Distrib. Comput. (1999) 12: 209-223 @HSFRU@WE@
QUIPUITNG

© Springer-Verlag 1999

A simple and fast asynchronous consensus protocol
based on a weak failure detector

Michel Hurfin, Michel Raynal

IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France (e{haifin, rayna} @irisa.fr)

Received: August 1997 / Accepted: March 1999

Summary. The Consensus problem is a fundamental pa-effects of a transaction [10]. In the second case, processes
radigm for fault-tolerant asynchronous systems. It abstracthave to agree on a single delivery order for a given set of
a family of problems known as Agreement (or Coordina- messages [2].
tion) problems. Any solution to consensus can serve as a All these practical agreement problems have been ab-
basic building block for solving such problemsd, atomic stracted into a basic problem, namely fensensugrob-
commitment or atomic broadcast). Solving consensus in atem. More precisely, each process is endowed with a value
asynchronous system is not a trivial task: it has been provethat it proposes to the others, and all correct processes must
(1985) by Fischer, Lynch and Paterson that there is no detelagree on a common decision value, which has to be one
ministic solution in asynchronous systems which are subjecof the proposed values. When the only failures considered
to even a single crash failure. To circumvent this impossi-are process crashes, this problem has relatively simple solu-
bility result, Chandra and Toueg have introduced the con+tions in synchronous distributed systems. Unfortunately this
cept of unreliable failure detectors (1991), and have studieds not the case in asynchronous distributed systems. In these
how these failure detectors can be used to solve consersystems the most famous result is a negative one. The so-
sus in asynchronous systems with crash failures. This paperalled FLP (Fischer-Lynch-Paterson) result [9] states that it
presents a new consensus protocol that uses a failure detectisrimpossible to design a deterministic algorithm solving the
of the class).¥”. Like previous protocols, it is based on the consensus problem in an asynchronous distributed system
rotating coordinator paradigm and proceeds in asynchronoughich is subject to even a single procesash failure. In-
rounds. Simplicity and efficiency are the main characteristicduitively, this is because (in an asynchronous setting) it is
of this protocol. From a performance point of view, the pro- impossible to safely distinguish a very slow process (or a
tocol is particularly efficient when, whether failures occur process with which communications are very slow) from
or not, the underlying failure detector makes no mistake (aa crashed process. This impossibility result has challenged
common case in practice). From a design point of view, theand motivated researchers to find a set of minimal properties
protocol is based on the combination of three simple mechthat, when satisfied in an asynchronous distributed system,
anisms: a voting mechanism, a small finite state automatomake the consensus problem solvable (with a deterministic
which manages the behavior of each process, and the posstgorithm). Minimal synchronism [6], partial synchrony [8]
bility for a process to change its mind during a round. and unreliable failure detectors [4] constitute answers to this
challenge.
Key words: Asynchronous distributed systems — Consen- In this paper, we are interested in solving the consen-
sus problem — Crash failures — Fault-tolerance — Unreliablesus problem, in the presence of process crash failures, in an
failure detectors asynchronous model of computation augmented with unreli-
able failure detectors. Each process is equipped with a failure
detector module that provides it with a list of processes it
currently suspects to have crashed. A failure detector mod-
] ule can make mistakes by not suspecting a crashed process
1 Introduction or by erroneously suspecting a correct one. In a seminal
paper [4], Chandra and Toueg have introduced and studied
It is now well recognized that agreement problems arec|asses of failure detectors. They have defiBedpleteness
fundamental when designing fault-tolerant distributed sys-andAccuracyproperties of failures detectors. The complete-
tems. Among those, atomic commitment and ordered reness property is a property on the actual detection of process
liable broadcast (or atomic broadcast) are the most ofterrashes. The aim of an accuracy property is to restrict the
encountered. In both cases, correct processes have to takerfistakes a failure detector can make. Defining two com-
consistent decision. In the first case, processes are data m%l-eteness properties and four accuracy properties’ Chandra
agers and they have to agree in order to commit or to abort

210 M. Hurfin, M. Raynal

and Toueg have proposed eight classes of failure detectorsbtained by using a decentralized message exchange pat-
Among these classes, one of them, dendpe®” (Eventu- tern, and by investigating a very simple idea, namely, allow
ally Weal, is particularly important as it has been proven a process to query the failure detector only during limited
to be the weakest one that makes the consensus probleperiods, and force it to trust the information it obtains.
solvable [5]. Chandra and Toueg have also shown [4] that, When designing this protocol, we aimed to produce a
using an appropriate reduction algorithm, these eight failurgorotocol which is not only efficient but which also has a rel-
detectors classes can be reduced to four distinct classes. Aatively simple structure. As noted in [3] “Reliability need not
tually, using this reduction algorithm, the claés”7” and = compromise elegance and performance in distributed com-
the class denoted.”” (Eventually Strongare equivalent. puting”. When solving a problem, we think that the design
Several protocols have been proposed which solve thef a protocol which idoth simple and efficierdan provide
consensus problem when the asynchronous distributed sys deeper insight into the problem in question. The design
tem is augmented with failure detectors of the clasg’ and principles of the proposed protocol rely on the use of simple
when a majority of processes are correct. To benefit fronmechanisms: a voting mechanism, a small finite state au-
the accuracy property ¢§., these protocols are based on tomaton that manages the behavior of each process during
the rotating coordinator paradigm: they proceed in asyn- a round, and allowing a process to change its mind during
chronous consecutive rounds, each round being managetl round. This design simplicity is an important issue that
by a predetermined process (the round coordinator). Thahould help demystify the consensus problem, and make
first of these protocols (CT) has been proposed by Chandr# attractive as a basic building block for solutions to dis-
and Toueg [4]. Another protocol (SC) has been proposed byributed agreement problems.
Schiper [14]. It is important to note that it is the possibility
of erroneous suspicions which makes failure detector-based The paper is organized as follows. It is composed of five
consensus protocols anything but trivial. So, for a given runmain sections. Section 2 presents the system model, the class
the real behavior of a protocol depends on the adqquality . of failure detectors, and the consensus problem. Then,
of serviceoffered by the underlying failure detector. Sect. 3 presents the consensus protocol. Section 4 gives a
correctness proof. Section 5 discusses the protocol, analyses
Among the reasons that motivate the search for timets cost and compares it with CT and SC. Finally, Sect. 6
efficient consensus protocols, the following one is particu-concludes the paper and summarizes its contribution.
larly important. As previously indicated, consensus is a basic
building block that can be intensively used to provide higher
level services (such as atomic broadcast or atomic commit2 Asynchronous systems and consensus
ment). Consequently, this crucial part of a fault-tolerant ser-
vice is worth being made as time efficient as possible: thisThis section introduces the system model, failure detectors
helps the service to offer a good response time to uppeand the consensus problem. The system model is patterned
layer applications, in all circumstances. Here, finding theafter the one described in [4,9,14]. A formal introduction to
“holy grail” would be to design an efficient consensus pro- failure detectors is provided in [4,5].
tocol whose response time would not be affected by process
crashes! With a more modest and more realistic goal, in this
paper we are interested in designing a consensus protoc@ll Asynchronous systems
that favors a graceful degradation in presence of failures.
An important point that concerns the design of failure We consider a system consisting of> 1 processed] =
detector-based consensus protocols is related to the quaipi, p,...,p.}. A process can fail bgrashing i.e. by pre-
ity of service offered by the underlying failure detector. As maturely halting; it behaves correctly g, according to its
pointed out in [1]: “In many systems, failures are rare, andspecification) until it (possibly) crashes. By definitior;a-
failure detectors can be tuned to seldom make mistakes (rect process is a process that does not crash, otherwise it is
erroneous suspicions)”. So, a crucial issue lies in the defaulty. Let f denote the maximum number of processes that
sign of consensus protocols that are time efficient in runscan crash. Processes communicate and synchronize by send-
where the underlying failure detector provides a good qualing and receiving messages through channels. Every pair of
ity of service (.e, when it makes no mistake). This aim processes is connected byediable channelj.e., a message
has been attained by the SC protocol failure-freeruns. sent by a process; to a proces; is eventually received
In those runs the decision is obtained in 2 communicatiorby p;, if p; is correct. It is the multiplicity of processes
steps (which seems to be optimal [7,12]). In this paper weand the communication by message-passing that make the
are interested in designing a failure detector-based consenssgstemdistributed
protocol that is time efficient in runs where the underlying There is no assumption about the relative speed of pro-
failure detector makes no mistakeshether there are fail- cesses or the message transfer delays. This absence of timing
ures or not In such runs, if the current coordinator has not assumptions makes the distributed sysssynchronous
crashed, the proposed protocol is as good as SC. If the cur-
rent coordinator has crashed, the protocol requires a single
communication step to proceed to the next round (thereby al2.2 Failure detectors
lowing processes to benefit from a new round coordinator).
This favors a graceful degradation in presence of procesiformally, a failure detector consists of a set of modules,
crashes. Efficiency in no erroneous suspicion runs has beesach one attached to a process: the module attached to

A simple and fast asynchronous consensus protocol based on a weak failure detector 211

maintains a set (named:spected;) of processes it currently — Chandra and Toueg have shown that any such protocol
suspects to have crashed. Any failure detector module is in- requires at least a majority of processes to be correct
herently unreliable: it can make mistakes by not suspectinga (i.e, f < n/2) for the problem to be solvable [4].
crashed process or by erroneously suspecting a correct one-~ Guerraoui has shown that any protocol solving the con-
Moreover, suspicions are not necessarily stable: a prggess sensus problem using such a failure detector, also solves
can be added to and removed from asetpected; accord- the uniform consensus problem [11].
ing to whethep;’s failure detector module currently suspects
p; or not. As in [4], we say “process; suspects procegs”
at some timet, if at time ¢ we havep; € suspected;. 3 The consensus protocol

As indicated in the Introduction, failure detector classes
have been defined by Chandra and Toueg [4] in terms of twd.1 Underlying principles
abstract properties, nameG§ompletenesand Accuracy We
are interested here in the class of failure detectors, called.1.1 Brief survey of related works

0. (Eventually Stronp characterized by the two following _ ; ; i
properties: The first consensus protocol designed to work with a failure

detector belonging the clags”” was proposed by Chandra
— Strong Completeness: Eventually, every crashed pro- and Toueg [4]. Other protocols have since been proposed
cess is permanently suspected by every correct processge.g, [1, 13, 14]). All these protocols share the following
— Eventual Weak Accuracy: There is a time after which design principles:

some correct process is never suspected by any correct . . .
P P y any — Each protocol is based on thetating coordinatorpara-

process. : i :

digm and proceeds in consecutive asynchronous rounds.
It is important to note that failure detectors of the clgsg” Each round is coordinated by a process. The coordinator
can make an arbitrary number of mistakesg(a correct of roundr, is a predetermined process, namely with

process can loop suspecting and not suspecting a correct ¢ = (r modn)+ 1. As in [4], when considering a round
process). Moreover, it is also interesting to notice that the 7. the associated procegs will be called the “current”
Eventual Weak Accuracy property suggests to base protocols coordinator. The rotating coordinator paradigm is used
using a failure detector of the clags”’, on the rotating co- in the following way.

ordinator paradigm: in that case, there is a time after which, ~During a roundr, the coordinator tries to impose a value

a correct coordinator will not be suspected by any correct ~ as the decision value. To this end processes have to coop-
process. erate. Different (centralized/decentralized) protocols can

be designed, depending on how the processes cooperate.
Crashes can be dealt with by moving to the next coordi-

2.3 The consensus problem nator. It is possible that not all processes decide in the

same round, depending on the pattern of failures and on
The problem.In this problem, every correct procegspro- the pattern of failure suspicions that occur during a given
posesa valuev; and all correct processes have decide execution. One important point which differentiates be-
on some value, in relation to the set of proposed values. ~ tween the protocols is the way they solve this issue,
More precisely, theConsensus probleris defined by the while ensuring there is a single decision valile.(the
three following properties [4, 9]: Agreement property).

— In every protocol, each proceps manages a local vari-
— Termination: Every correct process eventually decides ableest; that represents its current estimate of the deci-

on some value. sion value (initially,est; is the initial valuev; proposed
— Validity: If a process decides, thenv was proposed by by p;). This value is updated as the protocol progresses
some process. and converges to the decision value.

— Agreement: No two correct processes decide differently. Chandra-Toueg’s protocol and Schiper's protocol are now

The agreement property app“es 0n|y to correct processe@_l’ieﬂy described. (These protocols will be compared with
So, it is possible that a process decides on a distinct valuéhe proposed protocol in Sect. 5.3).

just before crashingUniform Consensugrevents such a
possibility. It has the same Termination and Validity prop-

erties plus the following agreement property: Chandra-Toueg’s protocolin this protocol [4], during a

round, the cooperation between processes to establish a de-
— Uniform Agreement: No two processes (correct or not) cision value is centralized. More precisely, each round is
decide differently. composed of four phases. In roundthe current coordina-

; ; : : r ri lish nsen value in the followin
In the following we are interested in the uniform consensusssapc tries to establish a consensus value in the following

problem.
— During phase 1, each procegssends its estimatest;
to the current coordinatas..
Solving consensus with”. Two important results are at- — During phase 2p. gathers values from a majority of
tached to protocols that solve the consensus problem, using processes, defines a new estimate from the values it re-
failure detectors of the clags¥: ceived and broadcasts this new estimate to all processes.

212 M. Hurfin, M. Raynal

— During phase 3, each procegs waits for the receipt Chandra-Toueg’s protocol is similar to the one generated by
of an estimate value from.,. If it receives one, it sends Skeen’s centralized commit protocol [15]. In the same con-
back a positive acknowledgmentgg. If it suspectg, to text (no failure, no suspicion), the message exchange pattern
have crashed, it sends back a negative acknowledgmemfenerated by Schiper’s protocol is syntactically similar to
to p.. the one generated by Skeen's decentralized commit proto-

— During phase 4, the coordinatpy, waits for a majority col. What makes Chandra-Toueg’s and Schiper’s protocols
of acknowledgments. If it receives a majority of positive in no way trivial lies in the fact that they do not require
acknowledgments, it informs all the processes that thaeliable failure detectors.
value it has previously disseminated has to be considered
as the decision value.

It is important to note that Chandra-Toueg'’s protocol present?'l'2 Underlying principles of the proposed protocol

the following property: when a majority of processes ina .) . _— .

round have adopted (by sending a positive acknowledgment’)\S |nd|cat§:d in the Introduction, when deS|gn|ng this proto-
an estimate value proposed by the round coordinator, thi§0l our aim was to produce a protocol which is both sim-
value becomes “locked” in the sense that no other decisio®'® and efficient whenever the underlying failure detector
value is possible. This property is essential: it ensures AgreeProvides a good quality of serviceg, when it makes no

ment will be satisfied despite the fact that not all processe&nistakes, whether failures occur or not). From a structural
decide in the same round. point of view, the protocol is based on a simple combina-

tion of well-known mechanisms: asynchronous rounds, vot-

ing, finite state automaton and allowing a process to change
Schiper’s protocolWhile Chandra-Toueg’s protocol is based its mind. From a behavioral point of view, the proposed
on aMaster-Slaveschemé, no such “asymmetry” exists in protocol is based on a decentralized message exchange pat-
Schiper’s protocol [14]. In this protocol, the cooperation be-tern (similar to [14, 15]): during a round, the cooperation
tween processes to establish a decision value during a rourfetween processes to establish a decision value is decentral-
is decentralized. More precisely, during a roundhe pro- ized. Assuming that the underlying failure detector makes
cessp, that is the current coordinator initiates this round no mistakes, let us consider a round
by broadcasting its own estimatat.. Then all processes

behave similarly. — The decision is obtained in two communication steps if

the current coordinatop, has not crashéd More gen-
— Asindicated, when a round starts, the current coordinator ~ €rally, whatever is the quality of service offered by the

p. broadcasts its estimatest, to all the processes. A failure detector, as long as the current coordinator is not
procesy; that receives st., forwards it to all processes. suspected,. the protocol tries to impose its estimate value
If a process receivesst. from a majority of processes, as the decision value. .
it decides on this value. — Progress to the next round (to benefit from another co-
— At any time during a round, a proces®; may suspect ordinator) takes only one communication step if the cur-
that the current coordinatgr. has crashed. In this case, rent coordinator has crashed. More generally, as soon as
p; broadcasts auspiCION message. As soon as a pro- the current coordinator is suspected, the protocol tries to
cess has received a majority @fsPICION messages, it make all correct processes progress, as quickly as possi-

can no longer decide during this round. It then executes ble, to the next round.

an “estimate-locking” protocol whose aim is 10 ensure Thege two items show the guideline that has governed the
that processes starting the next round will start with “con-gesign of the protocol: processes trust the failure detector a

sistent” estimate valuésThis “estimate-locking” proto- priori. This intuitively explains why the protocol is efficient
col requires an additional exchange of messages. when the failure detector is reliable.

To attain this goal, at round each process; has to vote.

During a round, Chandra-Toueg’s protocol uses a centralize votes either to proceed to the next roundT vote) of to

scheme (all messages are to/from the coordinator), Wh"(gj_ecide during the current roundgrRENT vote). Moreover,

Schiper’s protocol uses a decentralized scheme (after the ¢ URRENT /NEXT vote carries the current estimate (of the
ordinator has sent its estimate, each process sends message%. /

to all other processes). Actually, these two schemes hav ecision value) of the process issuing the vote. \oting is

been investigated by Skeen [15] to solve a particular agree'-mplemem(_}d by messages. In order to prevent blocking (see

ment problem (namely, the non-blocking atomic commit- below) a process may VOIBURRENT and later change its

ment problem) in the context of distributed systems equippedﬂind and votenEXT. On the other hand, in each round, a

with reliable failure detectors. More precisely, if we consider NEXT vote is definitive. A procesg; decides at the current

that there are neither failures, nor false suspicions, the der_ound as s0on as it has received a MajorityOORRRENT

cision is obtained in the first round, and, from a syntacticVOtes' It pr:)ceehfjs to the negt rpdundl if it recéjelveijs a n;sjorlty
point of view, the message exchange pattern generated b NEXT VOLES. aprocesp,-/ ecides in rouna and another
rocesg; decides in round’ > r, the protocol ensures that

1 During each round:, the coordinator of acts a master role. p; starts round-+1 with the value decided by;. Moreover

2 “Consistent” means that if a process has decieled during roundr, (and independently of the fact that a value has been decided
then any procespg; proceeding to round + 1, will start with est; = est.. -
Using a method different from that used in Chandra-Toueg’s protocol, this 3 In this ideal scenario (no failures, no erroneous suspicions), Schiper’s
ensures thatst. is “locked”. See Sect. 5.3. protocol also decides in two communication steps.

A simple and fast asynchronous consensus protocol based on a weak failure detector 213

Pt >
D T
p; votes CURRENT pi votes NEXT %
!
P2 T B
qo q2
&3
p; votes NEXT g0
Fig. 1. Finite state automaton of a process Fig. 2. A deadlock situation
by some processes in roumdl, it is important to note that This is a typical deadlock situ'ation. To prevent sqch a
the progression of processes to round 1 is synchronized deadlock, a process that has issuedi&RENT vote is
by the exchange aof EXT votes. allowed to change is mind; in the examplg, is au-
During each round, the behavior of each procgsss thorized to issue aEXT vote. After this vote has been

determined by a finite state automaton (as in [15]). This received, each correct procegs @ndp;) has a major-
automaton, illustrated in Fig. 1, is composed of 3 states: an ity of NEXT votes and consequently may proceed to the
initial state ¢o, and two other stateg; and ¢,. The local next round.

variable state; will denote the automaton state in whigh

currently is. During a round, the current state of a progess SummaryTo summarize, the principles underlying the pro-
is directly related to the votes it issues and not to the ones itocol are:

has received. Whep; decides, it can be in any state of the]]]

automaton; but, when it proceeds to the next roynds in 1. The use of theotating coordinatorparadigm. The pro-
stateg,. During a round, the state of the automaton has the tocol proceeds in consecutive asynchronous rounds, each

following meaning: round being coordinated by a predetermined process.
Combined with the properties @f.&, this ensures that
— state; = qo: p; has not yet voted. there will eventually be a round in which the coordinator
— state; = q1: p; has votedcurRRENT and has not changed will not be suspected.
its mind. 2. The use of thevoting paradigm. Used at each round, it
— state; = ¢o: p; has votedNEXT. consists of;

— Two votes.
A CURRENT (resp.NEXT) vote means that the is-
suing process is in favor of deciding in the current
round (resp. proceeding to the next round).

— A majority rule.

The protocol manages the progression of each propgss
within its automaton, according to the following rules. At
the beginning of round, state; = qo. Then, duringr, the
transitions are:

— Transitiongg — q1 (p; first votescURRENT). This tran- A process decides at the current round (resp. pro-
sition occurs wherp;, while in the initial statego, re- gresses to the next round) as soon as it has received
ceives aCURRENT Vvote. This means thap;, has not a majority of CURRENT (resp.NEXT) Votes.
previously suspected the round coordinator. Moreover, — A simple automaton.
whenp,; moves toq,, it broadcasts @URRENT vote. This automaton defines the state of a process with

— Transitiongo — ¢2 (p; first votesNexT). This transition respect to the votes it has issued.
occurs whenp;, while in the initial stateqy, suspects — The possibility for a process to change its mind.
the current coordinator. This means thathas not pre- A process that votedtURRENT can later issue a
viously received acURRENT Vote. Moreover, whermp; NEXT vote. This prevents processes from blocking
moves tog,, it broadcasts aEXT vote. forever.

— Transitiong; — ¢2 (p; changes its mind This transition
is used to prevent a possible deadlock. Let us consider
Fig. 2 wheren = 3. Processeg;, p, andps have entered 3.2 Description of the protocol
roundr (coordinated by), andpz has crashed just after

entering this round. Let us examine the following sce-The consensus protocol is described in Fig. 3. To pro-

nario: pose its valuey;, each correct procesgs calls the function
- Procesy; has sent a'URRENT vote, and has moved consensus(v;). It decides when it executes the statement
to stateg;. return (v) at line 3 or at line 14 (where the decided value is

- While it was in stategg, processp, has suspected).
the current coordinatop;. Consequently, it has issued
a NEXT vote and has moved to staje

Both p; and p, have received votes from a majority of
processes, but they have received neither a majority of
CURRENT votes (so they cannot decide), nor a major-
ity of NEXT votes (so they cannot progress to the next
round). Moreover, a3 has crashed, it will not vote. — r; defines the current round number.

ocal variables. In addition to the local variables previously
ntroduced ést; andstate;), procesg; manages the follow-
ing four local variables:

214

— nb_current; (resp.nb_next;) counts the number afur-
RENT (resp.NEXT) votes received by, during the cur-
rent round.

M. Hurfin, M. Raynal

Protocol statementdDuring a roundr, a process executes
the following actions:

— rec_from; is a set composed of the process identities — At the beginning ofr, each process initializes its local

from which p; has received af{URRENT Of NEXT) vote
during the current round.

Finally, suspected; is a set managed by the associated fail-

ure detector module (cf. Sect. 2.2);can only read this set.

Let us remark that, except fat, the domain of every vari-
able is bounded.

View of a round by a procesdf we consider a process;
at roundr, p; has the following view of the global state
concerning round:

— state; defines its current state, with respectrto
— nb_current;, nb_next; andrec_from; describe its per-

ception of the whole set of processes, with respect to

their progress within their automaton during round
More precisely:

— nb_current; is the number of processes thatper-
ceives as having moved fromm to g1 in round r
(p; has received @urRRENT vote from them). It is
possible that some of those processes are naoyy.in

— nb_next; is the number of processes perceives as
being presently in stat® in roundr (p; has received
a NEXT vote from them).

Protocol description.Function consensus() adopts the

structure used in [4,14], namely, it consists of two concur-

rent tasks. The first task handles the reception oEaipE
message (lines 2-3); it ensures that if a progesdecides

(line 3 or line 14), then all correct processes will also receive
a DECIDE message. The second task (lines 4-27) describes
a round: it consists of a loop that constitutes the core of the

protocol.

Messagesin addition to other values, eaclt{RRENT oOr

NEXT) vote carries the identity of its sender and its round

numbef. The notation $endmsc() to X”, where X C IT
means Vp; € X do sendmsG() to p; enddd’.

A CURRENT vote carries the estimate value of the cur-

rent round coordinator. ANEXT vote carries the estimate

value of its sender and a boolean flag indicating whether the _

sender moved t@, directly (transition:qo — ¢2) or indi-
rectly (transitionsgg — q1 — ¢2).
- In the first case, the flag value isuspicion (this occurs

at line 16 or at line 25). The estimate value carried by the

message is then not necessarily equaldt.
- In the second case, the flag valuelisidlock_prevention

(this occurs at line 22 or at line 26). The estimate value of

the sender is then necessarily equatio..

4 Notation. At line 9 and at line 18, when a{RRENT Of NEXT) Vote is

received, the second message field is underlined. This notation means that
this field of the received vote must contain a value equal to the value of the

corresponding local variable, namely, for the message to be received. In
other words, in any round, only votes related to round can be received.

variables (line 5). Moreover, the current coordinagpr
proposes its estimatest. to become the decision value
by broadcasting a&URRENT vote carrying this value,
lines 6 and 12.

The sending of a message by the current coordinator
to itself at line 6, is a “fictional” sending, used only to
get a description of thevhile loop (as far as possible)
independent of process identities. Procgssinstanta-
neously receives this message and executes lines 9-14.
In the while loop the identity ofp. appears only at line
15 and concerns the suspicion jof

Each time a process; receives a (URRENT OF NEXT)
vote, it updates the corresponding counter and the set
rec_from; (lines 11 and 19). When, in thehile loop,
processp; broadcasts a vote, it does not send it to it-
self but simulates its reception by updating these control
variables (lines 13, 17 and 23).

Note that onlynb_next; is updated at line 23. Updating
rec_from; is needless because, in this casés identity

is already in the setec_from; (as, whenp; moved to
stateqs, it executed line 13).

When a process receivescRRENT Vote for the first
time, namely CURRENT(pg,r,estr), it adoptsest;, as its
current estimate (line 10). If, in addition, it is in stajg

it moves to statej;, and also VOte€'URRENT to push
the decision on this estimate during the current round
(line 12).

A processp; decides on the estimate proposed by the
current coordinator as soon as it has received a majority
of CURRENT votes,i.e., a majority of votes that agree to
conclude on this value during the current round (line 14).

— A processp; takes into account the fact that the cur-

rent coordinatom,. is suspected only whestate; = ¢
(lines 15-17). If it suspects,, thenp, votes to proceed

to the next round (by broadcastingn&xT vote) and
updatesstate; to g accordingly (see Fig. 1).

Whenp; receives aNEXT(py, 14, esty, flagy) vote (.e,

a vote to proceed to the next round, line 18), it updates its
control variables (line 19). Moreover,jf has not yet re-
ceived aCURRENT Vote carrying the estimate ¢f. (i.e.,

if nb_current; = 0), and if p, can provide it with this
estimatei(e., if flagy = deadlock_prevention), thenp;
adopts it (line 20).

The set of statements at lines 21-23 aims to prevent the
blocking of processes (see the discussion at the end of
Sect. 3.1, just before the “Summary” paragraph). Pro-
cesses can block in the current round if not enough
CURRENT Votes have been seniq, nb_current; <
n/2), and not enoughvexT votes have been seritg,
nb_next; < n/2). If p; executes line 21, it has not yet
decided. So, if (1)p; has only votedcURRENT (i.e,, it
was for deciding at the current round, andite; = ¢1),

if (2) additionallyp; has received af{URRENT OF NEXT)
vote from a majority of processessq, | rec_from; |>
n/2), and if also (3), from its perception of the cur-
rent round,p; will not receive any new informatiori.¢.,

Vk @ pi € rec_from; U suspected;), thenp; changes its

A simple and fast asynchronous consensus protocol based on a weak failure detector

function consensus(v;)
1) r; < 0; est; < v;;
cobegin
) || upon reception of DECIDE(py, 1k, esty)
?3) send DECIDE(p;, T, esty) t0 I — {p;, pr}; return(esty)
4) || loop % on a sequence of asynchronous rounds %
(5) c+ (r;modn)+1; r; < r; +1; state; + qo; rec_from; + 0; nb_next; + 0;
(6) if (i = c¢) then sendCURRENT(p;, 75, est;) to itself; nb_current; < —1
(@) else nb_current; + 0 endif;
(8) while (nb-next; < n/2) do % wait until a branch can be selected, and then execute it %
9) upon reception of CURRENT(pg, 7, €sty)
(20) if (nb_current; = 0) then est; < est;, endif;
(11) nb_current; < nb_current; + 1; rec_from; < rec_from; U {py};
12) if (state; = qo) then state; < q1; Send CURRENT(p;, 7;, est;) to IT — {p; };
(13) nb_current; < nb_current; +1; rec_from; < rec_from; U {p;} endif;
(14) if (nb_current; > n/2)then sendDECIDE(p;, 1, est;) to IT — {p;}; return(est;) endif
(15) upon (p. € suspected;)
(16) if (state; = qo) then state; < q2; SeNdNEXT(p;, 74, est;, suspicion) to I — {p;};
a7) nb_next; + nb_next; + 1; rec_from; < rec_from; U{p;} endif
(18) upon reception of NEXT(py, 7, esty, flagy)
(29) nb_next; + nb_next; +1; rec_from; < rec_from; U {px};
(20) if ((nb_current; =0) A (flagy = deadlock_prevention)) then est; + esty endif
(21) upon ((state; = q1) A (| rec_from; |> n/2) A (Vp: px € rec_from; U suspected;))
(22) state; < qp; SeNdNEXT(p;, 14, est;, deadlock_prevention) to I — {p;};
(23) nb_next; < nbnext; +1; % the variablerec_from; has already been updated %
(24) endwhile;
(25) if (state; = qo) then state; < q2; SeNndNEXT(p;, 14, est;, suspicion) to IT — {p;} endif;
(26) if (state; = q1) then state; < q2; SendNEXT(p;, 74, est;, deadlock_prevention) to IT — {p;} endif
(27) endloop
coend

Fig. 3. Fast consensus protocol based®&”

mind: it broadcasts aEXT vote to favor the transition 4 Correctness proof
to the next round (line 22) and, accordingly, it moves to

215

stateg,. So, thisSNEXT vote carries a flag whose value This section proves that the previous protocol satisfies the

is deadlock _prevention, and consequently, the estimate Termination, Validity and Uniform Agreement properties
value it carries is equal test.. As we will see in the Stated in Sect. 2.3. This proof assumes that:

proof (assuming a majority of correct processes), this — H1: There is a majority of processes that are correet, (
strategy will ensure that if a correct procegscan not f <n/2).

decide at a given round, then it will eventually have — H2: The underlying failure detector belongs to the class

nb_next; > n/2, and consequently, it will progress to 0.7, i.e, it satisfies:

the next round (line 4). _ H2.1: Strong Completeness (Eventually, every crashed
— Finally, the aim of lines 25-26 is to ensure that, vyhen process is permanently suspected by every correct pro-

a process progresses from roundo roundr + 1, it cess). And,

has issued avEXT vote during roundr. TheseNEXT H2.2: Eventual Weak Accuracy (There is a time after

votes are used to prevent other processes from remaining which some correct process is never suspected by any

blocked in round-. correct process)_
— H3: Communication channels are reliable.

Remark. Message processing order. Note that, if several o
choices are possible when a procgsss in thewhile loop 4.1 Validity
(lines 8-24), choosing to procesIRRENT votes first can

allow p; to decide sooner. Theorem 1 If a processp; decidesv, thenv was proposed

by some process.

Proof. We show that the value returned by the statement

return (v) is a value proposed by some process. The only

216

lines at whichreturn is executed are the lines 3 and 14. In
both cases, the returned value is an estimaté, (or est;).
For any procesp;, we have:

— Initially: est; = v; (line 1).
— Then:est; can be modified at line 10 or at line 20. Due

M. Hurfin, M. Raynal

Lemma 2 During a roundr, if no process moves fromy
directly to ¢, within thewhile loop, then no process sends a
NEXT Vote (or equivalently, no process movesyih

Proof. Note first that any process starts roundn state
qo (line 5). Moreover, during any round, a process can

to assumption H3 (no message alteration, no spuriouseceive severakexT votes but can send at most one. Let a

message), in both cases the new valueegf, is the
value of another estimate.

It follows, by induction, thatest; is a value proposed by
some process. UTheorem 1

4.2 Termination

r-prime process be a process that, during roumndhas sent

a NEXT vote before receiving aExT vote. Suppose that,

during roundr, a process sendsnEXT vote. At least one

process; is r-prime We will show there is a contradiction.
Following the Lemma assumption, no process executes

line 16. Consequentlyp; sends thenexT vote at line 22

(Case 1) or at line 25-26 (Case 2).

Two preliminary Lemmas are first proved. The first lemma — Case 1.Process; has executed line 22.

shows that no blocking can occur at a given round. Then,

the theorem will show that the number of rounds is finite.

Lemma 1 If no process decides during any round < r,
then all correct processes start roumdr 1.

Proof. The proof is by contradiction. Suppose no process

has decided in any round < r, wherer is the smallest

round number in which some correct process blocks forever

in the while loop (lines 8-24). Let us note that no correct
process has received@&CiDE message (otherwise, it would
execute lines 2-3 and decide).

1. Note first that any process starting roundloes so in
stateqp (line 5). Firstly, it is shown that a correct process
p; can not remain in statg during roundr. This follows
from:

— (i) Either p; suspectg,. and moves tay, (lines 15-
17). This is due either to a mistake of the underlying
failure detector, or to a crash ¢f.

— (ii) Or p; never suspects.. Due to assumption H2.1
(Strong Completeness), this means thats correct:
eventually it broadcasts aurRRENT vote. Due to
assumption H3p; receives at least ONEURRENT
vote (fromp, or from another process) and moves to
q1 (line 12).

2. Next, it is shown, that a correct process can not remain

in stateq;.

From the previous point, any correct process either sends

a CURRENT vote and moves t@; (Case ii), or sends a
NEXT vote and moves tg, (Case i). As there is a ma-
jority of correct processes, it follows that for any correct
processp;, we will have |rec_from;| > n/2. More-
over, during round-, for any (correct or not) process,
any correct process; either eventually receives @r-
RENT/NEXT vote frompy, or (due to assumption H2.1:
Strong Completeness) eventually suspegtgby defini-
tion, if p; is not correct, it eventually crashes). Hence,

the condition stated at line 21 eventually becomes true:

p; ISsues avEXT vote and moves tq,.

3. It follows from the two previous points that all correct
processes move tg, and send avExT vote. Conse-
qguently, any correct procegs receives a majority of
NEXT votes, and anb_next; > n/2, proceed to round
r+ 1. A contradiction.

DLemma 1

To change its mindp; had| rec_from; |> n/2,i.e, it
had received a(URRENT Or NEXT) vote from a majority
of processes (line 21).

— If all these votes are&eURRENT votes, thenp; has
decided at line 14 when it received the last vote
making true the conditionb_current;, > n/2. Con-
sequently, ap,; has executed eeturn statement it
will never execute line 22. This contradicts the Case
1 assumption.

— If one of these votes is of typsExT, then some
process, sent aNEXT vote that has been received
by p;. This contradicts the fact that is r-prime

— Case 2.Procesw; has executed line 25 or 26.
To send aNeEXT vote at line 25 or 26p; has terminated
its while loop. So, it hasib_next; > n/2. It follows that
p; has receivediexT votes. This contradicts the fact that
p; IS r-prime

DLemma 2

Theorem 2 Every correct process eventually decides some
value.

Proof. Let us consider the two following cases.

1. A procesg; decides. It does so at line 3 or at line 14.
As shown by these lineg; has broadcast @ECIDE
message before deciding. As communication is reliable
(H3), any correct procesg; will receive this DECIDE
message, and will decide accordingly.

2. No process decides. We will show there is a contra-
diction. In that case, there is a timeafter which: (1)
there are no more crasieand (due to assumption H2.2,
Eventual Weak Accuracy) (2) there is a correct process
that is no longer suspected (et be this process). Let
be the first round that occurs afteland which is coor-
dinated byp, (due to Lemma 1, such a round does exist
since no process decides).

During roundr, let us examine the set of processes after
they entered thevhile loop (lines 8-24). Note that, due
to the assumption on, from now on, all active processes
are correct.

- The coordinatolp; sends acURRENT vote to all pro-
cesses (lines 6 and 9-12).

- As, by assumption, the current coordinaggris not

5 So, aftert we have only to consider correct processes.

A simple and fast asynchronous consensus protocol based on a weak fai

suspected, no procegs executes lines 15-17. Conse-

guently, no process executes line 16. More precisely, no

process moves directly fromy to ¢, within the while
loop.

- As no process moves directly frogg to ¢, within the
while loop, from Lemma 2, we conclude that no process
sends avEXT vote,i.e., N0 process moves igp.

- As each process; enters thavhile loop and does not
move to ¢, within this loop, when it receives aur-
RENT Vote for the first timep; is necessarily in statg.
According to lines 9 and line 12, it moves ¢g and also
votesCURRENT (sending this vote to all processes).

- As there is a majority of correct processes (H1), and
as communication is reliable (H3), it follows that each
procesy; will receive a majority ofcURRENT votes. As

no process sendsNEXT Vote, it follows that any cor-
rect procesw; will necessarily decide at line 14. This
contradicts the assumption that no process decides.

DTheorem 2

4.3 Uniform agreement

First, three preliminary lemmas are proved. Then, they are

used in the proof of the Uniform Agreement theorem.

Lemma 3 Let us consider a procegs. During any round
r, we have(nb_current; # 0) = (est; = est.), wherep,. is
the coordinator of round-.

Proof. Casei = c. First, let us note thatst. is not updated.
When p. executes line 10, due to line @b_current. =
—1. Then,nb_current, is increased to 1 (lines 11 and 13).
So, if it is executed, line 20 does not updatg. (because
nb_current, > 0).

Casei # c. The estimateest; can be updated during
roundr at line 10 or at line 20. During round, due to the
fact that (1)nb_current; (i # ¢) is initialized to 0 (line 7), (2)
nb_current; is now different from 0 (Lemma assumption),
(3) nb_current; can only be increased at line 11, it follows
that, the last update afst; has necessarily occurred at line

10 (if any, the previous ones have been done at line 20). So,

est; has been updated at line 10 witkt;,, whenp; received
a VOteCURRENT(py,r,esty) for the first time (see the test at
line 10).

1. Casep, = p.. The Lemma trivially follows.

2. Casepy, # pe.
When examining the sequence OORRENT messages
that entail the update afst;, we can make the follow-
ing observations:
- During a given round-, the update of the estimate at
line 10 and the sending of @RRENT vote (at line 12)
are executed at most once by a process.
- During a given round-, any procesg; (distinct from
pe) that issues @URRENT(p;, 1, est;) vote (at line 12),
has previously received @auRRENT(—, 1, est) vote (at
line 9). Moreover, due to the update @ft; done at line
10, est; = est.
- A single process, namely,, can initiate such a se-
guence OfCURRENT votes.

lure detector 217

It follows from these observations that the sequence of
CURRENT Votes entailing the update ett; (1) is finite,

(2) is initiated byp., and (3) piggybacks the value of
est.. Hence,est; = esty, = --- =est; =--- = est..

DLemma 3

Lemma 4 Any proces®; that sends @ECIDE message la-
beled with the round numbet decides valuest. (wherep,.
is the coordinator of round).

Proof. Let us consider the two possible cases.

1. Procesy; decides during round at line 14: so, it has
nb_current; # 0. From Lemma 3, it decidest.. More-
over, let us observe that all processes that decide at line
14 during roundr, sentDECIDE messages carrying the
same value, hamelyst..

If a procesw; decides at line 3, it decides on the value
carried by abECIDE message sent with the round label
r. All those DECIDE messages carryst.. This follows
from the fact that anypECIDE message labeled with

- Either is (initially) sent at line 14: due to the previous
observation, it carriesst...

- Or, is sent at line 3: in that case, it only forwards a value
sent initially. (Due to asynchrony, it is possible that this
value, launched from a process deciding during round
r at line 14, went through several processes, and has
therefore been carried by several “consecutisetIDE
messages before arriving ayj).

2.

DLemma 4

Lemma 5 If processp; decidesy and sends aECIDE mes-
sage labeled with the round numberthen all processes;
that start roundr + 1 do so withest; = v.

Proof. Let us consider round (coordinated by,.). We first
establish a relation (R7) that is then used to prove the lemma
by contradiction.

1. As p, sends abECIDE message labeled with the round
numberr, some process; (possiblypi = p;) has exe-
cuted line 14 during roungd, consequentlypb_currenty,
> n/2 (R1). Furthermore, by Lemma 4, the decided
valuew is equal toest..

. Let us consider the three following sets of processes (re-
lated to roundr):

— X7 = { processes that moved frogg to ¢; and did

not move tog, }

— X7 = { processes that moved frogg directly to g, }

— X} = { processes that moved frogg to ¢1 and then

to g }

Note that these sets are disjoint. They include processes
that have possibly crashed after moving frggto an-
other state Moreover, we havéX|+|X5|+|X3| <n
(R2).

. Let sent_to_pk be the number of processes that sent a
CURRENT Vote to p, (at line 12). As the number of
CURRENT Votes sent to @, is greater or equal to the
number of CURRENT votes received by,, we have
sent_to_pk > nb_currenty, (R3).

2

6 They may have crashed during the execution of the send statement
associated with a state transition.

218

4. All processes belonging t&} have sent a&dURRENT
vote topy, at line 12 (when they moved fromy to g1).
Moreover, all processes belonging .t and which ex-
ecuted all of line 12 have sent@RRENT vote to py.
Some processes belonging & and which have par-
tially executed line 12 have also sent@RRENT Vote to
pr. Finally, processes iXj have not sent @ URRENT
vote. It follows thatsent_to_pk < |X7|+|X3| (R4).

. From nb_current, > n/2 (R1) and sent_to_pk >
nb_currenty, (R3), we concludeent_to_pk > n/2 (R5).

. Fromsent_to_pk > n/2 (R5) andsent_to_pk < |X7|+
| X% | (R4), we concludeX]| + |X%| > n/2 (R6).

. From| X7|+|X%| > n/2 (R6) and X7 |+| X5 |+|X]| < n
(R2), we concludeX?| < n/2 (R7).

The proof is now by contradiction. Suppose thatdecides
(and consequently R7 holds), and that it exists a propess
which enters round + 1 with est; # v (i.e, est; # est.).
Let us consider the valueb_current; just beforep; leaves
roundr (lines 4-27) and enters round+ 1 (line 5). There
are two cases.

1. nb_current; # 0. In this case, according to Lemma 3, we
haveest; = est. at the end of round. A contradiction.
nb_current; = 0. In this case, since, according to the
lemma assumptionp; proceeds to the next round, it
has received a majority ofEXT votes,i.e, we have
nb_next; > n/2 (R8), at the end of rounc. Combining
(R7) and (R8), we getb_next; > n/2 > |X3| (R9).
SinceNEXT votes are only sent by processes belonging
to X7 |J X}, and as (by definition)Xs (| X3 = 0, from
(R9) (namely,nb-next; > n/2 > |X7|) we conclude
thatp; received at least ongexT vote from a process
p € X3.

As p; belongs toX3 (see Fig. 1):

— p; first passed througly. So, it executed lines 9-14,
from which we concludenb_current; # 0. More-
over, asnb_current; # 0, from Lemma 3, we get
est; = est,.

— p; then moved fromy; to ¢o. So, it necessarily sent
this NEXT vote at line 22 or 26. Hence, this vote has
the formNEXT(p;, 7, est., deadlock_prevention).

Whenp; receivesNeXT(p;, 1, est., deadlock_prevention)

(lines 18-20) the condition at line 2@f_current; = 0

A flagyr = deadlock_prevention) is satisfied, and con-

sequentlyp; has updatedst; to est.. A contradiction.

2.

DLemm.a 5

Theorem 3 No two processes decide different values.

Proof. Let us consider two processgsandp; which decide.
Let us consider a round and letp. be the coordinator of
roundr. As before, letest. denote the estimate @f. during
roundr. We consider the two following cases.

1. Bothp, andp; send abECIDE message labeled with

M. Hurfin, M. Raynal

Due to Lemma 5, all processgg that start rouna+1, do

so with est;, = v. Moreover, due to Lemma 4, = est...

In other words, the only estimate value present in any
process participating in any round > r + 1, is now

v = est.. SO, whatever the coordinator of roun due

to Lemma 4, the value decided by will be v = est..

DTheorem 3

5 Discussion
5.1 About synchronization

The case of FIFO channelirstly, if the (reliable) channels
are also FIFO, then the votes are received according to their
round number. Let us examine the behavior of two processes
p; andp; during a roundr; p; is the sender ang, is the
receiver. The are two cases (Fig. 1).

1. Procesg; moves fromgg to ¢ and sends aEXT vote
(at line 16 or at line 25). As we have seen, this vote
is definitive: during this roungh; will not send another
vote.

2. Procesy); first sends aURRENT vote and moves from
qo t0 ¢1. We have seen that, in that case, it may later
send anNexT vote (and accordingly, move tg); this
can occur at line 22 becauge changes its mind, or at
line 26 because; progresses to the next round. So, if
p; sends two votes during round they are ordered in
the following way:

&) CURRENT(p;,r,est;) at line 12.
b) NEXT(p;,r,est;, deadlock_prevention) at line 22 or

at line 26.
Let us consider the receiver,. If channels are FIFO,
it first receivesSCURRENT(p;,r,est;) and executes lines
9-14. Hence, whatever the value eb_current; was
before executing lines 9-14, this value is different from
0 after. So, whem; later receives thetExT vote from
p; (line 18), the test done at line 20 necessarily evaluates
to false.

Consequently, if channels are FIFO, line 20 can be sup-
pressed, and both the estimate field and the flag field can
also be suppressed fromeXT votes, without altering the
correctness of the protocol.

Proceeding to the next roundAs we have seen in the proof
of Lemma 1, lines 21-23 aim at preventing deadlock situ-
ations, i.e., if no process has yet decided, then no correct
process will be blocked in the current round. To unblock
a (potentially) blocking situation, a procegs changes its
mind by voting NEXT after having votedcURRENT. This
change of mind is conditioned by the following condition
C1 (line 21):

In that case, due to Lemma 4, they decide the same valuey1 = ((state; = 1) A (| rec_from; |> n/2) A

namely,est..

Procesw; decidesv and sends aECIDE message la-
beledr, while p; sends abeciDE message labeled
(r" >r).

(Vpk : pi € rec_from; U suspected;))

Actually, a weaker conditiolw'2 (independent of the under-
lying failure detector) can be used by a process to change

A simple and fast asynchronous consensus protocol based on a weak failure detector 219

its mind, namely: ever be reached). So, to evaluate the intrinsic time com-
plexity of the proposed consensus protocol, we also assume
C2 = ((state; = q1) A (| rec_from; [> n/2)) that the underlying failure detector makes no mistakes (this

constitutes assumption A2). This assumption frees us from
arbitrary behaviors of the failure detector

Assuming Al and A2, we evaluate the time complexity
By counting the number of communication steps involved in
a roundr in the following failure scenariogp{ denotes the
coordinator of round-):

If processes us€'2 instead ofC1, then, during a round
r, only the current coordinatop. can be suspected (line

module (line 16) only during a limited period, namely, when
state; = qo. Let us note that any procegs can useC1 in
some rounds, and’2 in other rounds. Actually, as far as
progress to the next round is concerned, these two conditions— Pattern (1): At the end of round the current coordinator
implement two different strategies: pe has not crashed.
i In that case, there are 2 communication steps. During

— C2 implements areager strategy. A process sends @ the first stepp, sends a VOI&URRENT(p,, , est.) and

NEXT(—, —, —, deadlock_prevention) vote as soon as all processes receive it (line®)The second step starts

it suspects the possibility of a deadlock. This strategy — \hen each correct process propagates this vote (line 12),

can make processes proceed quicker to the next round, 5nd terminates when they have received a majority of

but this does not mean that a “true” deadlock has been yrgrpNT votes allowing them to decide (line 14). Thus,

prevented. _ during the current round, a decision is obtained after 2
— C'1 implements &onservativestrategy. To send BEXT communication steps.

(=, —, —, deadlock_prevention) vote, a process waits _ pattern (2): The current coordinatpr has crashed be-

until it has obtained information about the state of each fore roundr.

process. In that case, at the beginning of roungall correct pro-

More generally, the synchronization used to proceed to the CeSSes suspegt. (line 15) and send aExT vote to
next round can be tuned to fit particular needs. It is also Proceed to the next round (line 16). As there is a major-
possible to add a user-defined condition@d or to C2 ity of correct processes, each of them receives a majority
(of course, in that case, termination of the consensus pro- ©Of NEXT votes after one time unit. So, in that scenario,
tocol will also depend on this condition). For example, if ~ the proposed protocol requires only one communication
the underlying asynchronous system has additional behav- Step in order to proceed to roumd+ 1.

ioral properties €.g, related to real-time), such user-defined

conditions could take into account some of these properties; 5 \ comparison with other protocols

) Section 3.1 briefly sketched Chandra-Toueg’s [4] (CT) and
5.2 Cost analysis Schiper’s [14] (SC) consensus protocols. Assuming that the
reader is familiar with the CT and the SC protocols, this
Message complexitylt is easy to see that, per round, the section compares these protocols with the one proposed in
number of messages of the proposed protocol(is’) when this paper (HR protocol). They all are based on the rotating
the underlying network is a point-to-point communication coordinator paradigm and proceed in asynchronous rounds.
network, andO(n) when the underlying network is a broad- we first compare how each protocol ensures safety (Valid-
cast communication network. ity and Agreement) and liveness (Termination). Then, we
compare these protocols in some failure patterns.

How is the safety property ensuredhe Validity property

'@ easy to ensure. As indicated before, the Agreement prop-
rty is the difficult part because, due to process crashes and
ossibly erroneous failure suspicions, it is possible that dis-

Inct processes decide during distinct rounds. As with other

onsensus protocole.g, [8]), we use thevalue lockingno-

Time complexity.For analyzing time complexity, we con-

sider, on the one hand, that the duration of local processing
is negligible and consequently takes no time, and on the®
other hand, that every message transfer takes one “logic
time unit” (this constitutes assumption Al). This assump-

tion frees us from uncertainties due to the time-freeness; ; lain how A ‘' teed by CT. SC and
of asynchrony. It allows evaluation of the cost of a round- 1on o explain how Agreement IS guaranteéed by © 1, an

based consensus protocol by counting the minimal numbewR: a value getstockedas soon as it has been adopted by
of communication steps.€. the lenght of the sequence of a protocol thus becoming the decision value (independently

messages) required to reach a decision in well identified scef-ror?nﬂga_rfafht pioclfi?]se?nkncr)lwnlit).rn works in the followin
narios (when considering failure-free scenarios, this number , the Jocking mechanis Orks € following

is thelatencynotion introduced in [14]). Actually, this num- way. During a round, a value proposed by th? current coor-
ber also depends on the actual failure pattern and on thgmatorgets locked as soon as it has been positively acknowl-

behavior of the underlying failure detector. (In the worst edged by a majority of processes. When a process positively

case, if the underlying failure detector never satisfies prop- 8 in other words, to analyze time complexity, we assume that the under-
erties defined by},s’/, it is possible that no consensus will lying network behaves as a synchronous network, and that the underlying
failure detector behaves as a perfect failure detectorifd] @ failure de-
7 C2is weaker thaiC'l becaus€’l = C2. The reader can easily check tector that makes no mistakes).
that Case 2, in the proof of Lemma 1, remains correct whénis used 9 Of course, we suppose that, at line 6, the sending bgf a message
instead ofC1. to itself takes no time.

220 M. Hurfin, M. Raynal

acknowledges a value, it considers it as its new estimate. A'hese proofs are done in one way for CT and HR, and in
timestamping mechanism associated with estimates, ensuresother way for SC. More precisely, the Termination proof
that if several estimates are locked during distinct roundspf CT and HR explicitly considers the timeafter which
they are necessarily equal to a same value initially proposedll faulty processes have crashed (for HR, see the proof
by a process. of Theorem 2, footnote 5). The Termination proof of SC
In SC and HR, a value gets locked as soon as it has beedoes not require considering such a timerhis difference
forwarded by a majority of processes, during a round. Bothcomes from the fact that these protocols use very different
protocols ensure that if a valuehas been locked during a mechanisms to prevent deadlocks. Consequently, this makes
roundr, then any process entering a round- hasv as the the protocols terminate in different ways according to failure
estimate value. Let” be this property. SC and HR differ and failure suspicion scenarios.
in the way they guarantee”. More precisely:

— In SC, during a round, a process can be in two states . .
phases O phases. In phasey, p; tries to establish a deci- Number, type and size of messages in CT, SC and HR.
sion value. If a process; has received a majority efs- Let us first consider the number of messages exchanged by

PICION messages (indicating that a majority of processe£ach protocol during a round. As previously noted, CT uses
suspect the current coordinator), it moves frohuse; Skeen'’s centralized message exchange pattern, and conse-
to phase,: this means it will ineluctably progress to the guéntly a round requires @(— 1) messages. When they
next roundr + 1. But, while it is inphase, and before decide during a round, both SC and HR requife. — 1)
proceeding to- + 1, p; exchangessTIMATE2 messages Messages. When it proceeds to the next round, HR does
(carrying estimate values) with other processes. Thes&0t require more messages, while SC_ does ozlue its additional
exchanges ensure that propeg§ holds. communication step (but this numbgr is stil(n?)). Clearly,

— In HR, ensuring property”’ requires neither an addi- when considering a round of_ coordinator-base# -based _
tional step, nor additional messages. A process guararONSeNsus pro_tocols, there is a tradeoff between the time
tees this property when it sendsvaxT vote to prevent com.plexny.(whlch favors SC and HR) and the message com-
a possible deadlock (line 22). Such a vote carries thePl€xity (which favors CT).
value proposed by the coordinator of rounhis value CT, SC and HR use three types of messagesIMATE,
has possibly been decided by some processes during thitCK/NACK andDECIDE messages in CTESTIMATE, SUS-
round). To be more explicit, iet us consider a progess PICION andDECIDE messages in SC, aRd/RRENT, NEXT
that decides during round and a procesg; that pro- a!’]dDECIDE messages in HR. Let us consider the size of the
gresses to + 1. In that case, at the end of roundve ~ Piggest messages used by each protoesir(MATE mes-
havenb_current; > n/2 andnb_next; > n/2. Atleast ~Sa9esn CT and SC, and:xT messages in HR). All those
one process;, belongs to both majorities: so, it sent first Messages carry their identity, which is made of the pair
a CURRENT vote and then aexT vote. The dissymmet- (identity of the sender process, sequence nurftiheahd an
ric automaton governing the behavior of, shows that ~ €Stimate of the decision value.g, est; in HR). Then, CT,

i has first adopted the coordinator estimage. (when ~ SC and HR differ in the following way:

it moved fromgp to g1 and sent the URRENT vote), and _ | CT: gsTiMATE messages carry an additional poten-
later has changed its mind (when it moved frouto g2 tially unbounded value, namely, a timestamp (the value
and sent aEXT(pg, 7, est., deadlock_prevention) vote of which is a round number).

to p;). Whenp; received this vote, it updateest; to _ |n SC:gsTIMATE messages carry two additional bounded
est. (i.e, the value proposed by the current coordinator yajyes, namely:

and decided by;). - A boolean value indicating the phase number (1 or 2)

of the current round at which the messages is sent,

- A process identity, namely, the identity of the pro-
cess to which refers the current estimate value (for each
processp;, this value appears in a field of its current

How is the liveness property ensurelii?the three protocols
Termination is based on the properties of the underlying
failure detector and on the assumption that a majority of
processes is correct. CT, SC and HR use these properties in

;) estimate).
the following way: — In HR: NEXT messages carry an additional boolean
— Combined with therotating coordinatorparadigm, the value (namely, its last field whose value d8spicion
Eventual Weak Accuracy property of the underlying fail- or deadlock _prevention).

ure detector is used by each protocol to ensure that it isS ith cT dditional ti . ied
possible to eventually reach a rounidduring which the bo’ Wwith respect éoC : dngRa Mmona t|me.;tamp IS carn;:
coordinator will not be suspected. y messages in an . Moreover, when compared to

— Each protocol uses the Strong Completeness property gfSTIMATE messages used n SCaxT message used in
the underlying failure detector, and assumes a majority of IR has not to carry an additional process identity, thereby,

correct processes, to make processes eventually progreS8Vinglogz(n) bits.
to roundr + 1 if no value has been decided during round

r. This prevents deadlock and consequently ensures that))))
the roundr’ will actually be reached. CT, SC and HR with reliable failure detector¥Ve first study

) _ the case where the underlying failure detector offers a very
A subtle difference in the way each protocol ensures the

Termination property is revealed by their Termination proofs. 1° Here the sequence number is the corresponding round number.

A simple and fast asynchronous consensus protocol based on a weak failure detector 221

Table 1. Number of steps with reliable failure detectors Although HR compares favorably with SC when the under-

lying failure detector makes no mistake, this can no longer

FPO FP1 FP2 FP3

CT 4(hH) 4 4 4 be true when erroneous failure suspicions occur. Intuitively,
ﬁg 22 ;‘ f g SC and HR present a fundamental difference in the way

they behave with respect to failure suspicions: SC “does not
trust” the failure detector while HR “trusts” it. The following

good quality of servicei,e., when it makes no mistake. Re- particularities characterize each protocol.

member that, in many systems, failure detectors can be tuned
to make mistakes very infrequently.

Let us consider a system composed of 7 processes:— In SC, during a round, only the coordinatpr can be
p1,--.,p7, and let us examine the following four failure suspected. A process broadcastsuaPiCION message
patterns. We also assume that processes that are not cor- only when it suspectp.. A process decides to proceed
rect have crashed before the consensus is launched. Process to the next round when it has received a majority of
p1 is the first coordinatorp, is the second, etc. SUSPICION messages. So, when a process progresses to

- F'PO: All processes are correct. the next round, the coordinator is suspected by a major-

- F'P1: All processes bup; are correct. ity of processes. This “majority of suspicions” condition

- F'P2: All processes bup; andp, are correct. is well-suited to resist erroneous failure suspicions: it

- F'P3: All processes bup;, p, andps are correct. favors a decision during the current round when the co-
For each failure pattern, Table 1 defines the total number of ordinator has not crashed and less than a majority of
communication steps required by a given protocol to decide processes (falsely) suspects it.
(The “communication step” notion is the one introduced in — In HR, a process proceeds to the next round when it has
the “Time complexity” paragraph, Sect. 5.2. Actually, the received a majority oNEXT votes. But, as we have seen,
“number of communication steps” measure is closdato two different conditions are associated with the sending
tencynotion [14] defined from failure-free runs). of NEXT votes.

In all these failure patterns, CT always requires 4 steps. — The first condition, used at lines 15-16, states that

This is due to the fact that, when the underlying failure
detector makes no mistake, CT requires (1) 4 steps to decide
during a round if the current coordinator has not crashed, and
(2) no communication steps to proceed from a round with a
crashed coordinator to the next round (a process that suspects
the current coordinator immediately proceeds to the next
round without waiting for messages). In the same context,
if, during a round, the current coordinator has crashed SC
requires 2 communication steps for processes to progress to
the next round; HR requires only one.

It is important to note that, while failure are rare in prac-
tice, they do occur. This means that the failure patterns most
often encountered arE PO and F'P1.

SC and HR with unreliable failure detector&rom a syn-

tactical point of view, when there are neither failures nor
suspicions, both SC and HR follow a message exchange
pattern similar to the one used by Skeen in his decentral-
ized commit protocol [15]. Their respective behaviors differ
when there are failures or erroneous suspicions. Two of thei
basic differences lie (1) in the way they prevent deadlock,
and (2) in the way they ensure the Agreement property. Eac
protocol uses a specific solution to address these problem
More precisely, they use distinct conditions to allow pro-
cesses to progress to the next round, and distinct techniqué’%
for ensuring a single value is decided. As we have previously’
examined the latter point (in the Section titled “How is the
safety property ensured?”), we focus here on deadlock pre
vention and on other differences between the protocols. Th
progress to the next round is relatedstssPICION messages

in SC, and toNeExT votes in HR. But these messages/votes
are not equivalent. Consequently, SC and HR can behavi
very differently when there are erroneous failure suspicions.

the issuing procesg; suspects the coordinator: this
vote has the fornvexT(—, —, —, suspicion). In that
case, as soon gs has sent such a vote, differently
from SC, it can no longer voteuRRENT. This means
that if a process has seRtEXT(—, —, —, suspicion),

it can no longer favor a decision during the current
round. (But, note that this does not prevent a decision
to be taken during the current round.)

The second condition, used at line 21, is associated
with deadlock prevention: the corresponding vote is
NEXT(—, —, —, deadlock _prevention). Sending this
vote does not means that the issuing proggssus-
pects the coordinator, it only means that either
suspects or has got a vote from any process. Note
that, whenp; sends such a vote, it has previously
sent aCURRENT Vote, thereby favoring the decision
during the current round.

0, in presence of erroneous failure suspicions, it is difficult
to compare failure detector-based consensus protocols. Ac-
fually, an in-depth performance study of those protocols has
lo be based on a probabilistic model of tpgality of service

of the underlying failure detector (the highest quality being
ered by a perfect failure detector). Such a performance
aracterization is beyond the study addressed in this paper.
It is however important to note that both SC and HR have
the following interesting property: in failure-free runs, erro-
Qeous suspicions do not force processes to progress to the
next round, as long as a majority of failure detector modules
do not make mistakes. Such a property is not guaranteed by
gT, where there are runs in which it is possible that an er-
roneous suspicion made by a single failure detector module
prevents the current coordinator from deciding during the

11 Actually, this number can easily be reduced to 3 as shown in [1,14]. current round.

222 M. Hurfin, M. Raynal

6 Conclusion tributed systems, rather than an interesting problem for
theoreticians [14].

The Consensus problem is a fundamental paradigm for fault- Schiper’s protocol [14] and the proposed protocol can
tolerant asynchronous systems. It abstracts a family of probpe seen as twé.¥ -based consensus protocols of the same
lems known as Agreement (or Coordination) problems: anytamily in the following sense: in failure-free and erroneous
solution to consensus can serve as a basic building block fogyspicion-free runs, they use the same “Skeen’s decentral-
solving agreement problems (such as, for example, atomigzed message exchange pattern” [15]. Consequently, in those
commitment or atomic broadcast). Solving consensus in afyns, they have the same time and message complexities.
asynchronous system is not a trivial task: it has been provemrrhis is no longer true in presence of crashes. The aim of
(1985) by Fischer, Lynch and Paterson that there is no deterschiper was to propose a protocol that is time efficient in
ministic solution in asynchronous systems subject to even guns where there are neither failures, nor erroneous suspi-
single crash failure. To circumvent this impossibility result, cions. This was a significant advance. The proposed protocol
Chandra and Toueg have introduced the concept of unrelican be seen as a further step in this direction: it is time effi-
able failure detectors (1991), and have studied how thesgjent when the underlying failure detector behaves reliably,
failure detectors can be used to solve consensus in asyRyhether there are failures or not. The design of consensus
chronous systems with crash failures. protocols that, in addition, would remain time efficient in
] “some” erroneous failure suspicion scenarios, would con-

This paper has presented a new consensus protocoditute further significant advances. But, when considering
based on a failure detector of the clg@s$”. Like previous Schiper's protocol, Chandra-Toueg'’s protocol and the pro-
protocols, the proposed protocol is based on the rotating coposed protocol it is important to say (as indicated at the end
ordinator paradigm and proceeds in asynchronous rounds, i§f Sect. 5.3) that none of them definitely outperforms the
benefit from the Eventual Weak Accuracy property)d#”. other two in presence of erroneous suspicions.
More generally, in addition to a new consensus protocol, the To conclude, let us note that the following question
main contributions of this paper are the followings. (which was out of the scope of the paper) remains open.
— A first contribution lies in the design simplicity of the Irtoﬁggﬁirgjstgggﬂgglfz n[Z]Ing%%r;]ssr;L:]st e?(t[ot;,)ﬁglns (;2 nesri;j—

proposed protocol. Its design relies on a simple and Orig'erin consensus protocols based on a failure detector of the
inal combination of well-known mechanisms: a voting 9 P

. - lass(.¥, are 2 and 3 the minimal numbers of communi-
mechamsr_n, a small finite state automaton that manage ation steps required to decide at the end of the first round,
the behavior of each process, and allowing a process tQ

change its mind during a round. This shows that Simpleand to decide at the end of the second round, respectively?

principles can go a long way.

— A second contribution lies in the time efﬁciency of the AcknowledgmentsThe authors are grateful to Roberto Baldoni, Jean-
protocol when the underlying failure detector makes noMichel Hélary, Achour Moséfaoui and Federic Tronel whose comments
mistake. whether there are failures or not. In those case$" drafts of this paper helped improve the presentation. The comments and

suggestions of the anonymous referees were also instrumental in improving

(1) if the current coordinator has not crashed, the de'the paper. The authors are also grateful to a referee who has suggested a

cision is thainEd in two Com_munication steps (as SCshorter and “more natural” proof for Lemma 1. They also thank Udo Fritzke
[14]); (2) if the current coordinator has crashed, only and Philippe Ingels who have implemented the protocol on a network of
one communication step is required to proceed to theworkstations.
next round in order to benefit from another coordinator.
This efficiency in no erroneous suspicion runs has been
obtained by using a simple idea, namely that the proto-References
col trusts the underlying failure detector. Consequently,
one of its practica| interests is the gracefu| degradation it 1. Aguiler{:l M.K. and Toueg S. Randomization and Failure Detection:
provides in presence of process crashes, when the under- A Hybrid Apprgac_h to Solve _Consensgs. In Proc. of the 10th Int.
Iying failure detector makes no mistakes. An important Workshop on Distributed Algorithms, Springer-Verlag, LNCS 1161 (

. . . Babadjlu and K. Marzullo Eds), pp. 29-39, Bologna, Italy, October
point of the protocol is the fact that its efficiency has not | ggg
been gacrlflced n QI’dQI’ to Ob'tam' deS|gn _SImplICIty- AN- 2. Birman K.P. and Joseph T.A. Reliable Communication in the Pres-
other important point is that its time efficiency has not ence of Failures. ACM Transactions on Computer Systems,5(1):47-76,
been obtained at the price of an increase in the number February 1987
of messages, or in their size. 3. Birman K.P. Building Secure and Reliable Network Applications. Man-

_ : : : . ning Publication Co., Greenwich, CT, 1996, 591 pages
Another, but not least, contribution of this paper con Chandra T. and Toueg S. Unreliable Failure Detectors for Reliable

cerns the de_mys,tlf,lca,tlon Of the Cons,ensus problem. AI' Distributed Systems. Journal of the ACM, 34(1):225-267, March 1996
though the simplicity issue in the design of a protocol is (A preliminary version appeared in Proc. of the 10th ACM Symposium
not directly related to its correctness or to its efficiency, on Principles of Distributed Computing, pp. 325-340, 1991)

we think that the simplicity of a solution greatly con- 5. Chandra T., Hadzilacos V. and Toueg S. The Weakest Failure Detector
tributes to the demystification of a problem. As far as for Solving Consensus. Journal of the ACM, 43(4):685-722, July 1996

: (A preliminary version appeared in Proc. of the 11th ACM Symposium
the consensus problem is concerned, we hope that the on Principles of Distributed Computing, pp. 147-158, 1992)

Pmposed pI‘O'[F)COl IS a step In thIS. direction. Th'_s should 6. Dolev D., Dwork C. and Stockmeyer L. On the Minimal Synchronism
lead to consider consensus as it should be, i.e., as @ Needed for Distributed Consensus. Journal of the ACM, 34(1):77-97,

basic building block for implementing fault-tolerant dis- January 1987

A simple and fast asynchronous consensus protocol based on a weak failure detector 223

10.

11.

12.

13.

14.

15.

. Dolev D., Reischuk R. and Strong R., Early Stopping in Byzantine Michel Raynal has been a professor of Computer Science at the University

Agreement. Journal of the ACM, 37(4):720-741, April 1990 of Rennes, France, since 1984. At IRISA (CNRS-INRIA-University joint

. Dwork C., Lynch N. and Stockmeyer L. Consensus in the Presence otomputing laboratory located in Rennes) he is the leader of the ADP (Dis-

Partial Synchrony. Journal of the ACM, 35(2):288-323, April 1988 tributed Algorithms and Protocols) research group that he created in 1986.

. Fischer M.J., Lynch N. and Paterson M.S. Impossibility of Distributed He has served as program co-chair of WDAG (now DISC, the Symposium

Consensus with One Faulty Process. Journal of the ACM, 32(2):374-on Distributed Computing) in 1989 and 1995. He has also served several
382, April 1985 times as vice-chair for the “Distributed Algorithms” track of the IEEE Int.
Gray J.N. Notes on Database Operating Systems. In Operating Sy<sonference on Distributed Computing Systems. Furthermore, he has served
tems: An Advanced Course, Springer-Verlag, LNCS 60 (R. Bayer, as a PC member in a lot of international conferences. Michel Raynal has
R.M. Graham and G. Seegmuller Eds), pp. 393-481, 1978 written seven books (2 published by Wiley & Sons, and 2 by the MIT
Guerraoui R. Revisiting the Relationship Between Non-Blocking Press). He has published more 50 papers in journals and 100 in confer-
Atomic Commitment and Consensus. In Proc. of the 9th Int. Workshopences. Together with other european leaders, he is currently a member of
on Distributed Algorithms, Springer-Verlag, LNCS 972 (J-Mélery the ESPRIT Basic Research Network of excellence in Distributed Com-
and M. Raynal Eds), pp. 87-100, Le Mont-Saint-Michel, France, puting Architectures (CABERNET) currently headed by B. Randell. On
September 1995 the theoretical side, Michel Raynal’s research interests include distributed
Guerraoui R. and Schiper A. Consensus: the Big Misunderstanding. Iralgorithms, distributed systems, distributed computing and fault-tolerance.
Proc. of the 6th IEEE Workshop on Future Tends of Distributed Com- His main interest lies in the fundamental concepts, principles and mecha-
puting Systems, IEEE Computer Society, pp. 183-188, Tunis, Tunisia,nisms that underly the design and the construction of distributed systems.
October 1997 Among them, he is currently interested in the study of the Causality con-
Malkhi D. and Reiter M. Unreliable Intrusion Detection in Distributed cept and in the Consensus problem. On the practical side, Michel Raynal
Computations. In Proc. of the 10th IEEE Computer Security Founda-is interested in the implementation of reliable communication primitives,

tions Workshop, pp. 116-124, Rockport, MA, June 1997 the consistency of distributed data, the design and the use of checkpointing
Schiper A. Early Consensus in an Asynchronous System with a Wealprotocols and the set of problems that can be solved on top of a consensus
Failure Detector. Distributed Computing, 10:149-157, 1997 “building block”.

Skeen D. Non-Blocking Commit Protocols. Proc. Int. ACM-SIGMOD
Conference on Management of Data, pp. 133-142, 1981

Michel Hurfin received the PhD degree in Computer Science from the
University of Rennes, France, in 1993. His dissertation topic addressed ex-
ecution replay and property detection in distributed applications. In 1994,
he spent one post-doctoral year at Kansas State University, Manhattan,
in the research group of Professor M. Mizuno. Dr. Hurfin is currently
a researcher at the INRIA unit of Rennes. His research interests include
distributed systems, software engineering and middleware for distributed
operating systems. Recently, he has initiated research on distributed fault-
tolerant middleware.

