Problem 6.1 [Reduction Properties]. Suppose you have a polynomial-time one-call reduction \(r \) from NP search problem \(A \) to NP search problem \(B \), which converts each problem-\(A \) instance \(x \) having \(a \) solutions into a problem-\(B \) instance \(r(x) \) having \(f(x, a) \) solutions.

(a) What must be true about \(f \) for \(r \) to preserve NP-hardness (i.e., \(A \) being NP-hard implies \(B \) is NP-hard)?

(b) What must be true about \(f \) for \(r \) to preserve \#P-hardness (i.e., \(\#A \) being \#P-hard implies \(\#B \) is \#P-hard)?

(c) What must be true about \(f \) for ASP \(A \) being NP-hard to imply ASP \(B \) is NP-hard?

(d) Given an NP search problem \(A \), define \(\text{AASP} \ A \) to be the following decision problem: given an instance of \(A \) and two distinct solutions of that instance, is there a third distinct solution? What must be true about \(f \) for \(\text{AASP} \ A \) being NP-hard to imply \(\text{AASP} \ B \) is NP-hard?

(e) Besides the function \(r \) converting instances of \(A \) into instances of \(B \), we require another function to conclude that ASP \(B \) is NP-hard. What must the other function do? What about for AASP?