Problem 5.1 [Consecutive Sets]. Prove that the following problem is NP-complete.

CONSECUTIVE SETS: Given a collection of (unordered) subsets S_1, S_2, \ldots, S_n of a finite alphabet Σ, and a positive integer k, is there a string w over the alphabet Σ with length at most k such that, for each S_i, the elements of S_i occur (in any order) as some consecutive characters $w_j, w_{j+1}, \ldots, w_{j+|S_i|-1}$ of w?

Hint: Reduce from some version of Hamiltonicity.

Solution: We first prove that CONSECUTIVE SETS is in NP by giving a nondeterministic polynomial-time algorithm to decide it. If $k \geq \sum |S_i|$ then we immediately return YES, since the trivial solution which simply lists all the subsets is a solution. Otherwise, we nondeterministically guess a string s of length k. Then for each i we nondeterministically guess an offset and a permutation of the elements of S_i, and verify that those elements indeed appear in s at that offset in order. If this verification succeeds for all of the subsets, then we return YES; otherwise we return NO.

This algorithm requires linear time to guess the string s, and linear time to verify that each subset appears in s. Thus it takes at most quadratic time to check all of the subsets, so it is polynomial-time as desired. Therefore CONSECUTIVE SETS is in NP.

We now prove that CONSECUTIVE SETS is NP-hard by reducing from HAMILTONIAN PATH in SIMPLE 3-REGULAR UNDIRECTED GRAPHS. Let $G = (V, E)$ be a simple, 3-regular, undirected graph. Let $\Sigma = E$ and for each vertex $v \in V$ let S_v be the set of edges adjacent to v. Finally, set $k = 2|E| - (|V| - 1)$. We output the CONSECUTIVE SETS instance (Σ, S_v, k). This reduction is $O(|E|)$ (it includes each edge twice); thus it is polynomial-time.

Note that

$$S_u \cap S_v = \begin{cases} (u, v) & \text{u is adjacent to v} \\ \emptyset & \text{u is not adjacent to v} \end{cases}$$

for distinct vertices u, v.

We now show that our reduction is correct. Suppose that there exists a Hamiltonian Path on G, which visits the vertices in order v_1, \ldots, v_n. Then there exists a solution to the corresponding CONSECUTIVE SETS instance which is obtained by concatenating the sets S_{v_1}, \ldots, S_{v_n}, overlapping each adjacent pair S_u, S_v using the edge (u, v). The resulting string has length $2|E| - (|V| - 1) = 2|V| + 1 = k$, since each edge is output twice except that we overlap $|V| - 1$ pairs of them. Therefore, it is a solution to the CONSECUTIVE SETS instance.

Conversely, suppose that there exists a solution to the CONSECUTIVE SETS instance; that is, a string w of length at most k which contains each of the S_v. Because each pair of S_u, S_v have intersection of size at most 1 and each $|S_v| = 3$, each subset can overlap with at most two others, and by a margin of only 1 character. Thus such a w must have length at least $3|V| - (|V| - 1) = 2|V| + 1 = k$, since it includes $|V|$ subsets of size 3 and we can save only $|V| - 1$ characters by

\footnote{Formally, we create an alphabet with a symbol for each edge, but we omit this layer of indirection for clarity.}
overlapping. Thus \(w \) has length exactly \(k \). Therefore every subset overlaps by 1 character with the subsets next to it in the string. But this implies that the corresponding vertices are adjacent. Thus there exists a chain of \(|V|\) vertices including every vertex, where every vertex is adjacent to those next to it in the chain. This is exactly a Hamiltonian Path in \(G \).

Therefore our reduction is sound, showing that Consecutive Sets is NP-hard. Because Consecutive Sets is NP-hard and in NP, it is NP-complete.