchronous model of computation augmented with unreli-
able failure detectors. Each process is equipped with a failure
detector module that provides it with a list of processes it
currently suspects to have crashed. A failure detector mod-
ule can make mistakes by not suspecting a crashed process
or by erroneously suspecting a correct one. In a seminal
paper [4], Chandra and Toueg have introduced and studied
classes of failure detectors. They have definedCompleteness
andAccuracyproperties of failures detectors. The complete-
ness property is a property on the actual detection of process
crashes. The aim of an accuracy property is to restrict the
mistakes a failure detector can make. Defining two com-
pleteness properties and four accuracy properties, Chandra

210 M. Hurfin, M. Raynal

and Toueg have proposed eight classes of failure detectors.
Among these classes, one of them, denoted♦W (Eventu-
ally Weak), is particularly important as it has been proven
to be the weakest one that makes the consensus problem
solvable [5]. Chandra and Toueg have also shown [4] that,
using an appropriate reduction algorithm, these eight failure
detectors classes can be reduced to four distinct classes. Ac-
tually, using this reduction algorithm, the class♦W and
the class denoted♦S (Eventually Strong) are equivalent.

Several protocols have been proposed which solve the
consensus problem when the asynchronous distributed sys-
tem is augmented with failure detectors of the class♦S and
when a majority of processes are correct. To benefit from
the accuracy property of♦S , these protocols are based on
the rotating coordinator paradigm: they proceed in asyn-
chronous consecutive rounds, each round being managed
by a predetermined process (the round coordinator). The
first of these protocols (CT) has been proposed by Chandra
and Toueg [4]. Another protocol (SC) has been proposed by
Schiper [14]. It is important to note that it is the possibility
of erroneous suspicions which makes failure detector-based
consensus protocols anything but trivial. So, for a given run,
the real behavior of a protocol depends on the actualquality
of serviceoffered by the underlying failure detector.

Among the reasons that motivate the search for time
efficient consensus protocols, the following one is particu-
larly important. As previously indicated, consensus is a basic
building block that can be intensively used to provide higher
level services (such as atomic broadcast or atomic commit-
ment). Consequently, this crucial part of a fault-tolerant ser-
vice is worth being made as time efficient as possible: this
helps the service to offer a good response time to upper
layer applications, in all circumstances. Here, finding the
“holy grail” would be to design an efficient consensus pro-
tocol whose response time would not be affected by process
crashes! With a more modest and more realistic goal, in this
paper we are interested in designing a consensus protocol
that favors a graceful degradation in presence of failures.

An important point that concerns the design of failure
detector-based consensus protocols is related to the qual-
ity of service offered by the underlying failure detector. As
pointed out in [1]: “In many systems, failures are rare, and
failure detectors can be tuned to seldom make mistakes (i.e.,
erroneous suspicions)”. So, a crucial issue lies in the de-
sign of consensus protocols that are time efficient in runs
where the underlying failure detector provides a good qual-
ity of service (i.e., when it makes no mistake). This aim
has been attained by the SC protocol forfailure-free runs.
In those runs the decision is obtained in 2 communication
steps (which seems to be optimal [7, 12]). In this paper we
are interested in designing a failure detector-based consensus
protocol that is time efficient in runs where the underlying
failure detector makes no mistakes,whether there are fail-
ures or not. In such runs, if the current coordinator has not
crashed, the proposed protocol is as good as SC. If the cur-
rent coordinator has crashed, the protocol requires a single
communication step to proceed to the next round (thereby al-
lowing processes to benefit from a new round coordinator).
This favors a graceful degradation in presence of process
crashes. Efficiency in no erroneous suspicion runs has been

obtained by using a decentralized message exchange pat-
tern, and by investigating a very simple idea, namely, allow
a process to query the failure detector only during limited
periods, and force it to trust the information it obtains.

When designing this protocol, we aimed to produce a
protocol which is not only efficient but which also has a rel-
atively simple structure. As noted in [3] “Reliability need not
compromise elegance and performance in distributed com-
puting”. When solving a problem, we think that the design
of a protocol which isboth simple and efficientcan provide
a deeper insight into the problem in question. The design
principles of the proposed protocol rely on the use of simple
mechanisms: a voting mechanism, a small finite state au-
tomaton that manages the behavior of each process during
a round, and allowing a process to change its mind during
a round. This design simplicity is an important issue that
should help demystify the consensus problem, and make
it attractive as a basic building block for solutions to dis-
tributed agreement problems.

The paper is organized as follows. It is composed of five
main sections. Section 2 presents the system model, the class
♦S of failure detectors, and the consensus problem. Then,
Sect. 3 presents the consensus protocol. Section 4 gives a
correctness proof. Section 5 discusses the protocol, analyses
its cost and compares it with CT and SC. Finally, Sect. 6
concludes the paper and summarizes its contribution.

2 Asynchronous systems and consensus

This section introduces the system model, failure detectors
and the consensus problem. The system model is patterned
after the one described in [4,9,14]. A formal introduction to
failure detectors is provided in [4, 5].

2.1 Asynchronous systems

We consider a system consisting ofn > 1 processesΠ =
{p1, p2, . . . , pn}. A process can fail bycrashing, i.e., by pre-
maturely halting; it behaves correctly (i.e., according to its
specification) until it (possibly) crashes. By definition, acor-
rect process is a process that does not crash, otherwise it is
faulty. Let f denote the maximum number of processes that
can crash. Processes communicate and synchronize by send-
ing and receiving messages through channels. Every pair of
processes is connected by areliable channel,i.e., a message
sent by a processpi to a processpj is eventually received
by pj , if pj is correct. It is the multiplicity of processes
and the communication by message-passing that make the
systemdistributed.

There is no assumption about the relative speed of pro-
cesses or the message transfer delays. This absence of timing
assumptions makes the distributed systemasynchronous.

2.2 Failure detectors

Informally, a failure detector consists of a set of modules,
each one attached to a process: the module attached topi

A simple and fast asynchronous consensus protocol based on a weak failure detector 211

maintains a set (namedsuspectedi) of processes it currently
suspects to have crashed. Any failure detector module is in-
herently unreliable: it can make mistakes by not suspecting a
crashed process or by erroneously suspecting a correct one.
Moreover, suspicions are not necessarily stable: a processpj

can be added to and removed from a setsuspectedi accord-
ing to whetherpi’s failure detector module currently suspects
pj or not. As in [4], we say “processpi suspects processpj”
at some timet, if at time t we havepj ∈ suspectedi.

As indicated in the Introduction, failure detector classes
have been defined by Chandra and Toueg [4] in terms of two
abstract properties, namelyCompletenessandAccuracy. We
are interested here in the class of failure detectors, called
♦S (Eventually Strong), characterized by the two following
properties:

– Strong Completeness: Eventually, every crashed pro-
cess is permanently suspected by every correct process.

– Eventual Weak Accuracy: There is a time after which
some correct process is never suspected by any correct
process.

It is important to note that failure detectors of the class♦S

can make an arbitrary number of mistakes (e.g., a correct
process can loop suspecting and not suspecting a correct
process). Moreover, it is also interesting to notice that the
Eventual Weak Accuracy property suggests to base protocols
using a failure detector of the class♦S , on the rotating co-
ordinator paradigm: in that case, there is a time after which,
a correct coordinator will not be suspected by any correct
process.

2.3 The consensus problem

The problem.In this problem, every correct processpi pro-
posesa valuevi and all correct processes have todecide
on some valuev, in relation to the set of proposed values.
More precisely, theConsensus problemis defined by the
three following properties [4, 9]:

– Termination: Every correct process eventually decides
on some value.

– Validity: If a process decidesv, thenv was proposed by
some process.

– Agreement: No two correct processes decide differently.

The agreement property applies only to correct processes.
So, it is possible that a process decides on a distinct value
just before crashing.Uniform Consensusprevents such a
possibility. It has the same Termination and Validity prop-
erties plus the following agreement property:

– Uniform Agreement: No two processes (correct or not)
decide differently.

In the following we are interested in the uniform consensus
problem.

Solving consensus with♦S . Two important results are at-
tached to protocols that solve the consensus problem, using
failure detectors of the class♦S :

– Chandra and Toueg have shown that any such protocol
requires at least a majority of processes to be correct
(i.e., f < n/2) for the problem to be solvable [4].

– Guerraoui has shown that any protocol solving the con-
sensus problem using such a failure detector, also solves
the uniform consensus problem [11].

3 The consensus protocol

3.1 Underlying principles

3.1.1 Brief survey of related works

The first consensus protocol designed to work with a failure
detector belonging the class♦S was proposed by Chandra
and Toueg [4]. Other protocols have since been proposed
(e.g., [1, 13, 14]). All these protocols share the following
design principles:

– Each protocol is based on therotating coordinatorpara-
digm and proceeds in consecutive asynchronous rounds.
Each round is coordinated by a process. The coordinator
of roundr, is a predetermined process, namely,pc with
c = (r modn) + 1. As in [4], when considering a round
r, the associated processpc will be called the “current”
coordinator. The rotating coordinator paradigm is used
in the following way.
During a roundr, the coordinator tries to impose a value
as the decision value. To this end processes have to coop-
erate. Different (centralized/decentralized) protocols can
be designed, depending on how the processes cooperate.
Crashes can be dealt with by moving to the next coordi-
nator. It is possible that not all processes decide in the
same round, depending on the pattern of failures and on
the pattern of failure suspicions that occur during a given
execution. One important point which differentiates be-
tween the protocols is the way they solve this issue,
while ensuring there is a single decision value (i.e., the
Agreement property).

– In every protocol, each processpi manages a local vari-
ableesti that represents its current estimate of the deci-
sion value (initially,esti is the initial valuevi proposed
by pi). This value is updated as the protocol progresses
and converges to the decision value.

Chandra-Toueg’s protocol and Schiper’s protocol are now
briefly described. (These protocols will be compared with
the proposed protocol in Sect. 5.3).

Chandra-Toueg’s protocol.In this protocol [4], during a
round, the cooperation between processes to establish a de-
cision value is centralized. More precisely, each round is
composed of four phases. In roundr, the current coordina-
tor pc tries to establish a consensus value in the following
way:

– During phase 1, each processpi sends its estimateesti
to the current coordinatorpc.

– During phase 2,pc gathers values from a majority of
processes, defines a new estimate from the values it re-
ceived and broadcasts this new estimate to all processes.

212 M. Hurfin, M. Raynal

– During phase 3, each processpi waits for the receipt
of an estimate value frompc. If it receives one, it sends
back a positive acknowledgment topc. If it suspectspc to
have crashed, it sends back a negative acknowledgment
to pc.

– During phase 4, the coordinatorpc waits for a majority
of acknowledgments. If it receives a majority of positive
acknowledgments, it informs all the processes that the
value it has previously disseminated has to be considered
as the decision value.

It is important to note that Chandra-Toueg’s protocol presents
the following property: when a majority of processes in a
round have adopted (by sending a positive acknowledgment)
an estimate value proposed by the round coordinator, this
value becomes “locked” in the sense that no other decision
value is possible. This property is essential: it ensures Agree-
ment will be satisfied despite the fact that not all processes
decide in the same round.

Schiper’s protocol.While Chandra-Toueg’s protocol is based
on aMaster-Slavescheme1, no such “asymmetry” exists in
Schiper’s protocol [14]. In this protocol, the cooperation be-
tween processes to establish a decision value during a round
is decentralized. More precisely, during a roundr, the pro-
cesspc that is the current coordinator initiates this round
by broadcasting its own estimateestc. Then all processes
behave similarly.

– As indicated, when a round starts, the current coordinator
pc broadcasts its estimateestc to all the processes. A
processpi that receivesestc, forwards it to all processes.
If a process receivesestc from a majority of processes,
it decides on this value.

– At any time during a roundr, a processpi may suspect
that the current coordinatorpc has crashed. In this case,
pi broadcasts asuspicion message. As soon as a pro-
cess has received a majority ofsuspicion messages, it
can no longer decide during this round. It then executes
an “estimate-locking” protocol whose aim is to ensure
that processes starting the next round will start with “con-
sistent” estimate values2. This “estimate-locking” proto-
col requires an additional exchange of messages.

During a round, Chandra-Toueg’s protocol uses a centralized
scheme (all messages are to/from the coordinator), while
Schiper’s protocol uses a decentralized scheme (after the co-
ordinator has sent its estimate, each process sends messages
to all other processes). Actually, these two schemes have
been investigated by Skeen [15] to solve a particular agree-
ment problem (namely, the non-blocking atomic commit-
ment problem) in the context of distributed systems equipped
with reliable failure detectors. More precisely, if we consider
that there are neither failures, nor false suspicions, the de-
cision is obtained in the first round, and, from a syntactic
point of view, the message exchange pattern generated by

1 During each roundr, the coordinator ofr acts a master role.
2 “Consistent” means that if a process has decidedestc during roundr,

then any processpi proceeding to roundr + 1, will start with esti = estc.
Using a method different from that used in Chandra-Toueg’s protocol, this
ensures thatestc is “locked”. See Sect. 5.3.

Chandra-Toueg’s protocol is similar to the one generated by
Skeen’s centralized commit protocol [15]. In the same con-
text (no failure, no suspicion), the message exchange pattern
generated by Schiper’s protocol is syntactically similar to
the one generated by Skeen’s decentralized commit proto-
col. What makes Chandra-Toueg’s and Schiper’s protocols
in no way trivial lies in the fact that they do not require
reliable failure detectors.

3.1.2 Underlying principles of the proposed protocol

As indicated in the Introduction, when designing this proto-
col, our aim was to produce a protocol which is both sim-
ple and efficient whenever the underlying failure detector
provides a good quality of service (i.e., when it makes no
mistakes, whether failures occur or not). From a structural
point of view, the protocol is based on a simple combina-
tion of well-known mechanisms: asynchronous rounds, vot-
ing, finite state automaton and allowing a process to change
its mind. From a behavioral point of view, the proposed
protocol is based on a decentralized message exchange pat-
tern (similar to [14, 15]): during a round, the cooperation
between processes to establish a decision value is decentral-
ized. Assuming that the underlying failure detector makes
no mistakes, let us consider a roundr.

– The decision is obtained in two communication steps if
the current coordinatorpc has not crashed3. More gen-
erally, whatever is the quality of service offered by the
failure detector, as long as the current coordinator is not
suspected, the protocol tries to impose its estimate value
as the decision value.

– Progress to the next round (to benefit from another co-
ordinator) takes only one communication step if the cur-
rent coordinator has crashed. More generally, as soon as
the current coordinator is suspected, the protocol tries to
make all correct processes progress, as quickly as possi-
ble, to the next round.

These two items show the guideline that has governed the
design of the protocol: processes trust the failure detector a
priori. This intuitively explains why the protocol is efficient
when the failure detector is reliable.

To attain this goal, at roundr, each processpi has to vote.
It votes either to proceed to the next round (next vote) or to
decide during the current round (current vote). Moreover,
a current/next vote carries the current estimate (of the
decision value) of the process issuing the vote. Voting is
implemented by messages. In order to prevent blocking (see
below) a process may votecurrent and later change its
mind and votenext. On the other hand, in each round, a
next vote is definitive. A processpi decides at the current
round as soon as it has received a majority ofcurrent
votes. It proceeds to the next round if it receives a majority
of next votes. If a processpi decides in roundr and another
processpj decides in roundr′ > r, the protocol ensures that
pj starts roundr + 1 with the value decided bypi. Moreover
(and independently of the fact that a value has been decided

3 In this ideal scenario (no failures, no erroneous suspicions), Schiper’s
protocol also decides in two communication steps.

A simple and fast asynchronous consensus protocol based on a weak failure detector 213

Fig. 1. Finite state automaton of a processpi

by some processes in roundr), it is important to note that
the progression of processes to roundr + 1 is synchronized
by the exchange ofnext votes.

During each round, the behavior of each processpi is
determined by a finite state automaton (as in [15]). This
automaton, illustrated in Fig. 1, is composed of 3 states: an
initial state q0, and two other statesq1 and q2. The local
variablestatei will denote the automaton state in whichpi

currently is. During a round, the current state of a processpi

is directly related to the votes it issues and not to the ones it
has received. Whenpi decides, it can be in any state of the
automaton; but, when it proceeds to the next round,pi is in
stateq2. During a round, the state of the automaton has the
following meaning:

– statei = q0: pi has not yet voted.
– statei = q1: pi has votedcurrent and has not changed

its mind.
– statei = q2: pi has votednext.

The protocol manages the progression of each processpi

within its automaton, according to the following rules. At
the beginning of roundr, statei = q0. Then, duringr, the
transitions are:

– Transitionq0 → q1 (pi first votescurrent). This tran-
sition occurs whenpi, while in the initial stateq0, re-
ceives acurrent vote. This means thatpi has not
previously suspected the round coordinator. Moreover,
whenpi moves toq1, it broadcasts acurrent vote.

– Transitionq0 → q2 (pi first votesnext). This transition
occurs whenpi, while in the initial stateq0, suspects
the current coordinator. This means thatpi has not pre-
viously received acurrent vote. Moreover, whenpi

moves toq2, it broadcasts anext vote.
– Transitionq1 → q2 (pi changes its mind). This transition

is used to prevent a possible deadlock. Let us consider
Fig. 2 wheren = 3. Processesp1, p2 andp3 have entered
roundr (coordinated byp1), andp3 has crashed just after
entering this round. Let us examine the following sce-
nario:
- Processp1 has sent acurrent vote, and has moved
to stateq1.
- While it was in stateq0, processp2 has suspected
the current coordinatorp1. Consequently, it has issued
a next vote and has moved to stateq2.
Both p1 and p2 have received votes from a majority of
processes, but they have received neither a majority of
current votes (so they cannot decide), nor a major-
ity of next votes (so they cannot progress to the next
round). Moreover, asp3 has crashed, it will not vote.

Fig. 2. A deadlock situation

This is a typical deadlock situation. To prevent such a
deadlock, a process that has issued acurrent vote is
allowed to change is mind; in the example,p1 is au-
thorized to issue anext vote. After this vote has been
received, each correct process (p1 andp2) has a major-
ity of next votes and consequently may proceed to the
next round.

Summary.To summarize, the principles underlying the pro-
tocol are:

1. The use of therotating coordinatorparadigm. The pro-
tocol proceeds in consecutive asynchronous rounds, each
round being coordinated by a predetermined process.
Combined with the properties of♦S , this ensures that
there will eventually be a round in which the coordinator
will not be suspected.

2. The use of thevoting paradigm. Used at each round, it
consists of:
– Two votes.

A current (resp.next) vote means that the is-
suing process is in favor of deciding in the current
round (resp. proceeding to the next round).

– A majority rule.
A process decides at the current round (resp. pro-
gresses to the next round) as soon as it has received
a majority ofcurrent (resp.next) votes.

– A simple automaton.
This automaton defines the state of a process with
respect to the votes it has issued.

– The possibility for a process to change its mind.
A process that votedcurrent can later issue a
next vote. This prevents processes from blocking
forever.

3.2 Description of the protocol

The consensus protocol is described in Fig. 3. To pro-
pose its valuevi, each correct processpi calls the function
consensus(vi). It decides when it executes the statement
return (v) at line 3 or at line 14 (where the decided value is
v).

Local variables. In addition to the local variables previously
introduced (esti andstatei), processpi manages the follow-
ing four local variables:

– ri defines the current round number.

214 M. Hurfin, M. Raynal

– nb currenti (resp.nb nexti) counts the number ofcur-
rent (resp.next) votes received bypi during the cur-
rent round.

– rec fromi is a set composed of the process identities
from whichpi has received a (current or next) vote
during the current round.

Finally, suspectedi is a set managed by the associated fail-
ure detector module (cf. Sect. 2.2);pi can only read this set.

Let us remark that, except forri, the domain of every vari-
able is bounded.

View of a round by a process.If we consider a processpi

at roundr, pi has the following view of the global state
concerning roundr:

– statei defines its current state, with respect tor.
– nb currenti, nb nexti andrec fromi describe its per-

ception of the whole set of processes, with respect to
their progress within their automaton during roundr.
More precisely:
– nb currenti is the number of processes thatpi per-

ceives as having moved fromq0 to q1 in round r
(pi has received acurrent vote from them). It is
possible that some of those processes are now inq2.

– nb nexti is the number of processespi perceives as
being presently in stateq2 in roundr (pi has received
a next vote from them).

Protocol description.Function consensus() adopts the
structure used in [4, 14], namely, it consists of two concur-
rent tasks. The first task handles the reception of adecide
message (lines 2-3); it ensures that if a processpi decides
(line 3 or line 14), then all correct processes will also receive
a decide message. The second task (lines 4-27) describes
a round: it consists of a loop that constitutes the core of the
protocol.

Messages.In addition to other values, each (current or
next) vote carries the identity of its sender and its round
number4. The notation “sendmsg() to X”, whereX ⊆ Π
means “∀pj ∈ X do sendmsg() to pj enddo”.

A current vote carries the estimate value of the cur-
rent round coordinator. Anext vote carries the estimate
value of its sender and a boolean flag indicating whether the
sender moved toq2 directly (transition:q0 → q2) or indi-
rectly (transitions:q0 → q1 → q2).
- In the first case, the flag value issuspicion (this occurs
at line 16 or at line 25). The estimate value carried by the
message is then not necessarily equal toestc.
- In the second case, the flag value isdeadlock prevention
(this occurs at line 22 or at line 26). The estimate value of
the sender is then necessarily equal toestc.

4 Notation. At line 9 and at line 18, when a (current or next) vote is
received, the second message field is underlined. This notation means that
this field of the received vote must contain a value equal to the value of the
corresponding local variable, namelyri, for the message to be received. In
other words, in any roundr, only votes related to roundr can be received.

Protocol statements.During a roundr, a process executes
the following actions:

– At the beginning ofr, each process initializes its local
variables (line 5). Moreover, the current coordinatorpc

proposes its estimateestc to become the decision value
by broadcasting acurrent vote carrying this value,
lines 6 and 12.
The sending of a message by the current coordinatorpc

to itself at line 6, is a “fictional” sending, used only to
get a description of thewhile loop (as far as possible)
independent of process identities. Processpc instanta-
neously receives this message and executes lines 9-14.
In the while loop the identity ofpc appears only at line
15 and concerns the suspicion ofpc.

– Each time a processpi receives a (current or next)
vote, it updates the corresponding counter and the set
rec fromi (lines 11 and 19). When, in thewhile loop,
processpi broadcasts a vote, it does not send it to it-
self but simulates its reception by updating these control
variables (lines 13, 17 and 23).
Note that onlynb nexti is updated at line 23. Updating
rec fromi is needless because, in this case,pi’s identity
is already in the setrec fromi (as, whenpi moved to
stateq1, it executed line 13).

– When a process receives acurrent vote for the first
time, namely,current(pk,r,estk), it adoptsestk as its
current estimate (line 10). If, in addition, it is in stateq0,
it moves to stateq1, and also votescurrent to push
the decision on this estimate during the current round
(line 12).

– A processpi decides on the estimate proposed by the
current coordinator as soon as it has received a majority
of current votes,i.e., a majority of votes that agree to
conclude on this value during the current round (line 14).

– A processpi takes into account the fact that the cur-
rent coordinatorpc is suspected only whenstatei = q0
(lines 15-17). If it suspectspc, thenpi votes to proceed
to the next round (by broadcasting anext vote) and
updatesstatei to q2 accordingly (see Fig. 1).

– Whenpi receives anext(pk, ri, estk, f lagk) vote (i.e.,
a vote to proceed to the next round, line 18), it updates its
control variables (line 19). Moreover, ifpi has not yet re-
ceived acurrent vote carrying the estimate ofpc (i.e.,
if nb currenti = 0), and if pk can provide it with this
estimate (i.e., if flagk = deadlock prevention), thenpi

adopts it (line 20).
– The set of statements at lines 21-23 aims to prevent the

blocking of processes (see the discussion at the end of
Sect. 3.1, just before the “Summary” paragraph). Pro-
cesses can block in the current round if not enough
current votes have been sent (i.e., nb currenti <
n/2), and not enoughnext votes have been sent (i.e.,
nb nexti < n/2). If pi executes line 21, it has not yet
decided. So, if (1)pi has only votedcurrent (i.e., it
was for deciding at the current round, andstatei = q1),
if (2) additionallypi has received a (current or next)
vote from a majority of processes (i.e., | rec fromi |>
n/2), and if also (3), from its perception of the cur-
rent round,pi will not receive any new information (i.e.,
∀k : pk ∈ rec fromi ∪ suspectedi), thenpi changes its

A simple and fast asynchronous consensus protocol based on a weak failure detector 215

function consensus(vi)

(1) ri ← 0; esti ← vi;
cobegin

(2) || upon reception of decide(pk, rk, estk)
(3) senddecide(pi, rk, estk) to Π − {pi, pk}; return (estk)

(4) || loop % on a sequence of asynchronous rounds %
(5) c← (ri modn) + 1; ri ← ri + 1; statei ← q0; rec fromi ← ∅; nb nexti ← 0;
(6) if (i = c) then sendcurrent(pi, ri, esti) to itself; nb currenti ← −1
(7) else nb currenti ← 0 endif;

(8) while (nb nexti ≤ n/2) do % wait until a branch can be selected, and then execute it %
(9) upon reception of current(pk, ri, estk)
(10) if (nb currenti = 0) then esti ← estk endif;
(11) nb currenti ← nb currenti + 1; rec fromi ← rec fromi ∪ {pk};
(12) if (statei = q0) then statei ← q1; sendcurrent(pi, ri, esti) to Π − {pi};
(13) nb currenti ← nb currenti + 1; rec fromi ← rec fromi ∪ {pi} endif;
(14) if (nb currenti > n/2) then senddecide(pi, ri, esti) to Π − {pi}; return (esti) endif

(15) upon (pc ∈ suspectedi)
(16) if (statei = q0) then statei ← q2; sendnext(pi, ri, esti, suspicion) to Π − {pi};
(17) nb nexti ← nb nexti + 1; rec fromi ← rec fromi ∪ {pi} endif

(18) upon reception of next(pk, ri, estk, f lagk)
(19) nb nexti ← nb nexti + 1; rec fromi ← rec fromi ∪ {pk};
(20) if ((nb currenti = 0) ∧ (flagk = deadlock prevention)) then esti ← estk endif

(21) upon ((statei = q1) ∧ (| rec fromi |> n/2) ∧ (∀pk: pk ∈ rec fromi ∪ suspectedi))
(22) statei ← q2; sendnext(pi, ri, esti, deadlock prevention) to Π − {pi};
(23) nb nexti ← nb nexti + 1; % the variablerec fromi has already been updated %
(24) endwhile;

(25) if (statei = q0) then statei ← q2; sendnext(pi, ri, esti, suspicion) to Π − {pi} endif;
(26) if (statei = q1) then statei ← q2; sendnext(pi, ri, esti, deadlock prevention) to Π − {pi} endif
(27) endloop

coend

Fig. 3. Fast consensus protocol based on♦S

mind: it broadcasts anext vote to favor the transition
to the next round (line 22) and, accordingly, it moves to
stateq2. So, thisnext vote carries a flag whose value
is deadlock prevention, and consequently, the estimate
value it carries is equal toestc. As we will see in the
proof (assuming a majority of correct processes), this
strategy will ensure that if a correct processpi can not
decide at a given round, then it will eventually have
nb nexti > n/2, and consequently, it will progress to
the next round (line 4).

– Finally, the aim of lines 25-26 is to ensure that, when
a process progresses from roundr to round r + 1, it
has issued anext vote during roundr. Thesenext
votes are used to prevent other processes from remaining
blocked in roundr.

Remark. Message processing order. Note that, if several
choices are possible when a processpi is in thewhile loop
(lines 8-24), choosing to processcurrent votes first can
allow pi to decide sooner.

4 Correctness proof

This section proves that the previous protocol satisfies the
Termination, Validity and Uniform Agreement properties
stated in Sect. 2.3. This proof assumes that:

– H1: There is a majority of processes that are correct (i.e.,
f < n/2).

– H2: The underlying failure detector belongs to the class
♦S , i.e., it satisfies:
H2.1: Strong Completeness (Eventually, every crashed
process is permanently suspected by every correct pro-
cess). And,
H2.2: Eventual Weak Accuracy (There is a time after
which some correct process is never suspected by any
correct process).

– H3: Communication channels are reliable.

4.1 Validity

Theorem 1 If a processpi decidesv, thenv was proposed
by some process.

Proof. We show that the valuev returned by the statement
return (v) is a value proposed by some process. The only

216 M. Hurfin, M. Raynal

lines at whichreturn is executed are the lines 3 and 14. In
both cases, the returned value is an estimate (estk or esti).
For any processpi, we have:

– Initially: esti = vi (line 1).
– Then:esti can be modified at line 10 or at line 20. Due

to assumption H3 (no message alteration, no spurious
message), in both cases the new value ofesti is the
value of another estimate.

It follows, by induction, thatesti is a value proposed by
some process. �Theorem 1

4.2 Termination

Two preliminary Lemmas are first proved. The first lemma
shows that no blocking can occur at a given round. Then,
the theorem will show that the number of rounds is finite.

Lemma 1 If no process decides during any roundr′ ≤ r,
then all correct processes start roundr + 1.

Proof. The proof is by contradiction. Suppose no process
has decided in any roundr′ ≤ r, wherer is the smallest
round number in which some correct process blocks forever
in the while loop (lines 8-24). Let us note that no correct
process has received adecide message (otherwise, it would
execute lines 2-3 and decide).

1. Note first that any process starting roundr does so in
stateq0 (line 5). Firstly, it is shown that a correct process
pi can not remain in stateq0 during roundr. This follows
from:
– (i) Either pi suspectspc and moves toq2 (lines 15-

17). This is due either to a mistake of the underlying
failure detector, or to a crash ofpc.

– (ii) Or pi never suspectspc. Due to assumption H2.1
(Strong Completeness), this means thatpc is correct:
eventually it broadcasts acurrent vote. Due to
assumption H3,pi receives at least onecurrent
vote (frompc or from another process) and moves to
q1 (line 12).

2. Next, it is shown, that a correct process can not remain
in stateq1.
From the previous point, any correct process either sends
a current vote and moves toq1 (Case ii), or sends a
next vote and moves toq2 (Case i). As there is a ma-
jority of correct processes, it follows that for any correct
processpi, we will have |rec fromi| > n/2. More-
over, during roundr, for any (correct or not) processpk,
any correct processpi either eventually receives acur-
rent/next vote frompk, or (due to assumption H2.1:
Strong Completeness) eventually suspectspk (by defini-
tion, if pk is not correct, it eventually crashes). Hence,
the condition stated at line 21 eventually becomes true:
pi issues anext vote and moves toq2.

3. It follows from the two previous points that all correct
processes move toq2 and send anext vote. Conse-
quently, any correct processpi receives a majority of
next votes, and asnb nexti > n/2, proceed to round
r + 1. A contradiction.

�Lemma 1

Lemma 2 During a roundr, if no process moves fromq0
directly toq2 within thewhile loop, then no process sends a
next vote (or equivalently, no process moves toq2).

Proof. Note first that any process starts roundr in state
q0 (line 5). Moreover, during any roundr, a process can
receive severalnext votes but can send at most one. Let a
r-prime process be a process that, during roundr, has sent
a next vote before receiving anext vote. Suppose that,
during roundr, a process sends anext vote. At least one
processpi is r-prime. We will show there is a contradiction.

Following the Lemma assumption, no process executes
line 16. Consequently,pi sends thenext vote at line 22
(Case 1) or at line 25-26 (Case 2).

– Case 1.Processpi has executed line 22.
To change its mind,pi had | rec fromi |> n/2, i.e., it
had received a (current or next) vote from a majority
of processes (line 21).
– If all these votes arecurrent votes, thenpi has

decided at line 14 when it received the last vote
making true the conditionnb currenti > n/2. Con-
sequently, aspi has executed areturn statement it
will never execute line 22. This contradicts the Case
1 assumption.

– If one of these votes is of typenext, then some
processpk sent anext vote that has been received
by pi. This contradicts the fact thatpi is r-prime.

– Case 2.Processpi has executed line 25 or 26.
To send anext vote at line 25 or 26,pi has terminated
its while loop. So, it hasnb nexti > n/2. It follows that
pi has receivednext votes. This contradicts the fact that
pi is r-prime.

�Lemma 2

Theorem 2 Every correct process eventually decides some
value.

Proof. Let us consider the two following cases.

1. A processpj decides. It does so at line 3 or at line 14.
As shown by these lines,pj has broadcast adecide
message before deciding. As communication is reliable
(H3), any correct processpi will receive this decide
message, and will decide accordingly.

2. No process decides. We will show there is a contra-
diction. In that case, there is a timet after which: (1)
there are no more crashes5, and (due to assumption H2.2,
Eventual Weak Accuracy) (2) there is a correct process
that is no longer suspected (letpj be this process). Letr
be the first round that occurs aftert and which is coor-
dinated bypj (due to Lemma 1, such a round does exist
since no process decides).
During roundr, let us examine the set of processes after
they entered thewhile loop (lines 8-24). Note that, due
to the assumption onr, from now on, all active processes
are correct.
- The coordinatorpj sends acurrent vote to all pro-
cesses (lines 6 and 9-12).
- As, by assumption, the current coordinatorpj is not

5 So, aftert we have only to consider correct processes.

A simple and fast asynchronous consensus protocol based on a weak failure detector 217

suspected, no processpi executes lines 15-17. Conse-
quently, no process executes line 16. More precisely, no
process moves directly fromq0 to q2 within the while
loop.
- As no process moves directly fromq0 to q2 within the
while loop, from Lemma 2, we conclude that no process
sends anext vote, i.e., no process moves toq2.
- As each processpi enters thewhile loop and does not
move to q2 within this loop, when it receives acur-
rent vote for the first time,pi is necessarily in stateq0.
According to lines 9 and line 12, it moves toq1 and also
votescurrent (sending this vote to all processes).
- As there is a majority of correct processes (H1), and
as communication is reliable (H3), it follows that each
processpi will receive a majority ofcurrent votes. As
no process sends anext vote, it follows that any cor-
rect processpi will necessarily decide at line 14. This
contradicts the assumption that no process decides.

�Theorem 2

4.3 Uniform agreement

First, three preliminary lemmas are proved. Then, they are
used in the proof of the Uniform Agreement theorem.

Lemma 3 Let us consider a processpi. During any round
r, we have(nb currenti /= 0) ⇒ (esti = estc), wherepc is
the coordinator of roundr.

Proof. Casei = c. First, let us note thatestc is not updated.
When pc executes line 10, due to line 6,nb currentc =
−1. Then,nb currentc is increased to 1 (lines 11 and 13).
So, if it is executed, line 20 does not updateestc (because
nb currentc > 0).

Casei /= c. The estimateesti can be updated during
roundr at line 10 or at line 20. During roundr, due to the
fact that (1)nb currenti (i /= c) is initialized to 0 (line 7), (2)
nb currenti is now different from 0 (Lemma assumption),
(3) nb currenti can only be increased at line 11, it follows
that, the last update ofesti has necessarily occurred at line
10 (if any, the previous ones have been done at line 20). So,
esti has been updated at line 10 withestk, whenpi received
a votecurrent(pk,r,estk) for the first time (see the test at
line 10).

1. Casepk = pc. The Lemma trivially follows.
2. Casepk /= pc.

When examining the sequence ofcurrent messages
that entail the update ofesti, we can make the follow-
ing observations:
- During a given roundr, the update of the estimate at
line 10 and the sending of acurrent vote (at line 12)
are executed at most once by a process.
- During a given roundr, any processpj (distinct from
pc) that issues acurrent(pj , r, estj) vote (at line 12),
has previously received acurrent(−, r, est) vote (at
line 9). Moreover, due to the update ofestj done at line
10, estj = est.
- A single process, namelypc, can initiate such a se-
quence ofcurrent votes.

It follows from these observations that the sequence of
current votes entailing the update ofesti (1) is finite,
(2) is initiated bypc, and (3) piggybacks the value of
estc. Hence,esti = estk = · · · = estj = · · · = estc.

�Lemma 3

Lemma 4 Any processpi that sends adecide message la-
beled with the round numberr, decides valueestc (wherepc

is the coordinator of roundr).

Proof. Let us consider the two possible cases.

1. Processpi decides during roundr at line 14: so, it has
nb currenti /= 0. From Lemma 3, it decidesestc. More-
over, let us observe that all processes that decide at line
14 during roundr, sentdecide messages carrying the
same value, namely,estc.

2. If a processpi decides at line 3, it decides on the value
carried by adecide message sent with the round label
r. All those decide messages carryestc. This follows
from the fact that anydecide message labeled withr:
- Either is (initially) sent at line 14: due to the previous
observation, it carriesestc.
- Or, is sent at line 3: in that case, it only forwards a value
sent initially. (Due to asynchrony, it is possible that this
value, launched from a process deciding during round
r at line 14, went through several processes, and has
therefore been carried by several “consecutive”decide
messages before arriving atpi).

�Lemma 4

Lemma 5 If processpi decidesv and sends adecide mes-
sage labeled with the round numberr, then all processespj

that start roundr + 1 do so withestj = v.

Proof. Let us consider roundr (coordinated bypc). We first
establish a relation (R7) that is then used to prove the lemma
by contradiction.

1. As pi sends adecide message labeled with the round
numberr, some processpk (possiblypk = pi) has exe-
cuted line 14 during roundr, consequently,nb currentk
> n/2 (R1). Furthermore, by Lemma 4, the decided
valuev is equal toestc.

2. Let us consider the three following sets of processes (re-
lated to roundr):
– Xr

1 = { processes that moved fromq0 to q1 and did
not move toq2 }
– Xr

2 = { processes that moved fromq0 directly to q2 }
– Xr

3 = { processes that moved fromq0 to q1 and then
to q2 }
Note that these sets are disjoint. They include processes
that have possibly crashed after moving fromq0 to an-
other state6. Moreover, we have|Xr

1 | + |Xr
2 | + |Xr

3 | ≤ n
(R2).

3. Let sent to pk be the number of processes that sent a
current vote to pk (at line 12). As the number of
current votes sent to apk is greater or equal to the
number of current votes received bypk, we have
sent to pk ≥ nb currentk (R3).

6 They may have crashed during the execution of the send statement
associated with a state transition.

218 M. Hurfin, M. Raynal

4. All processes belonging toXr
3 have sent acurrent

vote topk at line 12 (when they moved fromq0 to q1).
Moreover, all processes belonging toXr

1 and which ex-
ecuted all of line 12 have sent acurrent vote to pk.
Some processes belonging toXr

1 and which have par-
tially executed line 12 have also sent acurrent vote to
pk. Finally, processes inXr

2 have not sent acurrent
vote. It follows thatsent to pk ≤ |Xr

1 | + |Xr
3 | (R4).

5. From nb currentk > n/2 (R1) and sent to pk ≥
nb currentk (R3), we concludesent to pk > n/2 (R5).

6. Fromsent to pk > n/2 (R5) andsent to pk ≤ |Xr
1 | +

|Xr
3 | (R4), we conclude|Xr

1 | + |Xr
3 | > n/2 (R6).

7. From|Xr
1 |+|Xr

3 | > n/2 (R6) and|Xr
1 |+|Xr

2 |+|Xr
3 | ≤ n

(R2), we conclude|Xr
2 | < n/2 (R7).

The proof is now by contradiction. Suppose thatpi decides
(and consequently R7 holds), and that it exists a processpj

which enters roundr + 1 with estj /= v (i.e., estj /= estc).
Let us consider the valuenb currentj just beforepj leaves
round r (lines 4-27) and enters roundr + 1 (line 5). There
are two cases.

1. nb currentj /= 0. In this case, according to Lemma 3, we
haveestj = estc at the end of roundr. A contradiction.

2. nb currentj = 0. In this case, since, according to the
lemma assumption,pj proceeds to the next round, it
has received a majority ofnext votes, i.e., we have
nb nextj > n/2 (R8), at the end of roundr. Combining
(R7) and (R8), we getnb nextj > n/2 > |Xr

2 | (R9).
Sincenext votes are only sent by processes belonging
to Xr

2

⋃
Xr

3 , and as (by definition)Xr
2

⋂
Xr

3 = ∅, from
(R9) (namely,nb nextj > n/2 > |Xr

2 |) we conclude
that pj received at least onenext vote from a process
pl ∈ Xr

3 .
As pl belongs toXr

3 (see Fig. 1):
– pl first passed throughq1. So, it executed lines 9-14,

from which we concludenb currentl /= 0. More-
over, asnb currentl /= 0, from Lemma 3, we get
estl = estc.

– pl then moved fromq1 to q2. So, it necessarily sent
this next vote at line 22 or 26. Hence, this vote has
the formnext(pl, r, estc, deadlock prevention).

Whenpj receivesnext(pl, r, estc, deadlock prevention)
(lines 18-20) the condition at line 20 (nb currentj = 0
∧ flagk = deadlock prevention) is satisfied, and con-
sequently,pj has updatedestj to estc. A contradiction.

�Lemma 5

Theorem 3 No two processes decide different values.

Proof. Let us consider two processespi andpj which decide.
Let us consider a roundr and letpc be the coordinator of
roundr. As before, letestc denote the estimate ofpc during
roundr. We consider the two following cases.

1. Bothpi andpj send adecide message labeled withr.
In that case, due to Lemma 4, they decide the same value,
namely,estc.

2. Processpi decidesv and sends adecide message la-
beled r, while pj sends adecide message labeledr′
(r′ > r).

Due to Lemma 5, all processespk that start roundr+1, do
so with estk = v. Moreover, due to Lemma 4,v = estc.
In other words, the only estimate value present in any
process participating in any roundr′ ≥ r + 1, is now
v = estc. So, whatever the coordinator of roundr′, due
to Lemma 4, the value decided bypj will be v = estc.

�Theorem 3

5 Discussion

5.1 About synchronization

The case of FIFO channels.Firstly, if the (reliable) channels
are also FIFO, then the votes are received according to their
round number. Let us examine the behavior of two processes
pi and pj during a roundr; pj is the sender andpi is the
receiver. The are two cases (Fig. 1).

1. Processpj moves fromq0 to q2 and sends anext vote
(at line 16 or at line 25). As we have seen, this vote
is definitive: during this roundpj will not send another
vote.

2. Processpj first sends acurrent vote and moves from
q0 to q1. We have seen that, in that case, it may later
send anext vote (and accordingly, move toq2); this
can occur at line 22 becausepi changes its mind, or at
line 26 becausepi progresses to the next round. So, if
pj sends two votes during roundr, they are ordered in
the following way:
a) current(pj ,r,estj) at line 12.
b) next(pj ,r,estj , deadlock prevention) at line 22 or

at line 26.
Let us consider the receiverpi. If channels are FIFO,
it first receivescurrent(pj ,r,estj) and executes lines
9-14. Hence, whatever the value ofnb currenti was
before executing lines 9-14, this value is different from
0 after. So, whenpi later receives thenext vote from
pj (line 18), the test done at line 20 necessarily evaluates
to false.

Consequently, if channels are FIFO, line 20 can be sup-
pressed, and both the estimate field and the flag field can
also be suppressed fromnext votes, without altering the
correctness of the protocol.

Proceeding to the next round.As we have seen in the proof
of Lemma 1, lines 21-23 aim at preventing deadlock situ-
ations, i.e., if no process has yet decided, then no correct
process will be blocked in the current round. To unblock
a (potentially) blocking situation, a processpi changes its
mind by votingnext after having votedcurrent. This
change of mind is conditioned by the following condition
C1 (line 21):

C1 ≡ ((statei = q1) ∧ (| rec fromi |> n/2) ∧
(∀pk : pk ∈ rec fromi ∪ suspectedi))

Actually, a weaker conditionC2 (independent of the under-
lying failure detector) can be used by a process to change

A simple and fast asynchronous consensus protocol based on a weak failure detector 219

its mind, namely7:

C2 ≡ ((statei = q1) ∧ (| rec fromi |> n/2))

If processes useC2 instead ofC1, then, during a round
r, only the current coordinatorpc can be suspected (line
15). Moreover, a process has to consult its failure detector
module (line 16) only during a limited period, namely, when
statei = q0. Let us note that any processpi can useC1 in
some rounds, andC2 in other rounds. Actually, as far as
progress to the next round is concerned, these two conditions
implement two different strategies:

– C2 implements aneager strategy. A process sends a
next(−,−,−, deadlock prevention) vote as soon as
it suspects the possibility of a deadlock. This strategy
can make processes proceed quicker to the next round,
but this does not mean that a “true” deadlock has been
prevented.

– C1 implements aconservativestrategy. To send anext
(−,−,−, deadlock prevention) vote, a process waits
until it has obtained information about the state of each
process.

More generally, the synchronization used to proceed to the
next round can be tuned to fit particular needs. It is also
possible to add a user-defined condition toC1 or to C2
(of course, in that case, termination of the consensus pro-
tocol will also depend on this condition). For example, if
the underlying asynchronous system has additional behav-
ioral properties (e.g., related to real-time), such user-defined
conditions could take into account some of these properties.

5.2 Cost analysis

Message complexity.It is easy to see that, per round, the
number of messages of the proposed protocol isO(n2) when
the underlying network is a point-to-point communication
network, andO(n) when the underlying network is a broad-
cast communication network.

Time complexity.For analyzing time complexity, we con-
sider, on the one hand, that the duration of local processings
is negligible and consequently takes no time, and on the
other hand, that every message transfer takes one “logical
time unit” (this constitutes assumption A1). This assump-
tion frees us from uncertainties due to the time-freeness
of asynchrony. It allows evaluation of the cost of a round-
based consensus protocol by counting the minimal number
of communication steps (i.e., the lenght of the sequence of
messages) required to reach a decision in well identified sce-
narios (when considering failure-free scenarios, this number
is thelatencynotion introduced in [14]). Actually, this num-
ber also depends on the actual failure pattern and on the
behavior of the underlying failure detector. (In the worst
case, if the underlying failure detector never satisfies prop-
erties defined by♦S , it is possible that no consensus will

7 C2 is weaker thanC1 becauseC1⇒ C2. The reader can easily check
that Case 2, in the proof of Lemma 1, remains correct whenC2 is used
instead ofC1.

ever be reached). So, to evaluate the intrinsic time com-
plexity of the proposed consensus protocol, we also assume
that the underlying failure detector makes no mistakes (this
constitutes assumption A2). This assumption frees us from
arbitrary behaviors of the failure detector8.

Assuming A1 and A2, we evaluate the time complexity
by counting the number of communication steps involved in
a roundr in the following failure scenarios (pc denotes the
coordinator of roundr):

– Pattern (1): At the end of roundr, the current coordinator
pc has not crashed.
In that case, there are 2 communication steps. During
the first step,pc sends a votecurrent(pc, r, estc) and
all processes receive it (line 9)9. The second step starts
when each correct process propagates this vote (line 12),
and terminates when they have received a majority of
current votes allowing them to decide (line 14). Thus,
during the current round, a decision is obtained after 2
communication steps.

– Pattern (2): The current coordinatorpc has crashed be-
fore roundr.
In that case, at the beginning of roundr, all correct pro-
cesses suspectpc (line 15) and send anext vote to
proceed to the next round (line 16). As there is a major-
ity of correct processes, each of them receives a majority
of next votes after one time unit. So, in that scenario,
the proposed protocol requires only one communication
step in order to proceed to roundr + 1.

5.3 A comparison with other protocols

Section 3.1 briefly sketched Chandra-Toueg’s [4] (CT) and
Schiper’s [14] (SC) consensus protocols. Assuming that the
reader is familiar with the CT and the SC protocols, this
section compares these protocols with the one proposed in
this paper (HR protocol). They all are based on the rotating
coordinator paradigm and proceed in asynchronous rounds.
We first compare how each protocol ensures safety (Valid-
ity and Agreement) and liveness (Termination). Then, we
compare these protocols in some failure patterns.

How is the safety property ensured?The Validity property
is easy to ensure. As indicated before, the Agreement prop-
erty is the difficult part because, due to process crashes and
possibly erroneous failure suspicions, it is possible that dis-
tinct processes decide during distinct rounds. As with other
consensus protocols (e.g., [8]), we use thevalue lockingno-
tion to explain how Agreement is guaranteed by CT, SC and
HR: a value getslockedas soon as it has been adopted by
a protocol thus becoming the decision value (independently
from the fact processes know it).

In CT, the locking mechanism works in the following
way. During a round, a value proposed by the current coor-
dinator gets locked as soon as it has been positively acknowl-
edged by a majority of processes. When a process positively

8 In other words, to analyze time complexity, we assume that the under-
lying network behaves as a synchronous network, and that the underlying
failure detector behaves as a perfect failure detector [4] (i.e., a failure de-
tector that makes no mistakes).

9 Of course, we suppose that, at line 6, the sending bypc of a message
to itself takes no time.

220 M. Hurfin, M. Raynal

acknowledges a value, it considers it as its new estimate. A
timestamping mechanism associated with estimates, ensures
that if several estimates are locked during distinct rounds,
they are necessarily equal to a same value initially proposed
by a process.

In SC and HR, a value gets locked as soon as it has been
forwarded by a majority of processes, during a round. Both
protocols ensure that if a valuev has been locked during a
roundr, then any process entering a round> r hasv as the
estimate value. LetP be this property. SC and HR differ
in the way they guaranteeP . More precisely:

– In SC, during a round, a process can be in two states
phase1 or phase2. In phase1, pi tries to establish a deci-
sion value. If a processpi has received a majority ofsus-
picion messages (indicating that a majority of processes
suspect the current coordinator), it moves fromphase1
to phase2: this means it will ineluctably progress to the
next roundr + 1. But, while it is inphase2 and before
proceeding tor + 1, pi exchangesestimate2 messages
(carrying estimate values) with other processes. These
exchanges ensure that propertyP holds.

– In HR, ensuring propertyP requires neither an addi-
tional step, nor additional messages. A process guaran-
tees this property when it sends anext vote to prevent
a possible deadlock (line 22). Such a vote carries the
value proposed by the coordinator of roundr (this value
has possibly been decided by some processes during this
round). To be more explicit, let us consider a processpi

that decides during roundr and a processpj that pro-
gresses tor + 1. In that case, at the end of roundr we
havenb currenti > n/2 andnb nextj > n/2. At least
one processpk belongs to both majorities: so, it sent first
acurrent vote and then anext vote. The dissymmet-
ric automaton governing the behavior ofpk, shows that
pk has first adopted the coordinator estimateestc (when
it moved fromq0 to q1 and sent thecurrent vote), and
later has changed its mind (when it moved fromq1 to q2
and sent anext(pk, r, estc, deadlock prevention) vote
to pj). When pj received this vote, it updatedestj to
estc (i.e., the value proposed by the current coordinator
and decided bypi).

How is the liveness property ensured?In the three protocols
Termination is based on the properties of the underlying
failure detector and on the assumption that a majority of
processes is correct. CT, SC and HR use these properties in
the following way:

– Combined with therotating coordinatorparadigm, the
Eventual Weak Accuracy property of the underlying fail-
ure detector is used by each protocol to ensure that it is
possible to eventually reach a roundr′ during which the
coordinator will not be suspected.

– Each protocol uses the Strong Completeness property of
the underlying failure detector, and assumes a majority of
correct processes, to make processes eventually progress
to roundr + 1 if no value has been decided during round
r. This prevents deadlock and consequently ensures that
the roundr′ will actually be reached.

A subtle difference in the way each protocol ensures the
Termination property is revealed by their Termination proofs.

These proofs are done in one way for CT and HR, and in
another way for SC. More precisely, the Termination proof
of CT and HR explicitly considers the timet after which
all faulty processes have crashed (for HR, see the proof
of Theorem 2, footnote 5). The Termination proof of SC
does not require considering such a timet. This difference
comes from the fact that these protocols use very different
mechanisms to prevent deadlocks. Consequently, this makes
the protocols terminate in different ways according to failure
and failure suspicion scenarios.

Number, type and size of messages in CT, SC and HR.
Let us first consider the number of messages exchanged by
each protocol during a round. As previously noted, CT uses
Skeen’s centralized message exchange pattern, and conse-
quently a round requires 3(n − 1) messages. When they
decide during a round, both SC and HR requiren(n − 1)
messages. When it proceeds to the next round, HR does
not require more messages, while SC does due its additional
communication step (but this number is stillO(n2)). Clearly,
when considering a round of coordinator-based♦S -based
consensus protocols, there is a tradeoff between the time
complexity (which favors SC and HR) and the message com-
plexity (which favors CT).

CT, SC and HR use three types of messages:estimate,
ack/nack anddecide messages in CT,estimate, sus-
picion anddecide messages in SC, andcurrent, next
anddecide messages in HR. Let us consider the size of the
biggest messages used by each protocol (estimate mes-
sages in CT and SC, andnext messages in HR). All those
messages carry their identity, which is made of the pair
(identity of the sender process, sequence number)10, and an
estimate of the decision value (e.g., esti in HR). Then, CT,
SC and HR differ in the following way:

– In CT: estimate messages carry an additional poten-
tially unbounded value, namely, a timestamp (the value
of which is a round number).

– In SC:estimate messages carry two additional bounded
values, namely:
- A boolean value indicating the phase number (1 or 2)
of the current round at which the messages is sent,
- A process identity, namely, the identity of the pro-
cess to which refers the current estimate value (for each
processpi, this value appears in a field of its current
estimate).

– In HR: next messages carry an additional boolean
value (namely, its last field whose value issuspicion
or deadlock prevention).

So, with respect to CT, no additional timestamp is carried
by messages in SC and HR. Moreover, when compared to
estimate messages used in SC, anext message used in
HR has not to carry an additional process identity, thereby,
savinglog2(n) bits.

CT, SC and HR with reliable failure detectors.We first study
the case where the underlying failure detector offers a very

10 Here the sequence number is the corresponding round number.

A simple and fast asynchronous consensus protocol based on a weak failure detector 221

Table 1. Number of steps with reliable failure detectors

FP 0 FP 1 FP 2 FP 3
CT 4 (11) 4 4 4
SC 2 4 6 8
HR 2 3 4 5

good quality of service,i.e., when it makes no mistake. Re-
member that, in many systems, failure detectors can be tuned
to make mistakes very infrequently.

Let us consider a system composed of 7 processes:
p1, . . . , p7, and let us examine the following four failure
patterns. We also assume that processes that are not cor-
rect have crashed before the consensus is launched. Process
p1 is the first coordinator,p2 is the second, etc.

- FP0: All processes are correct.
- FP1: All processes butp1 are correct.
- FP2: All processes butp1 andp2 are correct.
- FP3: All processes butp1, p2 andp3 are correct.

For each failure pattern, Table 1 defines the total number of
communication steps required by a given protocol to decide
(The “communication step” notion is the one introduced in
the “Time complexity” paragraph, Sect. 5.2. Actually, the
“number of communication steps” measure is close tola-
tencynotion [14] defined from failure-free runs).

In all these failure patterns, CT always requires 4 steps.
This is due to the fact that, when the underlying failure
detector makes no mistake, CT requires (1) 4 steps to decide
during a round if the current coordinator has not crashed, and
(2) no communication steps to proceed from a round with a
crashed coordinator to the next round (a process that suspects
the current coordinator immediately proceeds to the next
round without waiting for messages). In the same context,
if, during a round, the current coordinator has crashed SC
requires 2 communication steps for processes to progress to
the next round; HR requires only one.

It is important to note that, while failure are rare in prac-
tice, they do occur. This means that the failure patterns most
often encountered areFP0 andFP1.

SC and HR with unreliable failure detectors.From a syn-
tactical point of view, when there are neither failures nor
suspicions, both SC and HR follow a message exchange
pattern similar to the one used by Skeen in his decentral-
ized commit protocol [15]. Their respective behaviors differ
when there are failures or erroneous suspicions. Two of their
basic differences lie (1) in the way they prevent deadlock,
and (2) in the way they ensure the Agreement property. Each
protocol uses a specific solution to address these problems.
More precisely, they use distinct conditions to allow pro-
cesses to progress to the next round, and distinct techniques
for ensuring a single value is decided. As we have previously
examined the latter point (in the Section titled “How is the
safety property ensured?”), we focus here on deadlock pre-
vention and on other differences between the protocols. The
progress to the next round is related tosuspicion messages
in SC, and tonext votes in HR. But these messages/votes
are not equivalent. Consequently, SC and HR can behave
very differently when there are erroneous failure suspicions.

11 Actually, this number can easily be reduced to 3 as shown in [1, 14].

Although HR compares favorably with SC when the under-
lying failure detector makes no mistake, this can no longer
be true when erroneous failure suspicions occur. Intuitively,
SC and HR present a fundamental difference in the way
they behave with respect to failure suspicions: SC “does not
trust” the failure detector while HR “trusts” it. The following
particularities characterize each protocol.

– In SC, during a round, only the coordinatorpc can be
suspected. A process broadcasts asuspicion message
only when it suspectspc. A process decides to proceed
to the next round when it has received a majority of
suspicion messages. So, when a process progresses to
the next round, the coordinator is suspected by a major-
ity of processes. This “majority of suspicions” condition
is well-suited to resist erroneous failure suspicions: it
favors a decision during the current round when the co-
ordinator has not crashed and less than a majority of
processes (falsely) suspects it.

– In HR, a process proceeds to the next round when it has
received a majority ofnext votes. But, as we have seen,
two different conditions are associated with the sending
of next votes.
– The first condition, used at lines 15-16, states that

the issuing processpi suspects the coordinator: this
vote has the formnext(−,−,−, suspicion). In that
case, as soon aspi has sent such a vote, differently
from SC, it can no longer votecurrent. This means
that if a process has sentnext(−,−,−, suspicion),
it can no longer favor a decision during the current
round. (But, note that this does not prevent a decision
to be taken during the current round.)

– The second condition, used at line 21, is associated
with deadlock prevention: the corresponding vote is
next(−,−,−, deadlock prevention). Sending this
vote does not means that the issuing processpi sus-
pects the coordinator, it only means thatpi either
suspects or has got a vote from any process. Note
that, whenpi sends such a vote, it has previously
sent acurrent vote, thereby favoring the decision
during the current round.

So, in presence of erroneous failure suspicions, it is difficult
to compare failure detector-based consensus protocols. Ac-
tually, an in-depth performance study of those protocols has
to be based on a probabilistic model of thequality of service
of the underlying failure detector (the highest quality being
offered by a perfect failure detector). Such a performance
characterization is beyond the study addressed in this paper.
It is however important to note that both SC and HR have
the following interesting property: in failure-free runs, erro-
neous suspicions do not force processes to progress to the
next round, as long as a majority of failure detector modules
do not make mistakes. Such a property is not guaranteed by
CT, where there are runs in which it is possible that an er-
roneous suspicion made by a single failure detector module
prevents the current coordinator from deciding during the
current round.

222 M. Hurfin, M. Raynal

6 Conclusion

The Consensus problem is a fundamental paradigm for fault-
tolerant asynchronous systems. It abstracts a family of prob-
lems known as Agreement (or Coordination) problems: any
solution to consensus can serve as a basic building block for
solving agreement problems (such as, for example, atomic
commitment or atomic broadcast). Solving consensus in an
asynchronous system is not a trivial task: it has been proven
(1985) by Fischer, Lynch and Paterson that there is no deter-
ministic solution in asynchronous systems subject to even a
single crash failure. To circumvent this impossibility result,
Chandra and Toueg have introduced the concept of unreli-
able failure detectors (1991), and have studied how these
failure detectors can be used to solve consensus in asyn-
chronous systems with crash failures.

This paper has presented a new consensus protocol,
based on a failure detector of the class♦S . Like previous
protocols, the proposed protocol is based on the rotating co-
ordinator paradigm and proceeds in asynchronous rounds, to
benefit from the Eventual Weak Accuracy property of♦S .
More generally, in addition to a new consensus protocol, the
main contributions of this paper are the followings.

– A first contribution lies in the design simplicity of the
proposed protocol. Its design relies on a simple and orig-
inal combination of well-known mechanisms: a voting
mechanism, a small finite state automaton that manages
the behavior of each process, and allowing a process to
change its mind during a round. This shows that simple
principles can go a long way.

– A second contribution lies in the time efficiency of the
protocol when the underlying failure detector makes no
mistake, whether there are failures or not. In those cases,
(1) if the current coordinator has not crashed, the de-
cision is obtained in two communication steps (as SC
[14]); (2) if the current coordinator has crashed, only
one communication step is required to proceed to the
next round in order to benefit from another coordinator.
This efficiency in no erroneous suspicion runs has been
obtained by using a simple idea, namely that the proto-
col trusts the underlying failure detector. Consequently,
one of its practical interests is the graceful degradation it
provides in presence of process crashes, when the under-
lying failure detector makes no mistakes. An important
point of the protocol is the fact that its efficiency has not
been sacrificed in order to obtain design simplicity. An-
other important point is that its time efficiency has not
been obtained at the price of an increase in the number
of messages, or in their size.

– Another, but not least, contribution of this paper con-
cerns the demystification of the consensus problem. Al-
though the simplicity issue in the design of a protocol is
not directly related to its correctness or to its efficiency,
we think that the simplicity of a solution greatly con-
tributes to the demystification of a problem. As far as
the consensus problem is concerned, we hope that the
proposed protocol is a step in this direction. This should
“ lead to consider consensus as it should be, i.e., as a
basic building block for implementing fault-tolerant dis-

tributed systems, rather than an interesting problem for
theoreticians” [14].

Schiper’s protocol [14] and the proposed protocol can
be seen as two♦S -based consensus protocols of the same
family in the following sense: in failure-free and erroneous
suspicion-free runs, they use the same “Skeen’s decentral-
ized message exchange pattern” [15]. Consequently, in those
runs, they have the same time and message complexities.
This is no longer true in presence of crashes. The aim of
Schiper was to propose a protocol that is time efficient in
runs where there are neither failures, nor erroneous suspi-
cions. This was a significant advance. The proposed protocol
can be seen as a further step in this direction: it is time effi-
cient when the underlying failure detector behaves reliably,
whether there are failures or not. The design of consensus
protocols that, in addition, would remain time efficient in
“some” erroneous failure suspicion scenarios, would con-
stitute further significant advances. But, when considering
Schiper’s protocol, Chandra-Toueg’s protocol and the pro-
posed protocol it is important to say (as indicated at the end
of Sect. 5.3) that none of them definitely outperforms the
other two in presence of erroneous suspicions.

To conclude, let us note that the following question
(which was out of the scope of the paper) remains open.
It concerns the optimality [7] of consensus protocols in er-
roneous suspicion-free runs. In such a context, when consid-
ering consensus protocols based on a failure detector of the
class♦S , are 2 and 3 the minimal numbers of communi-
cation steps required to decide at the end of the first round,
and to decide at the end of the second round, respectively?

Acknowledgments.The authors are grateful to Roberto Baldoni, Jean-
Michel Hélary, Achour Most́efaoui and Fŕed́eric Tronel whose comments
on drafts of this paper helped improve the presentation. The comments and
suggestions of the anonymous referees were also instrumental in improving
the paper. The authors are also grateful to a referee who has suggested a
shorter and “more natural” proof for Lemma 1. They also thank Udo Fritzke
and Philippe Ingels who have implemented the protocol on a network of
workstations.

References

1. Aguilera M.K. and Toueg S. Randomization and Failure Detection:
A Hybrid Approach to Solve Consensus. In Proc. of the 10th Int.
Workshop on Distributed Algorithms, Springer-Verlag, LNCS 1151 (Ö.
Babaŏglu and K. Marzullo Eds), pp. 29–39, Bologna, Italy, October
1996

2. Birman K.P. and Joseph T.A. Reliable Communication in the Pres-
ence of Failures. ACM Transactions on Computer Systems,5(1):47–76,
February 1987

3. Birman K.P. Building Secure and Reliable Network Applications. Man-
ning Publication Co., Greenwich, CT, 1996, 591 pages

4. Chandra T. and Toueg S. Unreliable Failure Detectors for Reliable
Distributed Systems. Journal of the ACM, 34(1):225–267, March 1996
(A preliminary version appeared in Proc. of the 10th ACM Symposium
on Principles of Distributed Computing, pp. 325–340, 1991)

5. Chandra T., Hadzilacos V. and Toueg S. The Weakest Failure Detector
for Solving Consensus. Journal of the ACM, 43(4):685–722, July 1996
(A preliminary version appeared in Proc. of the 11th ACM Symposium
on Principles of Distributed Computing, pp. 147–158, 1992)

6. Dolev D., Dwork C. and Stockmeyer L. On the Minimal Synchronism
Needed for Distributed Consensus. Journal of the ACM, 34(1):77–97,
January 1987

A simple and fast asynchronous consensus protocol based on a weak failure detector 223

7. Dolev D., Reischuk R. and Strong R., Early Stopping in Byzantine
Agreement. Journal of the ACM, 37(4):720–741, April 1990

8. Dwork C., Lynch N. and Stockmeyer L. Consensus in the Presence of
Partial Synchrony. Journal of the ACM, 35(2):288–323, April 1988

9. Fischer M.J., Lynch N. and Paterson M.S. Impossibility of Distributed
Consensus with One Faulty Process. Journal of the ACM, 32(2):374–
382, April 1985

10. Gray J.N. Notes on Database Operating Systems. In Operating Sys-
tems: An Advanced Course, Springer-Verlag, LNCS 60 (R. Bayer,
R.M. Graham and G. Seegmuller Eds), pp. 393–481, 1978

11. Guerraoui R. Revisiting the Relationship Between Non-Blocking
Atomic Commitment and Consensus. In Proc. of the 9th Int. Workshop
on Distributed Algorithms, Springer-Verlag, LNCS 972 (J-M. Hélary
and M. Raynal Eds), pp. 87–100, Le Mont-Saint-Michel, France,
September 1995

12. Guerraoui R. and Schiper A. Consensus: the Big Misunderstanding. In
Proc. of the 6th IEEE Workshop on Future Tends of Distributed Com-
puting Systems, IEEE Computer Society, pp. 183–188, Tunis, Tunisia,
October 1997

13. Malkhi D. and Reiter M. Unreliable Intrusion Detection in Distributed
Computations. In Proc. of the 10th IEEE Computer Security Founda-
tions Workshop, pp. 116–124, Rockport, MA, June 1997

14. Schiper A. Early Consensus in an Asynchronous System with a Weak
Failure Detector. Distributed Computing, 10:149–157, 1997

15. Skeen D. Non-Blocking Commit Protocols. Proc. Int. ACM-SIGMOD
Conference on Management of Data, pp. 133–142, 1981

Michel Hurfin received the PhD degree in Computer Science from the
University of Rennes, France, in 1993. His dissertation topic addressed ex-
ecution replay and property detection in distributed applications. In 1994,
he spent one post-doctoral year at Kansas State University, Manhattan,
in the research group of Professor M. Mizuno. Dr. Hurfin is currently
a researcher at the INRIA unit of Rennes. His research interests include
distributed systems, software engineering and middleware for distributed
operating systems. Recently, he has initiated research on distributed fault-
tolerant middleware.

Michel Raynal has been a professor of Computer Science at the University
of Rennes, France, since 1984. At IRISA (CNRS-INRIA-University joint
computing laboratory located in Rennes) he is the leader of the ADP (Dis-
tributed Algorithms and Protocols) research group that he created in 1986.
He has served as program co-chair of WDAG (now DISC, the Symposium
on Distributed Computing) in 1989 and 1995. He has also served several
times as vice-chair for the “Distributed Algorithms” track of the IEEE Int.
Conference on Distributed Computing Systems. Furthermore, he has served
as a PC member in a lot of international conferences. Michel Raynal has
written seven books (2 published by Wiley & Sons, and 2 by the MIT
Press). He has published more 50 papers in journals and 100 in confer-
ences. Together with other european leaders, he is currently a member of
the ESPRIT Basic Research Network of excellence in Distributed Com-
puting Architectures (CABERNET) currently headed by B. Randell. On
the theoretical side, Michel Raynal’s research interests include distributed
algorithms, distributed systems, distributed computing and fault-tolerance.
His main interest lies in the fundamental concepts, principles and mecha-
nisms that underly the design and the construction of distributed systems.
Among them, he is currently interested in the study of the Causality con-
cept and in the Consensus problem. On the practical side, Michel Raynal
is interested in the implementation of reliable communication primitives,
the consistency of distributed data, the design and the use of checkpointing
protocols and the set of problems that can be solved on top of a consensus
“building block”.

