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Problem 4.1 [Circuit SAT to (formula) SAT].
Lecture 4 introduced SAT and Circuit SAT and stated that both are NP-hard. It is straightfor-

ward to reduce SAT to Circuit SAT by giving an algorithm to convert a formula into an equivalent
circuit. This problem is to reduce Circuit SAT to SAT by giving a polynomial-time algorithm
to convert a circuit into an equivalent formula.

The input to your reduction is a circuit represented by a directed acyclic graph with n
source vertices (in-degree 0, representing the circuit inputs x1, x2, . . . , xn) and one sink vertex
(out-degree 0, representing the circuit output). The remaining vertices each represent and are
labeled by a logic gate — AND, OR, or NOT — with incoming edges from the vertices providing
the input to that gate and outgoing edges to the vertices consuming the output of the gate. NOT
gates have exactly one input, while AND and OR gates can have any positive number of inputs.
Note that the output of a gate can be connected to the input of any number of gates (according to its
out-degree). The decision question is whether there exists an assignment [x1, x2, . . . , xn] = {0, 1}n
such that the circuit output is 1.

Your reduction’s size blowup must be polynomial to be a correct reduction: the formula’s size
must be polynomial in the circuit’s size. Ideally, your reduction’s blowup will be only linear.

Solution: This type of transformation is called a Tseytin transformation; see e.g. https:
//en.wikipedia.org/wiki/Tseytin transformation.

Given an instance of Circuit SAT, we construct an instance of SAT as follows: We define x⇔ y
as (x ∧ y) ∨ (¬x ∧ ¬y), which is a formula saying x and y have the same truth value.

• We have a variable x for each vertex x of the circuit.

• The formula is an AND of the following clauses:

– For each NOT vertex y with input x, the clause y ⇔ ¬x.

– For each AND vertex y with inputs x1, . . . , xk, the clause y ⇔ (x1 ∧ . . . ∧ xk).

– For each OR vertex y with inputs x1, . . . , xk, the clause y ⇔ (x1 ∨ . . . ∨ xk).

– The clause xs, where xs is the sink vertex.

This construction clearly takes polynomial time. Each vertex and edge in the circuit leads to a
constant amount of the formula, so the blowup is linear.

Suppose the original Circuit SAT instance was solvable, so there is an assignment of truth
values to the source vertices which makes the sink vertex true. Consider the assignment to the
formula which has the same value on source vertices, and at each gate vertex has the value taken
by that gate when the inputs to the circuit are set as in the solution to the circuit. This assignment
satisfies each clause representing a gate, and satisfies the clause xs because the assignment makes
the output of the circuit ture. So there is a satisfying assignment for the formula.
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Now suppose the formula has a satisfying assignment. We take the input to the circuit corre-
sponding to the values of the variables x1, xn which represent the source vertices. With this input,
the value at each vertex y in the circuit is the same as the value of y in the satisfying assignment,
since the output of each gate must be correct for the corresponding clause to be satisfied. Since xs
must be true in the satisfying assignment, this input to the circuit makes the output true, so the
circuit is satisfiable.
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