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1. Introduction

Since the primary function of a communication network is to provide commu-

nication facilities between users and processes in the system, one of the key

problems such a network faces is the need to be able to locate the whereabout
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of various entities in it. This problem becomes noticeable especially in large

networks, and is handled by tools such as name servers and distributed

directories (cf. Lantz et al. [1985] and Peleg [1989bl).

The location problem manifests itself to its fullest extent when users are

allowed to relocate themselves from one network site to another frequently

and at will, or when processes and servers may occasionally migrate between

processors. In this case, it is necessary to have a dynamic mechanism enabling

one to keep track of such users and contact them at their current residence.

The purpose of this work is to design efficient tracking mechanisms, based on

distributed directory structures, minimizing the communication redundancy

involved.

Networks with mobile users are by no means far-fetched. A prime example is

that of cellular telephone networks. In fact, one may expect that in the future,

all telephone systems will be based on “mobile telephone numbers,” that is,

ones that are not bound to any specific physical location. Another possible

application is a system one may call “distributed yellow pages, ” or “distributed

match-making” [Mullender and Vit~nyi 1988; Kranakis and Vitfmyi 1988]. Such

a system is necessary in an environment consisting of mobile “servers” and

“clients.” The system has to provide means for enabling clients in need of some

service to locate the whereabouts of the server they are looking for. (Our

results are easier to present assuming the servers are distinct. However, they

are applicable also to the case when a client is actually looking for one of the

closest among a set of identical servers.) The method may also find engineering

applications in the area of concurrent programming languages and related

areas.

In essence, the tracking mechanism has to support two operations: a “move”

operation, facilitating the move of a user to a new destination, and a “find”

operation, enabling one to contact a specified user at its current address.

However, the tasks of minimizing the communication overhead of the “move”

and “find” operations appear to be contradictory to each other. This can be

realized by examining the following two extreme strategies (considered also in

Mullender and Vit5nyi [19881).

The full-information strategy requires every vertex in the network to main-

tain a complete directory containing up-to-date information on the where-

abouts of every user. This makes the “find” operations cheap. On the other

hand, “move” operations are very expensive, since it is necessary to update the

directories of all vertices. Thus, this strategy is appropriate only for a near-static

setting, where users move relatively rarely, but frequently converse with each

other.

In contrast, the no-infomwztion strategy opts not to perform any updates
following a “move,” thus abolishing altogether the concept of directories and

making the “move” operations cheap. However, establishing a connection via a

“find” operation becomes very expensive, as it requires a global search over

the entire network. Alternatively, trying to eliminate this search, it is possible

to require that whenever a user moves, it leaves a “forwarding” pointer at the
old address, pointing to the new address. Unfortunately, this heuristic still does

not guarantee any good worst-case bound for the “find” operations.

Our purpose is to design some intermediate “partial-information” strategy,

that will perform well for any communication/travel pattern, making the costs

of both “move” and “find” operations relatively cheap. This problem was
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tackled also by Mullender and Vitiinyi [1988] and Kranakis and Vit4nyi [1988].

However, their approach was to consider only the global worst-case perfor-

mance. Consequently, the schemes designed there treat all requests alike, and

ignore considerations such as locality.

Our goal is to design more refirled strategies that take into account the

inherent costs of the particular requests at hand. It is clear that in many cases

these costs may be lower than implied by the global worst-case analysis. In

particular, we would like moves to a near-by location, or searches for near-by

users, to cost less. (Indeed, consider the case of a person who moves to a

different room in the same hotel. Clearly, it is wasteful to update the telephone

directories from coast to coast; notifying the hotel operator should normally

suffice.) Thus, we are interested in the worst case cnen?ead incurred by a

particular strategy. This overhead is evaluated by comparing the total cost

invested in a sequence of “move” and “find” operations against the inherent

cost (namely, the cost incurred by the operations themselves, assuming full

information is available for free). This comparison is done over all sequences

of “move” and “find” operations. The strategy proposed in this paper guaran-

tees overheads that are polylogaritkmic in the size and diameter of the

network.

Our strategy is based on a hierarchy of regional directories, where each

regional directory is based on a decomposition of the network into regions.

Intuitively, the purpose of the ith level regional directory is to enable any

searcher to track any user residing within distance 2’ from it. This limitation

implies that the cost of tracking by such a searcher can be made proportional

to 2’. This, combined with the hierarchical structure, enables us to bound the

cost of the “find” operation as a function of the user’s distance from the

searcher. On the other hand, another implication of limiting the operational

range of the ith level regional directory to radius 2‘ is that it is possible to

avoid constant updates due to “move” operations, relying instead on a mecha-

nism of forwarding pointers. A more comprehensive update needs to be

performed only once the movements of the user accumulate to a total distance

of 2’ or more. The cost of such an update can also be made proportional to 2i,

which enables us to bound the amortized cost of the “move” operations.

The organization of a regional directory is based on the novel graph-

theoretic structure of a regional matching. An m-regional matching is a

collection of sets of vertices, consisting of a read set Read( t’ ) and a write set

Write(t) for each vertex LI, with the property that Read(~) intersects with

Write(w) for any pair of vertices l’, w within distance m of each other. These

structures are used to enable localized updates and searches at the regional

directories.

In a more general context, regional matchings provide a tool for constructing

cheap locality preserving representations for arbitrary networks. For instance,

this structure has recently been used in another application; namely, the

construction of a network synchronizer with polylogarithmic time and commu-

nication overheads [Awerbuch and Peleg 1990b].

The construction of regional matchings is based on the concept of sparse
graph covers [Peleg 1989a; Awerbuch and Peleg 1990a]. Such covers seem to

play a fundamental role in the design of several types of locality preserving

network representations. Indeed, cover-based network representations have

already found several applications in the area of distributed network algo-
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rithms. 1 The construction of sparse covers and partitions can be achieved using

clustering and decomposition techniques. z

Recently, the problem of tracking mobile users has received some attention

in the model of wireless networks. In that model, the problem is complicated

by the fact that, in order to save costly wireless communication, mobile users

do not always inform the network nodes about their exact location. Hence, a

host node might not be aware of a mobile user that is currently residing at it.

This necessitates some additional tracking mechanisms in such systems. See

Bar-Noy and Kessler [1993] and Bar-Noy et al. [1994].

The rest of the paper is organized as follows: The next section contains a

precise definition of the model and the problem. In Section 3, we give an

overview of the proposed solution. The regional directory servers (and the

regional matching structure upon which they are based) are described in

Section 4. The main, hierarchical directory server is described in Section 5. The

mechanism is described under the assumption that “move” and “find” requests

arrive sequentially. Section 6 describes how to extend our solution to allow

concurrent accesses. Finally, Section 7 concludes with a discussion.

2. The Problem

2.1 THE MODEL. We consider the standard model of a point-to-point

communication network. The network is described by a connected undirected

graph G = (V, E), IV I = n. The vertices of the graph represent the processors

of the network and the edges represent bidirectional communication channels

between the vertices. A vertex may communicate directly only with its neigh-

bors, and messages to nonneighboring vertices are sent along some path

connecting them in the graph. It is assumed that efficient routing facilities are

provided by the system.

We assume the existence of a weight function w: E ~ W, assigning an

arbitrary nonnegative weight w(e) to each edge e = E. The weight co(e)

represents the length of the edge, or the cost of transmitting a message on it.

2.2 CODING CONVENTIONS. Our algorithms are described based on what

may be called “sequential” representation. That is, the code describes a single

process, which is active at any given moment in a single vertex in the network.

This vertex is referred to as the protocol’s “center of activity,” and is denoted

in the code by B. The center of activity may move around the network, via

messages issued by the protocol.

Our distributed protocols make use of certain variables. These variables may

belong to one of a number of types, differing in the nature of their ownership

and physical location. The first type is a local L’ariable, which is a variable
stored in one particular vertex. We shall denote a local variable var stored in

the vertex u by var[’. A number of vertices may possess an identically-named

local variable, for example, there may be a variable named var” at every vertex

u in the network. Our code may occasionally refer to “the local variable var

stored at the current center of activity. ” This will be denoted by var’.

1For example, see Peleg [1989b], Peleg [1989a; 1989b]. Awerbuch et al. [19S9: 1991b: 1992c;
1992d], and Awerbuch and Peleg [1990b; 1990c].
‘These techmques were developed in Awerbuch [1985], Peleg and Schaffer [1989], Peleg [1989a],
Awerbuch and Peleg [1990a: 1990d], Linial and Saks [1991], and Awerbuch et al. [199 la; 1992a;

1992b].
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A second type of variables consists of those variables belonging to the user

itself. More specifically, the representation of the user $ (for our tracking

purposes) consists of a “mobile data structure” containing a number of

variables. These variables are special in that they “travel” along with the user,

rather than stay at one vertex, and we shall superscript them by <.

A third type of variables consists of those variables carried along by the

process itself. That is, the process executing the algorithm may own certain

variables, and carry them along with it whenever its center of activity moves

from one vertex to another. We shall superscript such a variable by a .

Finally, in certain cases, the code makes use of a temporary variable whose

ownership is of no particular consequence. We will simply leave such a variable

unsuperscripted.

Our code uses several commands suitable for a distributed environment. The
first is “transfer-control-to L,” which means that the center of activity is moved

to vertex L’. When we mention a variable of the protocol, we refer to the

variable at the current location of the center of activity.

When we write Local–var@ + remote-read Remet e_varl’, while the cen-

ter of activity is located at the vertex u, we mean the following: go from u to L’,

read variable Remet e–va r[, return to u and write the retrieved value into

variable Loca l–var’( at u. At the end of this operation, the center of activity

remains at u.

Similarly, Remo t e–var[’ + remote-write Local —var’, means that the value

of the variable Local–var’( at the current center of activity LL is retrieved, and

the center of activity carries it from u to L’ and writes it into the variable

Remet e–varc at L). The center of activity then returns to u.

2.3 GRAPH NOTATION. For two vertices u, w in G, let dist(u, w) denote the

length of a shortest path in G between those vertices, where the length of a

path (e,,..., e,) is E:= ~ o(e, ). Let D(G) denote the (weighted) diameter of the

network G, namely, the maximal distance between any two vertices in G.

Throughout, we denote 8 = [log D(G)l.
For a vertex LJ6 V, let r(u, G) = maxW. ~ (dist( L}, w)). Let R(G) denote the

radius of the network, that is, min,, ~ ~ (r(L’, G)). A center of G is any vertex L1

realizing the radius of G (i.e., such that r( ~’, G) = R(G)).

Let us now introduce some definitions relevant for covers. Given a set of

vertices S L V, let G(S) denote the subgraph induced by S in G. A cluster is a

subset of vertices S c V such that G(S) is connected. A coL1er is a colle~tion of

clusters J%’= {S1, ..., Sfl,} such that IJ, S, = V. Given a cover Y, let R(Y) =

max, R(G(SI )). For every vertex 1’ = V, let deg~ ( L’) denote the degree of L) in

the hypergraph (V, Y), that is, the number of occurrences of z in clusters

S = Y. The maximum degree of a cover P is defined as A(S’) = max,,. ~ deg(Ll,

9).

Given two covers &= {Sl, . . . . S~} and Y–= {Tl,. . . . T~}, we say that 57

coarsens Y if for every S, = Y there exists a ~ = 3 such that Si c ~.

The j-neighborhood of a vertex c = V is defined as Nj(Ll) = {w I dist(w,
LI) < j}. The j-neighborhood coL’er of the graph G is the collection of all
j-neighborhoods in the graph,

J;(v) = {N,(z’) \ L’ = V}.
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2.4 STATEMENT OF THE PROBLEM. Consider a user t moving about in the

network G. Denote by Addr( & ) the current address of the user <. A di~ectow

server 9 is a distributed data structure (the directo~), combined with access

protocols that enable one to keep track of the users’ movements and to find

them whenever needed, Namely, the access protocols enable their users to

perform the following two operations.

FIND (~, g, [). Invoked at the vertex L, this operation delivers a search

message from LI to the current location s = Addr( g ) of the user C.

MOVE (s3, g,s, t). Invoked at the current location s = Addr( f ) of the user t,

this operation moves ~ to a new location t and performs the necessary

updates in the directory.

(We may omit the reference to ~ when it is clear from the context.)

It is assumed that each vertex maintains a list of the users currently residing

at it, so once the search process performed by the FIND operation has reached

s, the fact that s is Addr( < ) can be readily verified.
For simplicity, we assume at first that individual activations of the opera-

tions FIND and MOVE do not interleave in time, that is, are performed in

an “atomic” fashion. This enables us to avoid issues of concurrency con-

trol, namely, questions regarding the simultaneous execution of multiple

FIND \ MOVE operations. The necessary modifications for handling the concur-

rent case are outlined in Section 6.

2.5 COMPLEXITY MEASURES. Communication complexity is measured as

follows: The basic message length is O(log n) bits. Longer messages are

charged proportionally to their length (i.e., a message of length 1 > log ~ is
viewed as [l/log n 1 basic messages). The communication cost of transmitting a

basic message over an edge e is the weight w(e) of that edge. For a protocol rr

(which could be a single operation such as FIND or MOVE, a sequence of

operations or a procedure consisting of operations plus other control messages),

the communication cost of rr, denoted Cost(n), is the sum of the communica-

tion costs of all message transmissions performed during the execution of the

protocol.

The assumption of efficient routing facilities in the system is interpreted in

this context as follows: Suppose that processor u has to send a message to

processor u. Then the message will be sent along a route as short as possible in

the network, and the cost of the routing is O(dist(u, u)).

We are interested in measuring the communication complexity of the FIND

and MOVE operations in our directories. More specifically, we study the
overheads incurred by our algorithms, compared to the minimal “inherent”

costs associated with each FIND and MOVE operation. Consequently, let us first

identify these optimal costs.

Consider a FIND instruction F = FIND(-S7, f, u). Recall that Cost(F) denotes

the actual communication cost of F. Define the optimal cost of F as

Opt-cost(F) = dist( u, Addr( g )).

Now consider a MOVE instruction M = MovE(9, g, s, t). Its actual cost is

denoted Cost(M). Let Reloc( f, s, t)denote the relocation cost of the user ~

from s to t,namely, the cost of moving the stored information associated with

the user t itself (containing its own private variables, etc.) from s to t.We
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define the optimal cost of the operation M as Opt_cost(M) = Reloc( ~, s, t),

which is the inherent cost assuming no extra operations, such as directory

updates, are taken. This cost depends on the distance between the old and new

location, and we assume it satisfies Reloc( $, s, t) > dist(,s, t). (In fact, the

relocation of a server is typically much more expensive than just dist(.s, t),

which is the cost of sending a single basic message between the two locations.)

We would like to define the “amortized overhead” of our operations,

compared to their optimal cost. For that purpose we consider mixed sequences

of MOVE and FIND operations. Given such a sequence 6 = al, ..., cr,, let 9(6)

denote the subsequence obtained by picking only the FIND operations from =,

and similarly let /#( G) denote the subsequence obtained by picking only the

MOVE operations from 6 (i.e., 5 consists of some shuffle of these two

subsequences).

Define the cost and optimal cost of the subsequence ~ F ) = (Fl,..., F’k) in

the natural way, setting

Cost(x&)) = i cost(q)<
j=]

Opt-cost(fi z )) = : opt-cost(<).
1=1

The jind-stretch of the directory server with respect to a given sequence of

operations 6 is defined as

Cost(fl fi ))
Stretch ~,~~( G ) =

opt-cost ($( c)) “

The find-stretch of the directory server, denoted Stretch~,,,,J, is the least upper

bound on Stretch~,,,~( @), taken over all finite sequences 6,

For the subsequence Z(G), define the cost Cost(&l 6 )), the optimal cost

Opt–cost(&( C )), and the mole-stretch factors Stretch .,.,,,,( i7 ) and Stretch ,,,,,(.C

analogously.

We comment that our definitions ignore the initial set-up costs involved in

organizing the directo~ when the user first enters the system. These costs are

discussed further in Section 7.1.

Finally, define the memory requirement of a directory as the total amount of

memory bits it uses in the processors of the network.

2.6 MAIN RESULTS. Our main result is the construction of a hierarchical

directoV seruer, 9, guaranteeing Stretch~,,,~ = O(log2 n) and Stretch,,,,,,,,, = 0(8

“logrz + 82/logn) and requiring a total of 0( N”8”logn +N. i32 +rz”8c

log2 n) bits of memory (including both data and bookkeeping information)

throughout the network, for handling A’ users, where 8 = kg MG)l.

3. Overview of the SolLltion

3.1 OUTLINE. Consider the tour taken by the user < beginning at Es point

of origin and ending at its current location Addr( &). Let H( g ) =

(Hostl,..., Host,) be the sequence, in chronological order, of vertices visited
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by the user g. That is, Hostl is the user’s origin, and llost~ is the user’s current

location, that is, fiost~ = Addr( & ).

A natural scheme for keeping track of the user’s whereabouts is based on

maintaining a global distributed data structure, storing in various vertices

pointers to the location of the user. These pointers are updated as the user

moves in the network.

Ideally, these pointers should always store the exact current address,

.4ddr( $ ), at any given moment. However, such a structure maybe too costly to

maintain and update. The approach proposed in this paper is based on the idea

that in order to localize the update operations on the pointers, we may allow

some of these pointers to be inaccurate some of the time. Intuitively, pointers

at locations nearby to the user, whose update by the user is relatively cheap,

are required to be more accurate, whereas pointers at distant locations are

updated less often.

This idea naturally leads to a hierarchy-based solution. Our hierarchical
directoly serl!er ~ is composed of a hierarchy of 8 = [log ll(G)l regional

directories @’&21,, 1 s i s 8, with regional directories on higher levels of the

hierarchy based on coarser decompositions of the network (i.e., decompositions

into larger regions). Intuitively, the purpose of the regional directory #7?~l at

level i of the hierarchy is to enable a potential searcher to track any user

residing within distance 0(2’ ) from it.

The regional directory operates by associating with the user & a pointer, or

an “address listing. ” This address is called the user’s ith level regional address,

and is denoted l?-addrt( t).

Again, it would be best if whenever the user < moves, it could update its

regional address listings R–add-, ( ~ ) in the regional directories 9’9, on all

levels 1 s i s 8. Unfortunately, such an update may be too costly. Therefore,

our policy is based on updating the regional addresses only every once in a

while. Hence, the user’s regional address at a given moment is not necessarily

identical to the user’s true current address, Addr( <), but might be some

previous location in the host sequence, that is, R–add-,( < ) = Host, for some

1< j < L. Nevertheless, the inaccuracy of user’s regional address R-addr,( < )

is guaranteed to be bounded by 2’, that is, dist(Addr( < ), R–addr,( f )) s 2’.

In order to overcome this imprecision in the regional addresses, we use a

mechanism of “forwarding addresses. ” This mechanism ensures that each old

location u = Host, of the user maintains a pointer directed at- some more

recent location Host,,, for j‘ > j.

The ith level regional directory .%’9, stores the regional address R-a.ddr,( < )

at various vertices in the network, and thus enables potential searchers to find

it. The operational range of J2?9, is 2’, that is, it is guaranteed to supply the
user’s regional address w = R–addr, ( ~ ) to any searcher at distance up to 2’

from w.

The fact that =Q, has operational range 2[ means that the cost of updating

the directory is proportional to 2[. To compensate for that, the fact that the

regional address may be inaccurate allows us to update the directory only once

in a while. specifically, whenever the user has moved a distance of 2’ or more

since the last update.

Figure 1 illustrates the general structure of the scheme.

Let us now turn to outline the MOVE and FIND operations of the main,

hierarchical directory server.
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FIG. 1. Schematic description of the ~ sequence and the logical pointers maintained in the

hierarchical directory. The dashed arrows represent the “regional address” pointers maintained
by the regional directories @@,. The dotted arrows represent the forwarding pointers leading to

~‘s current residence.

Our update policy can be schematically described as follows: Whenever a

user f moves, a directory of level 1 is updated if the distance (“mileage”)

traversed by the user since the last update of regional address on that level

exceeds 21. As a result of this update, regional addresses of all directories of

levels 1’ s 1 will point directly at the new address. Note that if the distance of

the move (distance between current location Host~ to a new location Host~ + 1)

is d, then at least log d lowest level addresses will be updated.

Regional directories of higher levels continue pointing at the old location. In

order to help searchers that use these directories (and thus get to the old
location), a forwarding pointer is left at Host~, directing the search to the new

location, Host~ ~ ~.

The search procedure thus becomes more involved. Nearby searchers would

be able to locate ~‘s correct address Addr( f ) directly, by inspecting the

appropriate, low-level regional directory. However, searchers from distant

locations that invoke a FIND operation will fail in locating & (or hs regional

address) using the lower-level regional directories (since on that level they

belong to a different region). Consequently, they have to use higher levels of

the hierarchy. The directories on these levels will indeed have the sought

information on g (namely, its regional address), but this information may be

out of date, that is, this regional address may be some old location Hostj. Upon

reaching Hostj, the searcher will be redirected to the new location Addr’( S$)

through a chain of forwarding pointers. (This chain will not correspond to the

original sequence of addresses occupied by the user, E(g); rather, it will be

“compacted,” as described later on, for efficiency purposes.)

Remark 3.1.1. In our description of the mechanism of forwarding addresses,

we tacitly make the assumption that the hosts in the sequence H(f) are all

distinct. Ind_eed, note that if the same vertex u occurs a number of times in the
sequence H(&), then it may suffice for it to store only one pointer to a more

recent location; and if an old location LL = ~ostj is identical to the current
location Addr( ~ ), then no forwarding pointer is necessary for it at all.

For simplicity of presentation, we shall ignore this special case of returning

to a previously visited location in the sequel. In other words, we will think of

each such “repeat visit” as if it visits a “new copy” of the same location, and
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require each of the copies to participate in the protocols on its own. This will

have no adverse implications on the overall complexity of our mechanism.

It is clear, though, that any practical implementation based on the ideas

described in this paper will have to accommodate for this special case, both

because maintaining multiple “copies” of each location leads to considerably

more complex control, and because whenever such repeat visits occur, it may

be possible to introduce certain optimizations that can further reduce costs,

even though the asymptotic complexity will remain unaffected. We shall

generally ignore this optimization issue in the sequel.

3.2 lMpLEMENTAT1ON. The regional directory J?.@, is implemented as fol-

lows: As in the match-making strategy of Mullender and Vitiinyi [1988], the

mechanism is based on intersecting “read” and “write” sets. A vertex z) reports

about every user it hosts to all vertices in some specified write set, Writel( L)).

While looking for a particular user, the searching vertex w queries all the

vertices in some specified read set, Read,(w). These sets have the property that

the read set of a vertex w is guaranteed to intersect the write set of the vertex

L whenever L’ and w are within distance 2’ of each other; see Figure 2. The

underlying graph-theoretic structure at the basis of this construction is called a

~ ‘-regional matching. (In contrast, the match-making functions of Mullender

and Vit5nyi [1988] and Kranakis and Vit5nyi [1988] do not have any distance

limitation, and they insist on having exactly one element in each intersection. )

It turns out that the parameters of a regional matching relevant for our

purposes are its radius, which is the maximal distance from a vertex to any

other vertex in its read or write set, and its degree, which is the maximal

number of vertices in any read or write set. In particular, the communication

overhead of performing the FIND and MOVE operations in a regional directory

a~ grows as the product of the degree and the radius of the related

~ ‘-r&gional matching. There appears to be a trade-off between these two

parameters, making simultaneous minimization of both of them a nontrivial

task.

A related graph-theoretic problem is that of designing a “sparse” graph

cover ~, that is, covering the graph by low-radius clusters with littl~ overlap.

The parameters of interest in that problem are thus the radius R(Y) and

degree A(9) of the cover Y, as defined in 2.3. Here, too, it is possible to

trade-off radius for degree; for example, merging together a number of

clusters, we may reduce the maximal degree at the expense of increasing the

radius. Although the relationship between matchings and covers is not immedi-

ate (and in particular, the definitions of degree seem to measure different

quantities), it turns out that there is a strong connection between the two
constructs, and we show how given a cover it is possible to obtain a matching

with the same degree and radius.

We shall now proceed with a more detailed treatment of the solution. The

example at the end of Section 5 may be of further assistance in clarifying the

overall structure of the directory server.

4. Regional Directories

4.1 THE CONCEPT OF A REGIONAL MATCHING. The basic components of

our construction are a read set Read(l)) c V and a write set Write(L) c V,
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Read, (v)

●

o
FIG. 2. The sets Wrtter(u) and

Read, (~’ ) for u and L satisfying

Write,(u) dist(u, L’) s 2’.

●

●

defined for every vertex L’. Consider the collection ~W of all pairs of sets,

namely

J%%z= {Read(~), ll+ite(~) I u = V}.

Regional Matching. The collection ,%?%- is an m-regional matching (for some

integer m 2 1) if for all l), u = V such that dist(u, ~’) < m, 1+’rite(~] ) n
Read(u) # @.

For any m-regional matching ~~’, define the following four parameters:

~egw.,tc(~~-) = rn~; Il+lite( ZI)I

Rad,eu~(%55@ = ~ “ ,,~~,, {dist(u, L)) I u = Read( L )}.

Our construction of regional matchings is based on covers, and makes use of

the following lemma of Awerbuch and Peleg [1990a; 1990c].

LEMMA 4.1.1 [AWERBUCH AND PELEG 1990a; 1990c]. Giten a graph G =

(V, E), IVI = n, a corer 9 and an integer k >1, it is possible to construct a
coarsening coL’er Y that satisfies the following propetfies:

(1) l&) < (2k – l) fi(Y’), and

(2) A(~ s 2kl&11i~.

Using the lemma, we get the following result:

THEOREM 4.1.2. For all m, k > 1, it is possible to construct ail m-regional

matching HZ<, ~ with

Deg,Cti,(t%F~, ,, ) s 2k”n11~

Degw,,,c(@7;.,k) = 1

Rad,Cad(&~.,L) s 2k – 1
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PROOF. Given the graph G and integers k, m > 1, construct the regional

matching W%j, ~ as follows. Start by setting W = ~~( V ), the rn-neighborhood

cover of the graph, and constructing a coarsening cover Y for S as in Lemma

4.1. Next, select a center 1(T) (in the graph-theoretic sense) in each cluster

T = % Since 7 coarsens W;(V), for every vertex L] G V there is a cluster

T = Y– such that NH,( L’ ) G T. Consequently, select for every vertex L’ one such

cluster T, (breaking ties arbitrarily) and set

and

Reaa’(~’) = {1(T) I L! G T}.

We need to argue that the defined collection of sets constitutes an rn-

regional matching. Suppose that dist(u, u) s m for some processors u, L’,

Consider the cluster 7’, such that Wrife( L) = {l(T,, )}. By definition, this cluster

satisfies NW( [1) c T,,, Since dist(a, u) s m, necessarily u ● N~( z]), hence also
u ● T,, Therefore, by definition of Read(u), l(TU ) = Read(u). It follows that

Read(u) n Wrire( u) # 0, as required.

The bounds on RadW,,,,C, DegW,l,c, Rad,,~~, and Deg.,.~ follow directly from

Lemma 4.1.1 (noting that 1$1 = lti~(V)l = n). ❑

In what follows, we use a hierarchy of 2’-regional matchings in order to

design our regional directories, and show that the complexities of the MOVE

and FIND operations in these directories depend on the above parameters of

the matchings.

4.2 THE CONSTRUCTION OF REGIONAL DIRECTORIES

4.2.1 Concepts. Our constructions are based on hierarchically organizing

the tracking information in regional directories. A regional directo~ is based on

defining a “regional address” R–addr( < ) for every user $. The regional

address R–addr( f ) is simply the name of a vertex w where the user is

currently expected to be.

In the hierarchical context, to be discussed in Section 5, the regional

addresses represent the most updated local knowledge regarding the where-

abouts of the user. In particular, the regional address R–addr( f ) may be
outdated, as < may have moved in the meantime to a new location without

bothering to update the regional directo~.

The basic tasks for which we use the regional directory are similar to those

of a regular (global) directo~, namely, the retrieval of the regional address,

and its change whenever needed. Nevertheless, it is important to note that the

semantics of the R–FIND operation is different from that of the FIND operation

given in Section 2.4 (in which a message is sent to the user itself). Also, for

technical reasons, the modification tasks are easier to represent in the form of

“insert” and “delete” operations, rather than the more natural “move” opera-

tion. Thus, an m-regional directory W&7 supports the operations R_ FIND(~&2,
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t, L), R-DEL(~~, ~, s) and R-INs(@a, g, t).However, let us stress that the
normal operation of the directory will always be based on “moves,” namely,
pairs of “delete” immediately followed by “insert,” so at any given moment

(with the exception of transitory states), the user < has exactly one valid
regional address.

The basic operations of the regional directory are defined as follows:

R–DEL(,%~, ~, s). Invoked at the vertex s = &a&z!r( g ), this operation

nullifies the current regional address of ~.

R–-INs(99, ~, f). Invoked at the location f, this operation sets the regional

address of ~, R–addr( & ), to be t.

R_FIND(9g, g, ~). Invoked at the vertex LI, this operation returns (to vertex

L)) the regional address l?-addr( < ) of the user g. This operation is guaran-

teed to succeed only if dist( L, R–addr( $ )) s m. Otherwise, the search may

end in failure, that is, it may be that the user’s regional address is not found.

If that happens, then an appropriate message is returned to [1.

4.2.2 Implementation. The regional address s = R_addr( f ) is maintained

in the regional directory by means of pointers to s, stored at some vertices in

the network. Every vertex LL in the network has a variable R–addr”( < ) (for

each user ~ in the system). At any given moment, if the regional address of &

is R–addr( ~ ) = s, then the variable R–addr”( ~ ) at each vertex u is set to

either s or nil.

The construction of an m-regional directory is based on an m-regional

matching ~2Y? The basic idea is the following:

Regional Address Representation. Suppose that at some given moment, the

regional address of the user $ is s = R_addr( f). This fact is represented in

the regional directory as follows:

— At each vertex u in the write set Wtite(s), R-addr”( f ) = s.

— At every other vertex w in the network, R-addr”( & ) = nil.

Implementation of R_ FIND(W&Z, ~, L). In order to implement the R_FIND

operation, the searcher L’ successively queries the vertices in its read set,

Read(u), until hitting a vertex u whose pointer R–addr[’( ~ ) is set to some

value s # nil. This s is the current regional address of the user $. In case

none of the vertices in Read(L) has the desired pointer (namely, all of them

have nil pointers), the operation is said to end in failure. Note that by

definition of an m-regional matching, this might happen only if dist( L’,

s) > m for ~‘s current regional address s = R–addr( f ).

Implementation of R–DEL( W~, g, s). Operation R_DEL, invoked at the

vertex s = R_addr( ~ ), consists of deleting the pointers R–addr’f( f ) point-
ing to s at all the vertices u ~ Wrde(s) (i.e., setting them to nil).

Implementation of R_ INs(~~, {, t). Similarly, operation R–INS, invoked at

the vertex t,consist of setting the variables R_addr[’( < ) to point to t at all
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R.FIND(7?D, ~, v):

For all u E Read(v) do:

Id t remote-read R-addrU(()

If id # nil then Return(id)

End-for

Return( “failure”)

R_DEL(’RD, (,s):

For all u E Write(s) do:

R-addr”(<) + remote-write nil

End-for

R_INs(’Rn, &,t):

For all u c Write(t) do:

R-addr”(() t remote-write “t”

End-for

B. AWERBUCH AND D. PELEG

/“ invoked at a vertex v ‘/

/’ invoked at the vertex s = R_addr(<) ‘/

I* invoked at a vertex t“/

FiG. 3, The three operations of the nz-regional directory 99, based on an m-regional matchmg

927”.

the vertices Z4 = Write(t), thus effectively setting the regional address

R–addr( ~ ) to be t.

As discussed earlier, the two operations will always be performed together,

so t cannot end up having more than one address in the regional directory.
A formal presentation of operations R–FIND, R–DEL, and R_ INS k given in

Figure 3.

4.3 ANALYSIS. Let us first verify the correctness of the above implementa-

tion for an m-regional directory.

LEMMA 4.3.1. If SZZZ’ is an m-regional matching, then the three procedures

described abole (Figttre 3) correctly implenlent the operations R_ FIND, R_DEL,

and R–JNS of an m-regional directoty.

PROOF. The correctness of the R–DEL and R–INS procedures is immediate

from the definition of the representation of a regional address in the directo~,

The correctness of the R–FIND procedure can be verified in a straightforward

manner from the definition of m-regional matchings. In particular, suppose a

vertex 1! issues an R_ FIND(3&Z, ~, u) operation, where currently R–add( ~ ) = s

and dist(s, l]) s m. Then the properties of the regional matching WZ~’ guaran-

tee that there is some vertex w in the intersection of Read(Z)) and ll%te(s ).

This w stores a pointer R–addr’v( ~ ) = s, and therefore L”s search will end

successfully. ❑
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LEMMA 4.3.2. The implementation of the regional operations in Figure 3 has

the following complexities:

(1) cost(R-FIND(@.$2, ~, L1)) s 2m oDeg,,JW’%-) oRad~C,,J&?Z”),

(2) COSt(R-DEL(%&Z, .$, ,s)) s 2m “ Deg,,,,,te(%%’”) . RadW,,,e(9?%’),

(3) cost(R-INs(J%LZ, t, t))s 2m . Deg,V,,re(JZ?2Y”). RadW,l,,(W2Y).

PROOF. To prove (l), observe that each R–FIND operation is answered after

at most lleg,,~~(%~~) searches, each involving sending a query and getting a

reply along a path of length at most m . Rad,.c~J3ZZ).

Let us now turn to (2). Note that the operation R_ DEL(~s2, ~, s) involves

deleting pointers to s at all the vertices of Write(s). These deletions require

sending an appropriate remote-write message from s to all vertices in Write(s).

The number of such messages is at most DegW,lfe(W’ZZZ), and each of them

traverses a path of length at most m “ Rad ., ,,,(~%-) in both directions. A
similar argument applies to (3). El

5. Hierarchical Directory Serl~ers

In this section we define our hierarchical directo~y serler 9, and analyze its

properties and complexity.

5.1 THE CONSTRUCTION

5.1.1 Concepts. The hierarchical directory server &Z is defined as follows.

For every 1 < i <8, we construct a 2’-regional directory J2?Q31.The user ~ is

tracked by each regional directory separately, that is, it has a regional address

R–addr,( ~ ) stored for it in each s%$27,. We denote the tuple of regional

addresses of the user $ by

A–(f) = (R_addrl( f),..., addr&(f)))).

As discussed earlier, the regional address t = R_addr,( f ) (stored at the

regional directory of level i) does not necessarily reflect the true location of

the user ~, since f may have moved in the meantime to a new location L‘.

Thus, for every 1 s i s 8 and every user ~, at any time, the regional address

R–addr,(.& ) is either ~‘s current address, Addr( f), or one of its previous

residences, Ho,s~J,, for some ji < L. The only regional address that is guaran-

teed to be identical to the true current address of g is its lowest level regional

address, that is, R–addrl( ~ ) = HostI+ = Addr( &). (As a rule. the lower the

level, the more up-to-date is the regional address, i.e., j,_, > j,.)

This situation implies that finding a regional address of the user ~ alone is

not sufficient for locating the user itself. This potential problem is rectified by

maintaining at each regional address 11 = Host,, = R_addr, ( ~ ) a forwarding

pointer Forward’z( & ) pointing at some more recent address of ~, namely, some

HostJ, where j’ > j,. (It should be clear that the user may in the meantime

have moved further, and is no longer at the vertex Host, ~, but in this case,

Hostj will itself have a forwarding pointer for $.)

The invariant maintained by the hierarchical directory server regarding the

relationships between the regional addresses stored at the various levels and
the forwarding pointers is expressed by the following definition:

The Reachability Inuariant. The tuple of regional addresses Al ~ ) satisfies the

reachability inl]aria~lt if for every level 1 < i < 8, at any time, the vertex
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h = Hostj, = R–addr,( f ) stores a pointer Forwardk( & ) pointing to the

vertex Host,( _, = R-addrl _,( $ ), unless R-addr,( f ) = Addr( f ).

Thus, the reachability invariant essentially implies that anyone starting at

some regional address R–addrl( $ ) and attempting to trace the user along the

forwarding pointers will indeed reach the current location of f, Addr( & ).

The remaining problem that should concern us involves bounding the length

of the resulting forwarding chains. Let Migrate( & ) denote the actual migration

path traversed by ~ in its migration from its place of origin Hostl to its current

location, Host~ = Addr( f ). For 1 s jl s jz s L, let Migrate( f, jl, jz ) denote

the segment of the migration path from Host,, to Host,,.

Let us further associate with each regional address Host,l = R–addrl( & ) a

subpath of Migrate(f) denoted Migratel( f ), which is the subpath from Host,,

to the current location, that is, Migratet( f ) = Migrate( .$, j,, L).

As users move about in the network, the system attempts to maintain its

information as accurate as possible, and avoid having chains of long forwarding

traces. This is controlled by designing the updating algorithm so that it updates

the regional addresses frequently enough so as to guarantee the following

invariant:

The Proximity Inuariant. The regional address R–addrl( ~ ) satisfies the prox-

imity irulariant if the distance traveled by g since the last time the value of

R_addr,( & ) was updated in %~1 satisfies

\Migrate,( f)\ <2’-’-1.

So far, we have not specified the precise value of the regional addresses of

the user at any given moment, except for requiring them to obey the proximity

invariant. Let us now fix our policy by formally defining the regional addresses

associated with g.

Regional Address Assignment. The regional addresses of the user g are defined

by induction on the length of the visiting sequence R(g), as follows:

—Initially (i.e., at the point of origin, Hostl ), all regional addresses are set to

Host ,.

—Let R–addr,( & ) = Hostj, for 1 < i < 8, and suppose that the user is cur-

rently moving from Host~ to a new location Addr( & ) = Host~ + ~, thus

increasing its migration path. This may cause some of the regional addresses

to violate the proximity invariant. Let 1 be the highest index for which the

current value of R_addrJ( f ) causes such violation, namely:

lA4igrateJ(..$)l = Ikfignzte(<, j,l, L + 1)1 > 2J-1 – 1

and

lA4igrate1(f)l = lMigrate(f, jl, L + 1)1 <2’-’ – 1 for every i >.7.

Then the regional addresses of $ at all levels 1 through .I are redefined to

be the user’s current address, Host~ + ~. The remaining regional addresses

are left unchanged.

5.1.2 Implementation. For every 1 s i s 8, the 2’-regional directory 9?Q71 is

based on a 2L-regional matching as described in the previous subsection.
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Further, the collection of 2i-regional matchings used for these regional directo-

ries is constructed so that all of them have the same bounds on their Rad,,~~,

~%.a+> RadW,,,~, and Deg,v, ,f. values, namely, bounds that are independent of
the distance parameter 2’ (the construction described earlier enjoys this

independence property).

Each processor u participates in each of the 2’-regional directories $Z?&Zt,for

1 s i s 8. In particular, this means the following: Each vertex L’ has sets

Writej(L,l) and Readi(L’) in each W~,. Also, each vertex L has a pointer variable

R–addr~’( f ) for each &ZSZl, and this variable is set to s = R_addr,( f ) at the

vertices ~’ = Write(s) and to nil elsewhere.

In addition, the user itself carries along with it a “mobile data structure”

providing a complete picture of its tuple of regional addresses. That is, the
representation of the user includes a structure

MDSC = (ig, ?f, J~ ).

The first component is a tuple of variables

XC = (R–addrf, . . . . R–addr$ ).

As the regional addresses are set by the user itself, it always knows their value,

and therefore R–addr,g = R–addr,( $ ) for every i.

The second component in the mobile data structure is the tuple of migration

counters

FE= (c f,. ... c~),

used in order to guarantee the proximity invariant. Each counter c,* counts the

distance traveled by .$ since the last time the regional R_addr,( f ) was updated

in g~,, that is,

C; = emigrate, ( f )1.

These counters are used in order to decide which regional addresses need to be

updated after each move of the user.

The third component, J<, is a temporary variable used in the process of

updating the directo~ after a move.

5.2 THE PROCEDURES. A FIND(~, ~, ~’) instruction is performed in two

stages: the regional address retrieL~al stage and the tracing stage. In the first

stage, the querying vertex L’ successively issues instructions R–FIND( ~~,, ~, 1’)

in the regional directories ~gl, ~&21z etc., until it reaches the first level i on

which it succeeds. (There must be such a level, since the highest level always

succeeds.)

At this point, the searcher L switches to the second stage, and starts tracing

the user through the network, starting from the vertex R–addr,( & ), and moving

along forwarding pointers. This tracing process eventually leads to the real

address of the user, Addr( f ), whereby (upon finding the user ~ at that vertex)

the search terminates. The procedure FIND(9, <, L)) is formally described in

Figure 4.

A MovE(9, ~, S, t) operation is carried out as follows: All migration

counters C$ are increased by dist(s, t), Let C$ be the highest level counter that

reaches or exceeds its upper limit (2 J- 1 – 1) as a result of this increase. Then,
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2+0 /“ level in the hierarchy “/

Id + ni] /* potential pointer td R-addr,(<) */

Repeat 1“ retrieve lowest possible regional address R-addr,(g) ‘/

i+2+l

id +- R. FIND(7ZD,, (, LI)

Until Id # nil /’ ~d points to R.addr,(<) “/

transfer-control-to vertex Id /* move to the vertex R-addr,(<) “/

Repeat J“ trace ( along forwarding pointers *I

transfer-control-to vertex Forward@(~)

Until the user ( is found locally /’ the vertex Addr(() is reached “/

FIG. 4. Procedure FIND(.Q, (, c), ml’eked at the L)ertex 1.

we elect to update the regional directories at levels 1 through 7. This involves

first eliminating outdated information, by erasing the old listing of f in these

directories using procedure R–DEL and erasing the forwarding pointers to f

from the old regional addresses at levels 1 through .T. (Note that these pointers

are still valid, but going on using them will gradually deteriorate performance,

as the tracing process will have to follow longer and longer paths.) Next, we

add the updated information, by inserting the appropriate new listing to $ in

these directories (pointing at t as the new regional address) using R–INS. It is

also necessa~ to leave an appropriate forwarding pointer at the vertex

R–addr~+,( & ) leading to the new location t,and of course perform the actual

relocation of the user (along with its mobile data structure MDSf ). The update

procedure MovE(Q, ~, s, t) is described in Figure 5.

5.3 AN EXAMPLE. Let us now consider an example case, illustrating the

data structures held in the system and the way they are manipulated. The

example concerns a searcher c:, and a user $. The sequence of vertices visited

by the user is ~ = (lzl, hz, hs, ~Z4). Namely, the user has initially resided at h,,

then migrated to h ~, then to h ~, and finally to h~, which is its current address,

A&ir( & ) = h~. The initial situation is depicted in Figure 6, including &‘s

migration path, Migmte( f ) = p~ . pz . p ~, the sets Write[( f ) and forwarding

pointers, and the sets Readl( u).

Let us first consider a FIND( f, LI) request issued by L’. Then 1 will fail to

retrieve a pointer for .$ in its queries to the regional directories @s2, for i = 1,

2, 3, 4, since Readl( ~)), Rea.dz( L’), Read~( LJ), and Readl( L’) do not intersect

Write, Writez( h~ ), Writej( hs), and Write, respectively. However. it will

retrieve the pointer R–addrz( $ ) = h ~ stored at the vertex z, since this vertex

belongs to Read~( ~) n Write~(h ~), The search will now proceed from ~~~ along

the forwarding pointers to h ~ and from there to h ~.

Now let us consider move operations. The regional addresses of the user g

are as illustrated in the figure, and the migration subpaths corresponding to
the regional addresses are Migratel( $ ) = Migratez( f ) = @, Migratef( $ ) = PI,

Migmte~( <) = Ivfigrates( ~ ) = pz “pl, and Migrateh( <) = p~ “pl p,, where the
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Forl<i<6 do: /’ updating migration counters “/

c: t- c: + hst(s,t)

End-for

.lC + max{i I C: ~ 2’-1} /* highest level to be updated *I

Forward”(() + remote-write “f”, for vertex u = R.addr$t+l

/“ forwarding pointer to new location “/

Forl<z<Jt do:

transfer-control-to vertex R-addr$

Forward@(~) t nil

R_DEL(’RD,, <,@) I* erasing pointers to old location at ‘RV, */

End-for

Relocate user (’ to vertex t, along with its mobile data structure MDSC

Forl<z<JC do:

R_addr~ h t I* updating address tuple “1

C:to

R-.INs(RD,, (, t) /“ adding pointers to new location at ‘RD, ‘/

End-for

FIG. 5. Procedure MovE($?, [, s, t),vuoked at the t’ertex s = Ackhi [ ).

lengths of the segments are Ipl I = 3, Ipzl = 2, and Ipjl = 20. Hence, the

current values of the tuples of regional addresses and migration counters are

(Note that the counters satisfy the proximity invariant.)

Now suppose that the user & performs three move operations as follows:

Ml = MovE([, hq, h~), Mz = MovE($, IZ5, h,).

M3=MOVE(<, h,, h7),

where dist(hq, hj) = dist(h~, hc) = dist(hb, hT) = 1.

Then, the data structures of the directory change as follows: In the first

move Ml, the counter c} is increased to 4, thus exceeding its allowed upper

limit. This requires updates to the regional directories M’&271for 1 s i <3,

which now all point to ht. More specifically, the pointers R–addr~( ~ ) and

R–-addr[~( ~ ) are set to nil at all vertices u G Writel(h J) U Writez(h J) (where

h~ is the previous regional address at levels 1 and 2), similarly the pointers

R–addr~( f ) are set to nil at all vertices LL G W%te3( h ~), and the pointers

R–addr,”( <), i = 1, 2, 3, are set to h~ at all vertices u G 17rik’1(h5) U

Writez( h5 ) U 1+’rite~( h5 ). Also, the forwarding pointer at h ~ is erased (since

vertex h~ ceases to play any role in the directory with respect to the user ~),

and the forwarding pointer at h ~ is now directed at As. The resulting address

and counter tuples of ~ are now

A–(f) = (h~,~lz,ll~,hz,h~,lll), EC = (O, 0, 0, 6, 6, 26).

In the second move Mz, the only counter that exceeds its upper limit is C!.

Therefore only @&Zl is updated to lead to hh, and a new forwarding pointer is
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added at h5, directed at k ~. The resulting address and counter tuples of ~ are

now

A–(<) = (hh>h~,h~,hz>hl,hl), ~~= (0,1, 1,7,7,27).

The third move A4~ causes c: to overflow. This results in updates to the

regional directories &Z’&Zl for 1 < i < 4, which now all point to h ~. The

forwarding pointer at h 1 is now directed at h,, The resulting address and

counter tuples of ~ are now

A–(f) = (hJ, h7, h7, hT, hX, hi), ~* = (O, O, 0, 0, 8, 28). ❑

5.4 ANALYSIS

LEMMA 5.4.1. Procedure MOVE maintains the reachability and proximi~

inuariants.

PROOF. By direct inspection on the algorithm. Every time a migration

counter Clg exceeds its allowed upper bound, h is reduced to zero, updating the

corresponding regional address; and every time a regional address R–addr,( f )

is changed, the forwarding pointer at the vertex R_addr, + I( f ) is updated

appropriately. El

Let us now consider the execution of some FIND( ~, u) operation. Suppose

the procedure has completed its first stage, and succeeded in retrieving some

regional address R_addr, ( &). The second stage of the search now starts a

tracing process, proceeding along a path starting at the regional address

Ui = R–addr, ( $ ) and tracing the forwarding pointers ForwardL”( $ ). Let us

denote the path taken by the tracing process by Tracei( $ ).

LEMMA 5.4.2. For euery 1< i <8 and evey user (, at any time, the path

Tracel( ~ ] has the following properties:

(1) Tracet( f) leads to Addr( f).
(2) lTrace,(f)l < Ilfigratel(f)l s 2’-] -1.
(3) dist(R-addr,( f ), Addr( f )) s 2’-1 – 1.

PROOF. The first property follows from the reachability invariant, guaran-

teed by Lemma 5.4.1, as discussed earlier,

For the second property, note that the reachability invariant implies also that

Tracei( f ) is the concatenation of segments

Trace,(f) =q, ““” qz,

where q. is the path used by the system for message routing from the vertex

R–addrj( & ) to R–addr, _ I( f ), for 2< j < i. The vertices R–addr,( f ) determin-

ing the trajectory of the path Tracel( f ) all occur on the migration subpath

Migratei( ~ ). By our assumption on the routing system, each segment q, of

Tracet( f ) is a shortest path between its endpoints, that is, is of length
dist(R–addr,( ~ ), R_addr, _,( & )). Hence, the length of each segment q, can

only be smaller than or equal to the corresponding segment on Migrate[( & ),

and therefore ITracel( ~ )/ < IMigrare, ( $ )1. The second inequality follows from

the proximity invariant, guaranteed by Lemma 5.4.1.



1042 B. AWERBUCH AND D. PELEG

The third property also follows from the proximity invariant, by the triangle

inequality, noting that R–addr,( & ) and Addr( ~ ) are the endpoints of the path

N&ratel( & ). ❑

LEIvmfA 5.4.3. The hierarchical directo~ sener .$Z satisfies

Stretch~,,,~ = O(Deg, cO~. Rad,,U~).

PROOF. Consider a sequence G of operations, with a subsequence m G ) of

FIND operations, We shall actually prove a stronger claim than the lemma,

namely, we will upper bound the worst-case stretch Cost(F) /Opt.-cost(F’) of

any single FIND operation F = >$Z(6 ), rather than just the amortized stretch

Stretch ~,,,~. Clearly, this worst-case stretch upper-bounds the average stretch,

that is,

‘&m,) Cost(F) Cost (F)
Stretch ~l.,[( Zi ) =

~ ,E,%c, Opt-cost(F) < ~%%) Opt-cost(F) ‘

Suppose that a processor 1) issues an instruction F = FIND(9, g, u) for

some user ~ in the network. Recall that Opt–cost(F) = dist( ZI, Addr( f )). Let

B = [log dist(~’, Addr( $ ))1, that is,

28-1 < dist(~, Addr( ~)) < 2P. (1)

The FIND procedure operates as follows: The querying vertex L successively

executes find operations RF, = R_ ,,~~~~,, t, ~)) in the regional directory

&3?&2,, for i=l, 2,. ... until it reaches the first level iO s 8 on which it

succeeds in fetching the identity of the vertex R–addrl,J & ).

Recall that by the definition of a regional directo~, success on level i is

guaranteed whenever dist( L, R–addr, ( ~ )) s 2’. It is thus necessa~ to bound

these distances. Clearly, for every i

dist(I,’, R_addr, ( f )) s 2a, (2)

Also, by (1) and Property (3) of Lemma 5.4.2 combined with the triangle

inequality, we have

dist( [, R_addr, ( ~)) < dist( L, Addr( f ))

+dist(kidr( $), R–addr, (f)) < 2P + 2’-1. (3)

It follows from (2) and (3) that for i’ = rein{ ~ + 1, 8}, the regional directory

39, must succeed in performing the operation RF, = R-FIND(~=,, <, L’).

Hence, the first level i“ on which RF,(, succeeds satisfies

i~~<~+l. (4)

After fetching the regional address R–addr,,\ & ), the FIND procedure starts

its second stage, proceeding as follows. The searcher L’ starts tracing the user

through the network, starting from the vertex R_addr,{~ $ ), and moving along

the path Trace,(J f ), as directed by the forwarding pointers. By Property (1) of
Lemma 5.4.2, this tracing process leads to the vertex Addr( < ), and by Property

(2) of the same lemma and (4), the path traversed satisfies

lTrace,,j$)l < 2’(’-’ < 2P.
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Therefore, the actual communication cost Cost(F) for the entire search

operation F = FIND( Q, g, L), (which equals the total length of the combined

path traversed by the search messages), satisfies by Lemma 4.3.2

p+ 1

cosf(F) <2.26 + ~ Cost(llq)
~=1

p+l

< 2.2 S + ~ (2 “ 2[ “ ~%r(>c,d “ ~d.d)
/={

(
1 1< 8 ~ + 2. ~eg,,,,,,t “ Rad,e,,,~ . dist( L’, Addr( $ )),

establishing

Cost(F)

(

1

Opt-cost (F) 1
s 8 –- + 2” Deg,..,[ “ Rad,,,,,~ .

2

LEMMA 5.4.4. The hierarchical directo~ ser[’er 9 satisfies

❑

( 82
Stretch,,, ,),,C = O Rad,V,,,C, “ Deg,v,,tC, “ 8 + —

1log n

PROOF. Consider any sequence 6 of operations, and its subsequence

.42(5) = (M,, . . . . fWL) of MOVE operations, where A41 = (~j <, s’, s’+ ‘).

Let p~ denote the total length of the path taken by < since its insertion into

the system,

P1 = ~ dist(s’, S’+ l).
Is[<k

Observe that

0pt_cost(%Z(i7)) = ~ Reloc( f, s’, S’+l) > p,z.
lsi<k

To compute the amortized cost, we partition the sequence .z/( 5 ) of move

operations into subsequences .#’l, . . . . ~4$ as follows. Consider the move opera-

tion Ml, and let 1 be the value assigned to the variable Y< in the execution of

Procedure MOVE (i.e., 1 is the highest index of a migration counter that

reached or exceeded its bound in this move). Then M, is assigned to the

subsequence Ml.

Let us now consider a move operation M = (Q, .$, s, t) in the subsequence

Z[ and analyze this cost. Denote al = R–addrl( f ) prior to that move, for every

1 < i <1 + 1. In this update, the regional address R–addr,( f ) is changed from

CZ[ to t,for every 1 < i < 1. The first step taken by Procedure MOVE is sending

a message to vertex ai and performing R_ DEL(~Ql, ~, a,) from a,, for all

i. <1. Observe that for every i, a!ist(s, CZ,) < 2[ -1, which bounds the cost of

these messages. By Lemma 4.3.2, the overall communication complexity of

R–DEL(9~l, g, al) is at most 2 “ 2’. RatzlWpl,c “ DegW, ~,,. Thus the overall cost of
the first step is at most
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Sending a remote-write message to vertex u = al+, (informing it to change

the value of the pointer Forwardc’( < ) so that it points to t and not to al)

costs at most 2’+ 1 by the same argument. Relocating the user & to vertex t

cost Reloc( ~, s, t). It is also necessary to move its mobile data structure

MDS6 containing essentially 8 regional addresses ~–a~cirl( g ) of O(log n) bits

each, and ~ migration counters C~ of 0(8) bits each, totaling an additional

dist(s, f) 10(8 + c52\log n) = O(17e/oc( ~, s, f)(d + 82/log n)) cost. Finally,

performing R–INs(@~,, $, t) from t, for all i <1, costs at most 2~+ z “ Rad,,,, ,,< “

DegW,,,,c, by Lemma 4.3.2 again.

Overall, an operation M = (~, ~, s, t) from subsequence ti~ costs a total of

Next let us bound the number of move operations in each subsequence .Z’{.

This bound relies on the observation that between any two successive move

operations in the subsequence X2, the migration Counter Cf had to be in-

creased by at least 21-1. Thus, the number of move operations from Al 6 ) that

are assigned to 4? satisfies

l~fl s %.

The total cost of operations in the subsequence ti~ is therefore bounded by

Cost( M? )

= ~ CM(M)
M, s..ti,

Summing over all 8 subsequences, we get the following bounds.

8

Cosf(.i(ti)) = ~ cost(+)
1= 1

()
82

< opt.cost(. &’(G)) .0 8 + —
log n
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Hence

Stretch ,,lo,c(~ )

cost(/zt?16))

opt-cOst (y~( c ) ?

❑

LEMMA 5.4.5. The hierarchical directoy serler constmcted as abole can be

implemented for N users using a total of O(N . DegWP,t,, .6. log n + N. 82 + n “

Deg,~,,~ “ 8- logn) memory bits throughout the network.

PROOF. The regional directory implementation involves the following

space requirements. Each user & stores its mobile data structure MDSf, whose

main components, the ~g and ~t tuples, contain 0(8 z + 8 log n) bits, in its

current host. In addition, it posts its address s = Addr( f ) at the vertices of

Write(s). Summing over N users and 8 levels, this gives a total memory of

O(N” DegW,,fe “ 80 log n + N. 8 z). In addition, each processor LI needs to
know the identity of the vertices in l?ead(~). This requires a total additional

amount of O(Deg,e,,l . n “ 8 c log n) bits. ❑

Summarizing the above three lemmas, we get:

LEMMA 5.4.6. GiI.,’en an appropriate fami~ of regional matchings, the hierar-

chical directoiy serl)er ~ constructed as abole satisfies Stretch ~1,,~ = 0( Deg,~,l~ .

Rad,,,,l) and Stretch,,, O,, = O(RadW, ,,, . DegW,i,, “ 8 + 8 ~/log n), and requires a
total of O(N. DegW,lt, . 8. logn + N” 82 + n “ Deg,ec,,~ .8. logn) memo~ bits

throughout the network in order to handle N users.

Using Lemma 5.4.6 and Theorem 4.1.2, we get

THEOREM 5.4.7. Using a family of regional matchings %z’i,~ as in

Theorem 4.1.2, the hierarchical directo~ serler g constructed as abol)e satisfies

Stretchl,,,~ = O(kz . nilk) and Stretch nl,,,,, = 0(8” k -I- 8 2/log n), and requires a

total of 0(N.8. logn +N.8zi-n ~~ ~lh . k . 6. logn) memory bits throughout

the network in order to handle N users.

Now, consider the hierarchical directo~ server ~ obtained by picking

k = log n.

COROLLARY 5.4.8. The hierarchical directo~ serLer 97 satisfies Stretch t,~,i =

0(log2 n) and Stretch~O,,, = 0(8 “ log n + 8 ‘/log n) atzd uses a total of

O(N. 8. Iogn + N. S z + n .8- logz n) memory bits for handling N users.

6. Handling Concurrent Accesses

Our solution, as described so far, completely ignores concurrency issues. It is

based on the assumption that the 13ND and MOVE requests arrive “sequen-

tially,” and are handled one at a time, that is, there is enough time for the

system to complete its operation on one request before getting the next one.

This assumption would be reasonable if all network communication, as well as

all MOVE and FIND operations, were performed in negligible time.

However, in some practical applications, for example, for satellite links,

communication suffers a significant latency. Also, the MOVE and FIND opera-
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tions may in Pact take a considerable amount of time. In such cases, concur-

rency issues can no longer be ignored.

Interesting problems arise when many operations are issued simultaneously.

Specifically, problems may occur if someone attempts to contact a user while it

is moving. It is necessary to ensure that the searcher will eventually be able to

reach the moving user, even if that user repeatedly moves. In this section, we

outline the particular modifications (both in the model and in the algorithms)

needed to handle the case in which operations are performed concurrently and

asynchronously.

6.1 MODIFICATIONS IN THE MODEL. We assume the static asynchronous

network model, cf. Gal lager et al. [1983]. (The case of a dynamically changing

network is discussed later on, in Section 7.2.)

In order to facilitate reasoning about concurrent operations. it is necessary

to address timing issues more explicitly. The input to the system now consists

of a stream of (possibly concurrent) requests to perform MOVE and FIND

operations, and the function of the system is to implement these operations.

Both MOVE and FIND operations are viewed as occupying some time interval.

A FIND( <. LI) operation starts upon the requesting processor LI issuing the

request. Its implementation consists of the delivery of a message to the current

location of the migrating process, and is terminated at the time of delivery.

A MOVE( <, S, t) operation again starts upon the requesting user $ issuing the

request at s. Its implementation consists of the actual move of the process,

followed by the updating of various data structures, followed by a signal

indicating the termination of the operation, For any operation X, let ~,ta,~( X )

and T,,ld( X) denote the start and termination times of X, respectively.

At any given time ~, we define A&lrT( ~ ) to be the current residence of the

user ~ at time ~. If at this time ~ is in transit on the way from s to t,then its

current residence is considered to be vertex t.

The concurrent case poses some complications for our cost definitions. In

particular, consider a request F = FIND( $, ~). It may so happen that while the

directo~ server attempts to satisfy this request, and deliver the search message

from c’ to ~, the user f itself is busy migrating, in some arbitrary direction. In

fact, ~ could possibly perform several moves while searched by L. How then

should we define the inherent cost of the search?

The approach adopted here is the following. First, the correctness require-

ment of the directo~ server is that a FIND operation F always terminates

successfully within finite time, that is, the “chase” cannot proceed forever, and

T,,ld(F) < ~.

The operation F takes place in the time interval [~,~,t( F), Tc,~~(F)]. Since
the user < may have moved (perhaps more than once) during this period, we

redefine the optimal cost of this operation to be the maximal distance from L’

to any location occupied by f throughout the duration of the operation, namely

Opt-cost (F) = max {dist(~, Addr’( t))}.
,,a,,(F)<7< Tend(F)T

Despite its seeming permissiveness, this definition is in fact quite reasonable,

as can be realized by considering the following simple scenario. Suppose that

the user $, located at a vertex s neighboring v, starts migrating away from v to

some distant location t at time T(I. Suppose further that L starts a search for ~

immediately after that, at time To + ~, while the user is still physically at s.
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Now, the location at which L will get hold of & depends on the relative speeds

of the search and the migration processes. In particular, if the migration

process is very fast relative to the search process, it could happen that the

latter is forced to chase ~ all the way to t.This might happen no matter what

control policy is used, unless the system uses the extremely conservative (and

expensive) policy of requiring the migrating process to query all processors and

verify none of them currently needs it, before it is allowed to start moving.

6.2 OVERVIEW OF ALGORITHMIC NfoDmlcAT1oiws. The problems that arise
in the concurrent case can be classified into two types, roughly corresponding

to the two stages of procedure FIND( $7, $, L’), namely, the regional address

retrieval stage and the tracing process. The idea is that in order to prevent

endless chases, the invariant that we would like to preserve is that the searcher
is allowed to “miss” the user while searching for it on level i only if the user is

currently on transition to a new location farther away than distance 2’. If the

user is currently moving withi~l the 2‘ vicinity of the searcher, then it must be

found.

In order to enforce such invariant, it is necessary to make sure that both

stages of the FIND procedure succeed. First, the searcher should be able to

retrieve a regional address R–addr,( f ) of the user at level i. Secondly, once

such an address is retrieved, it should suffice to lead the tracing process to the

user within a “short” chase (where “short” is to be understood in accordance

with our stretch bounds).

Intuitively, this is imposed by ensuring the following “clean move” require-

ment: The user $ is not allowed to finish a new move that involves updating

regional directories up to level 1, before it is found by any “near-by” searcher

that is already at the second stage of the search, that is, that has already

retrieved some current regional address R_addr, ( ~ ), for i s 1 + 1.

Our algorithms have the same general structure as before, except for three

minor modifications, which mostly involve permuting and altering some of the

steps in the implementation of MOVE( g, s, t).

6.3 FIRST STAGE: OBTAINING A REGIONAL ADDRESS. Let us first consider

the problem of preventing unjustified failures of the first part of the FIND

operation, performed by the R–FHND procedure, namely, ensuring that a

searcher residing in the appropriate vicinity of the user always succeeds in

obtaining the user’s regional address.

More formally, we need to ensure that the R–FIND operation in a regional

directory of level i guarantees the retrieval of the ith level regional address

R–addrl( f ) of the user g even while this address is being changed, as long as

both the new and the old addresses are within the 2[-neighborhood of u,

fVz,( L ). (Otherwise, as mentioned earlier, the optimal cost of the FIND opera-

tion is considered to be higher than 2’, and therefore the partial search R–FIND

is allowed to fail at level i.)

Such a search might fail, for instance, because according to the current code

of the MOVE operation, there are times when the user has no valid regional

address at all. These are the times exactly in the middle of the MOVE

procedure, after it has already performed the R–DEL(.!%’~, <, s) procedure and

deleted its old regional address s, and before it had the opportunity to insert

its new regional address t.If the searcher queries the regional directory WQ,

for ~‘s regional address R–addri( < ) precisely at this unfortunate moment,
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then the search will fail to retrieve either s or t,even if both locations are in

the searcher’s close vicinity, thereby violating the definition of the regional

directory.

This type of failure can be overcome by a straightforward modification to the

MOVE procedure, requiring the user < to jirst register in its new address t,and

only then delete its registration at the old address s. That is, the R–INS(%SZI, g,

t)procedure is executed before the R–DEL(@’&Z, f, s) procedure. This ensures

that at any given moment, the user has a valid regional address.

Note that this change in the order of operation requires also a small change

in the R–DEL procedure itself if the sets Write(s) and Write(t) intersect at

some vertex w, then setting R–addr’”( < ) = t at w by the R–INS procedure in

effect takes care of the part of the R–DEL operation local to w as well.

Note also, that as a result of this change, < may be temporarily “doubly-

registered” at both the new and old addresses. That is, there may be points in

time when some vertices register s as the user’s regional address, while some

other vertices register t as that address. Such double registration cannot hurt

the process of locating the user in any way since, as will be explained in the

next subsection, the reachability invariant can still be maintained, so even if

the tracing process arrives at the old address s, it will subsequently proceed

along the forwarding pointers to the new address t.

Unfortunately, due to the intricate nature of concurrency and asynchronous

communication, although the above change guarantees that at any given

moment in time the user has a valid regional address, it still does not suffice in

itself to guarantee that a searcher in the vicinity of both s and t will succeed in

retrieving (at least) one of them as R–addr( f ).

To see where a problem might arise, consider a vertex L’ invoking

R–FIND(YQ[, <, ~), while R–addr,( f ) is changed from s‘ to t‘, such that both

dist( LI, s‘) s 2’ and dist( ~, t‘) <2’. The implementation of this operation

consists of the remote-read of R–addr”( & ) from u, for all u = Readz( u ). Even

though deleting the pointers R–addr”( f ) = s’ at all u G Writel(s’) (in subop-

eration R–DEL(@91, <, s ‘)) is performed after adding the pointers to t‘,

R–addr”( < ) = t‘,at all u E WriteI(t’) (in suboperation R–INs(9??9,, ~, t‘)),it

is still possible that all of the remote-read operations done by u fail to detect a

pointer to ~. This might happen, for example, in the scenario in which the

messages carrying the remote-read requests from u to vertices LL G llead,( u ) n

Writel(s’ ) are very slow, and hence reach each such vertex u only after ithas

already erased its pointer R–addr[[( < ) = s’ leading to &‘s old residence at s‘,

while at the same time, the messages carrying the remote-read requests from z’

to vertices u = Readl( u ) (1 Writel(t’) are very fast, and hence reach each such

vertex u before itestablished a pointer R–addr[’( $ ) = t‘ leading to $‘s new
residence at t‘.

This “atomicity problem” is typical to asynchronous systems and arises, for

example, in the “distributed snapshot” problem [Chandy and Lamport 1985]. In

our case, there are several ways to go about solving this problem. The one we

adopt is based on strengthening the definition of m-regional matchings. Specif-

ically, let us introduce the following additional requirement:

For every L), UI and Uz., if dist(~, Ul) s m and dist(~, uz) s m, then

Read(u) n Write(ul) n Write(uz) # 0. (*)
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This would eliminate the difficulty outlined above, since when L queries all

vertices in Readl( u), it hits also some vertex x = l?ead[(~) n W’rite, (s’) n

Write,, and at this vertex, the variable R–addrl( ~ ) must be set to either s’

or t’.

In fact, a stronger requirement that can be imposed on an m-regional

matching is the following:

For every t’ and u, if dist(~l, u) s m, then

Read( L’) g Write(u). (**)

This second requirement ( * * ) clearly implies the former requirement ( *), and

in fact, it simplifies the search process, since under this requirement, el~ery

vertex in Read( ~!) that previously pointed at s‘, is guaranteed to point to either

s‘ or t‘at any time during the transition performed by the MOVE procedure.

Finally, a way to impose requirement ( * *), and at the same time simplify the

FIND procedure even further, is by making the following (yet stronger) require-

ment:

All read sets are of cardinality 1. (***)

Under this requirement, each vertex u queries a single location during an

R–-FIND operation.

Luckily, this last requirement ( * * * ) is easy to achieve. A straightforward

way to do that is by switching the construction rules of the read and write sets

in the proof of Theorem 4.1.2, that is, switching the sets Write(u) and Read( ~’)

for every L’. This does not change the basic properties of the regional matching.

However, notice that in that construction, the write sets are of cardinality 1,

and therefore the same applies to the read sets in the switched construction.

Consequently, in the sequel (and particularly in the code of Figure 8), we will

refer to Reao!( ~’) as a single vertex, rather than a set of vertices.

6.4 SECOND STAGE: TRACING THE USER, Let us next consider the problem

of preventing failures in the second stage of the FIND operation, once some

regional address has been obtained. Recall that this stage involves proceeding

from the obtained regional address to “trace down” the user, and can be

thought of as sending a “tracing message” to chase the user, along the

forwarding pointers. Our approach toward preventing endless chases is based

on guaranteeing that the searcher is not allowed to “miss” the user while

searching for it on level i if the user is currently moving within the 2‘ vicinity

of the searcher.

To formalize this property (and in fact, make a stronger requirement), we
need the following definition. For a FIND operation F, let us define an

,,t~,t(F) and Tc.~(F), as the time inintermediate time TWL,Cl(F), falling between T

between the two parts of Procedure FIND, namely, the time by which the

searcher has obtained a regional address for the user.

The Clean Moue Requirenlent. Suppose that at time T(,, the user g wishes to

perform a move M that involves updating regional directories up to level 1.
Then ~ is not allowed to finish M before it is found by any searcher that is

already at the second stage of the search, that is, that has already retrieved

some current regional address R–addrl( $ ), for i s 1 + 1, at time ~.l~( F) <

To.
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The main implication of this change is that it helps to prevent unbounded

chases, since a FIND operation is guaranteed to retrieve a regional address of

the user at some level i, and once it did so, it is guaranteed to reach the user at

its current address, since the user is pinned to that location until the FIND

procedure terminates.

The “clean move” requirement can be imposed in a standard way, by means

of extensive locking. For instance, the R–FIND procedure can start by locking

the P.–addr~( $ ) variable it accesses, and if its value is not nil, releasing it only

after reaching the user. The MOVE procedure will have to get a lock on each

variable R–addr~ ( & ) it wants to erase at a vertex LL, and will be allowed to

erase the forwarding pointers from the current level-i regional address s =

R–addr,( ~ ) to the level i – 1 regional address only after erasing the variables

R–addr~( ~ ) at all vertices u = Write(s).

Such a solution will not affect the communication complexity of the proce-

dures, although it might affect the response time. Fairness can be guaranteed

by means of queuing locking requests at each vertex, and granting locks

according to the order in the queue.

Nevertheless, this solution might still be improved in terms of response time,

by reducing the locking periods and thus increasing the degree of actual

concurrency. The more detailed solution described below will employ minimal

locking.

Our solution imposes the “clean move” requirement by introducing the

following changes to our MOVE algorithm. First, the old regional addresses are

deleted top-down, that is, starting from the highest level regional directory and

ending with the lowest level one. Secondly. along its way, the deletion process

also “sweeps” the route and verifies that there are no tracing processes for < in

transit. A similar change is made in procedure R–DEL(@f3,, ~, s), which is now

required to sweep along the routes leading from all vertices in WriteL(s) to s,

and make sure there are no tracing processes for ~ in transit.

6.4.1 The SWEEP Procedure. In order to enable these “sweep” operations, it

is required to ensure that “tracing processes” (following an R–addr or a

FO rward pointer) progress along unique fixed paths, so that they can be traced

themselves. We formalize this requirement as follows:

The Unique Route Requirement. For any two vertices u, w G V, fix a unique

(shortest ) path Route(u, w) connecting u and w in the network. Now all the

messages of Procedure FIND are required to be sent along these paths. This

includes the messages sent from one regional address R–addr, ( ~ ) to the

regional address R–addr, _,( $ ) in the level below it, in implementing the

“transfer-control-to” command, as well as the messages sent from vertices
Write,(s) to s, in implementing the “remote-read” commands of Procedure

R–FIND.

The sweep operation now becomes trivial if message transition on the links is

assumed to obey the first-in, first-out (FIFO) rule. In order to clean the route

from u to w, Route( L~, w), and verify that there are no tracing processes

currently in transition on it, it suffices to send a “clean-up” message (with no

particular content) traversing the same path; when this message arrives, it is

clear that all tracing processes destined to ~ that have been sent on this route

before, have already reached w, and were not left “stuck” along the way.
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Fori=ltoq do:

transfer-control-to vertex v,
FIG. 7. Procedure SWEEP(LL, w, [), ifu’eked at the

[ertex t{. Assume Route(u, w) = (u = v], ..., UC,= w).
End-for

If the edges do not provide FIFO transmission, then this property can be

easily imposed, at least for the tracing processes and clean-up messages, in the

standard way, as follows: Each vertex along a route Route(u, w) will forward

tracing processes and clean-up messages reaching it in the same order it has

received them. Furthermore, it will forward these messages one by one, and

wait for an acknowledgment on one such message before sending the next.

Formally, let us define a procedure SWEEP( u, w, f), that invoked at vertex u,

performs a sequence of control transfers along the path Route(u, w), effec-

tively sending a message carrying the center of activity along the path and

sweeping it as described above (see .Figure 7).

6.4.2 Locking the R–addr Pointers. The last point to notice is that the

SWEEP operation might still fail at its very beginning, if a searcher is still at the

stage after it has obtained a regional address for the user, but before it has

actually started the second stage, tracing the forwarding pointers towards the

user, that is, the “tracing process” has not yet been generated.

This is the point where locking should still be used. A searcher about to

examine an R–addr”( ~ ) pointer at some vertex w in its read set, first locks

this variable, and the process releases this variable only after generating and

transmitting the tracing process from w towards the user’s location.

We make use of the standard primitives lock and unlock. The “lock var”

command waits until granted access to the variable var and then locks it. The

“unlock var” operation releases the lock on var. (As discussed earlier,

fairness can be guaranteed by queuing all incoming locking requests.)

For conventional simplicity, in the code we describe the operation of releas-

ing the variable R–addrW’( & ) as performed remotely, by a remote-unlock

command issued from vertex s = R–addr( ~ ), that is, after the tracing process

has already crossed the first segment of its trip and reached the regional

address s. Clearly, better programming options exist, but we will not dwell on

them any further.

6,5 THE MODIFIED PROCEDURES. In summary, the process of moving the

user < from s to t is started by actually relocating f from s to t,and setting a

forwarding pointer ForwardS( & ) at s pointing to t.In fact, since a relocation

operation might take some non-negligible time, a fast searcher arriving at s

might follow the forwarding pointer and reach t before t is even aware of the

relocation process taking place. It is therefore necessary to precede the

relocation process itself by setting up a “control process” for the user $ at t,

that will manage a waiting queue for searchers that arrive at t looking for < in

midst of the relocation.

The procedure then registers ~ as residing at t at all the regional directories
up to the appropriate level. Only once this step is completed, the procedure

starts deleting pointers to g at its old residence s from the regional directories.

This is done top-down, while sweeping the routes to ensure all messages in

transit succeed in finding g.
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2+() /* level in the h~erarchy “/

Repeat forever /* retrieve lowest possible regional address R.addr,(<) “/

2+2+1

transfer-control-to vertex u = Read,(u)

lock R-addr~({)

If R-addr~(~) # nil then goto Found

unlock R-addr~(<)

transfer-control-to v /* No regional address found try next level “/

End-Repeat

Found: transfer-control-to vertex R-addr~(<) /’ move to the vertex R.addr,(() “/

remote-unlock R-addr~(<)

Repeat /* trace f along forwarding pointers ‘/

transfer-control-to vertex u = Forward@(<) along the fixed route Route(@, u)

Until the user < is found locally /“ the vertex Addr({) is reached ‘/

FIG. 8. Procedure FIND( !3, <, L), uuoked at the L>erte,t t ( concurrent case),

Formal specification for the implementation of the FIND and MOVE proce-

dures is given in Figures 8 and 9, respectively. The (simplified) R-FIND

procedure is canceled, and its actions appear directly inside the FIND proce-

dure. Procedure R–INS is left unchanged. The implementation of the modified

R_ DEL operation is given in Figure 10. The formal code for procedure SWEEP

is given in Figure 7.
Let us remark that the code of the modified MOVE procedure can be made

somewhat more efficient by more careful design of the SWEEP procedure,

particularly, avoiding the return to the point of origin after each invocation of

the SWEEP procedure, but we will ignore such optimizations throughout the

sequel.

6,6 CORRECTNESS AND COMPLEXITY. We need to prove that our modified

procedures guarantee the requirements of the problem in the presence of

concurrent accesses, that is, that the resulting directory correctly performs its

basic find operation.

Let us first argue the correctness of the first part of the FIND procedure.

LEMMA 6.6.1. iVo deadlocks can be caused by the “lock-unlock’ corrwnands

in the FIND and MOVE procedures.

PROOF. A deadlock might occur if (at least) two concurrent processes try to

obtain locks on the same two (or more) variables (in which case it may happen

that each process has been granted one lock, both wait for the other lock, and

none releases the one it has already obtained).

In our case, each iteration in the first loop of the FIND procedure requests a

lock on a single variable, and performs a constant number of steps before

releasing the lock. Also, the MOVE procedure requests locks sequentially, that
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Set up a control process (and waiting queue) for f at t

Forl<i<d do:

c: + c: + dist(’s, t)

End-for

J< + max{2 I C: z 2’-’}

Forwards(() +- remote-write “t”

Relocate user & to vertex t,along with its mobile data structure MDSt

transfer-control-to vertex t

Forward”(<) +-- remote-write “t”, for vertex u = R.addr$~+l (()

Forl<i<J~ do:

cham~ i-- R_addr~ /“ save old regional addresses ‘/

R_addr~ +- “t”

C:+o

R-INs(lRIDt, <,t) /+ register new regional address in ~D, ‘1

End-for

chain~+l + R-addr~C+l

transfer-control-to vertex R-addr$t+l (~)

For i = Jt to 1 do:

SwEEP(chain~l, chain;, ()

R.-DEL(7W,,<,C3)

Forward@(<) + nil

End-for

transfer-control-to s

SWEEP(s, t,()

/’ eliminate old regional address from IZD, */

FIG. 9. Procedure MovE(9, ~, s, t),iru’eked uts = Addr( ~ ) (concuflent case).

R.DEL(7?22,, {,st): /“ invoked at the vertex s,, the old R-.addr,(() *I

For all u c W’rite(s, ) do:

transfer-control-to vertex u

lock R_addr~(&)

If R_addr~(~) = s then R.addr~(&) t- nil

unlock R_addr~(<)

SwEEP(U>SZ>() /* verify all tracing processes for ( have arrived s, “/

End-for

FIG. 10. The modified R_DEL operation of the m-regional directory @’sZ, based on an nz-

regional matching =z” (concurrent ~ase).

is, at most one at a time, since it only requests a lock within the R–DEL

procedure. Hence, no deadlocks can occur. ❑

LEMMA 6.6.2. The first stage of the FIND procedure always terminates.

PROOF. By the last lemma, the procedure never deadlocks. At level i = ~,

the regional address variables are non-nil, and the procedure will therefore
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obtain a regional address of the user on that level, if it did not obtain one on a

lower level. ❑

LEMMA 6.6.3. Consider a find request F = FIND( 23, f, L) issued by a L’erte.x L.

If all the hosts Hostl l’isited by the user during the execution of the first stage of F

are restricted to tlte 21 neigh bor}lood of the Lertex [1, then F will succeed in

retrieL’ing R_addr, (.$) (or a 10we~-lelwl regional add~ess).

PROOF. Consider the segment (Host,,,..., Host,, ) of the ~ sequence, con-

taining the hosts visited by i.he user during the time interval [T,,.,.,(F), Tml,Cl(F)].

(This interval is finite by the last lemma.) For each vertex Host, on this

segment, the set Writel( Host, ) intersects with the set Readt( L}) = {w}, that is,

contains w. Therefore the variable R–addr,W( < ) at the vertex w always points

at some vertex Host,, at any time in [ T,,., f(F), T,. ,~( F )]. Consequently, L’ will

succeed in retrieving the regional address R–addr,( & ) on its ith iteration (if it

did not obtain a regional address on an earlier iteration). D

Next, let us argue the correctness of the second part of the FIND procedure.

By arguments similar to the sequential case (Lemma 5.4.1), we have:

IJMMA 6.6.4. The concurrent MOVE procedure maintains the reachabilip and

proximi~ inlar iants,

LEMMA 6.6.5. The modified directoty guarantees the clean moue requirement.

Namely, if the searcher L has already obtained a regional address R-addrl( [ ) oft

at time Tc), then the user will not finish a nloLe M that inuoll’es updating regional

directories up to lel’el 1> i --1 before it is found by [).

PROOF. Suppose that at time T,l, the searcher L has obtained a regional

address s, = R–addr, ( f ) of ~, at some vertex w e Readl(L). The FIND proce-

dure then starts tracing the user from w to s,, and then along forwarding

pointers to lower-level regional addresses s,- ~,...,s, = Addr( f), going along

the unique routes Route(w, s,) and then Route(s,, s,_, ) in each segment of the

way.

Now suppose that at some time T, > Tfl the user wishes to perform move M

as in the lemma, and move from s, to some new location t,Note that the user
is allowed to do that right away, without waiting for any searcher(s), However,

it must set up a forwarding pointer from s to t, so if L”s tracing process

reaches s, it will be forwarded to t.Moreover, before the user is allowed to

complete its move procedure, it is required to sweep the exact same routes

traversed by u‘s tracing process from w through s,, s,_ ~, ..., Sz to s ~ and finally
to t,namely, ~oute(w, S,)I followed by Route(s,, s,_ ~) for j = i, i – 1,...,2,
followed by Route(s, t). The sweeping process guarantees that once the move

M is completed, LI has already found the user (at either s or t). ❑

Let us finally say a word on the resulting complexity bounds.

LEMMA 6.6.6. The stretch factor for the FIND operation in the concurrent case
remai?ls Stretcll~,,,,, = 0( Deg,.,U~ “ Rad, ~,,,1).

PROOF. In the implementation of a find operation F = FIND( 9, ~, [)), the

number of messages required is of the same order as in the sequential case.

Indeed, assuming Opt_cost( F) s 2’, namely, assuming that the user g does not

leave Nz,( u), the 2’-neighborhood of L, during this operation, one can easily
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verify that no R_FIND operations are invoked in regional directories of level

i + 2 or higher, that is, the R–FIND operation succeeds at some level j s i + 1.

Moreover, the total length of the paths traversed by the tracing process along

forwarding pointers is 0(2’), even if the user makes several moves (inside the

2’-neighborhood of 1’) after the tracing stage has started. ❑

~EMMA 6.6.7. The stretch factor for the MOVE operation in t~le cons..urent

case remains Stretch,,,,,, ~ = 0( Rad,,,,l, . Deg,,,,,r, s 8 -t 8 l/log n).

PROOF. In the implementation of a move operation ill = MOVE(L3, $, s, t),

the number of messages required is of the same order as in the sequential case.

In particular, the cost of the sweep operations is as follows: In Procedure

R-DEL(%~,, &, Si), we perform a sweep from every LL G W?ite(s,) to s,. Each

such sweep costs 0(2’ . Rad ,V,,,,), so the entire sweep operations in the proce-
dure cost 0(2’ . Rad,V,,,C “ Deg,,,,,,c). InL addition, sweeping the chain of forward-

ing pointers in a move that updates regional directories of levels 1 and below

costs 0(2/ ). Hence, the total cost of sweep operations for a move that updates

regional directories of levels 1 and below is 0(2° + Z:=, 0(2’ “ RadW,,~e “

Degw,,,,,) = 0(2’” Radwr,,, “ Deg}v, ,,<). The rest of the analysis can thus follow
the proof of Lemma 5.4.4. u

Again, considering the modified hierarchical directory server Q obtained by

picking k = log n, we have

THEOREM 6.6.8. The modified hierarchical directory sener @ allowing concur-

rent accesses satisfies Stretch ~i,l~ = 0( log n) and Stretch,. ~,,, = 0(6 . log z n -t

8z/logn) and uses a total of O(N” 8. log~ n -t N” 8: -t n “ 8 ~logn) memory

bits for handling N users.

PROOF. The only change in complexity results from the modification in the

construction of the regional matching. This modification causes (minor) changes

in the stretch complexities of the “find” and “move” operations due to the

switch between Deg,c,~ and Deg,P,,,tC. In particular, a log n factor is shifted
from Stretch ~l.~ to Stretch,,,,,,. 3 and from one factor to the other in the memory

requirements. ❑

Let us finally remark that there are other ways for solving the “race”

problem handled in Subsection 6.3, which leave unchanged the complexity

bounds for both operations, as well as the memory requirements, at the cost of

somewhat more complicated code.

7. Discussion

This final section discusses several related aspects and possible generalizations

of the proposed directo~ server.

7.1 PREPROCESSING. So far, we have not taken preprocessing costs into

account. These costs are of two types. First, it is necessa~ to construct the

necessary underlying construction, namely, the hierarchy of regional matchings.

This can be done using the distributed clustering techniques of Awerbuch and
Peleg [1990d] with a global communication cost of 0( E “ log4 n).

The second type of preprocessing occurs whenever a new user is introduced
into the system, or an old one is removed. In the setting considered in this

paper, the operation of inserting a new user into the system requires a
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considerably heavy initialization operation on the directories. In particular,

such a user g has to be registered in the regional directories at all levels, by

setting a pointer R–addr[’( < ) = s to the user’s new residence s at all ver-

tices u = WritCi( s), for all 1 s i < 8. The total cost of this initialization opera-

) which in our construction amounts totion is O(ll(G) “ RadW, ,,, “ Deg.,,,, ,

0( D(G) “ log n). Note that in our framework, this cost cannot be charged

directly to any “inherent cost”, since the user has never moved yet.

Although this preparation cost is rather heavy, it does not seem to be

exceedingly expensive, considering the fact that it is incurred only once

throughout the lifetime of the user in the system. In fact, it is possible to unify

the cost analysis to cover also the preparation stage, by treating the introduc-

tion of a new user as a migration of that user from some external location to its

new residence “across the entire network”, and consequently defining its

inherent cost as D(G).

A similar discussion applies also to deletions of users from the system.

7.2 FAULT TOLERANCE. Our solution, as described, assumes a static net-

work, and does not tolerate failures of network processes. Let us now briefly

address the issue of handling faults. In most existing networks, link failures are

detected via time-outs of low-level data link protocols. This enables us to use a

“semi-static” approach to failures. The network can be viewed as a dynamic

graph, where edges fail and recover arbitrarily, but failures are detectable.

Hence, whenever the network topology changes, this fact is detected by the

involved vertices, who then trigger the initiation of an adaptation stage,

replacing the present (static) tracking structure with an entirely new (static)

structure matching the current topology.

In this sense, the situation is analogous to that of most common algorithms

for routing and other topology sensitive tasks (cf. McQuillan et al. [19801)

where the topological databases and delay estimates have to be recomputed

periodically in an adaptive fashion. Such semi-static methods are successful as

long as the topology of the network stays stable for sufficiently long time

between successive restructurings. In the fiber-optic-technology-based net-

works of the 90’s (cf. Cidon et al. [1988]), this is a quite realistic assumption.

More specifically, the transformation from the existing structure to the next

is done in two steps. The first step is to wipe out all traces of the previous

structure. This can be done via general protocol transformers, for example,

reset protocols [Finn 1977; Afek et al. 1987]. These protocols “clean” the

network from messages and data related to previous computations.

The second step involves recomputing the new structure (from scratch). This
requires, in particular, recomputing all the necessary data structures, namely,

the hierarchy of regional matchings. As mentioned earlier, such restructuring

can be performed in communication cost 0( E” logqn) using the techniques of

Awerbuch and Peleg [1990 d]. It is also necessary to register each user & in the

regional directories at all levels, by setting the appropriate pointers to its

residence at all the vertices in its Writel sets. The total cost of this operation
amounts to O(Il(G ) . log n) per user. Thus the overall restructuring cost is

O(E - log~n + ND(G) . log n) for N users.

Since any topological change can completely change the distance metric,

there is apparently no way to avoid such global restructuring in the worst case.

Further research is needed in order to develop efficient online methods for
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updating our data structures, attempting to take advantage of the probable

resemblance between the previous and current topology.

7.3 MIGRATION CONTROL. An interesting area of research concerns devel-

oping good policies for moving servers in the network, in response to a stream

of requests, in order to achieve best performance. In the literature on sequen-

tial algorithms this problem is known as the “k-server” problem (cf. Manasse et

al. 1988]). In the distributed setting there are additional complicating factors,

having to do with the effects of locality and partial information. Even though

this question is not dealt with in this paper, our contribution is in showing that

the limitation of partial information is not very restrictive, in the sense that one

can get by paying no more than a polylogarithmic factor in performance

compared to an algorithm which obtains full information for free. Subsequent

papers [Bartal et al. 1992; Bartal and Rosen 1992; Awerbuch et al. 1993] have

extended our work by dealing with this generalized framework and providing

efficient solutions for the control problem as well.
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