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Problem Set 2 Solution

Due: Tuesday, February 19, 2019 at noon

Problem 2.1 [Problem Set Scheduling]. During the semester, you will have to plan when to
work on problem sets from this and other courses, subject to constraints: you cannot start working
on a problem set until it is released, you must finish a problem set before it is due, and you can work
on only one problem set at a time. We can formalize these constraints in the following problems:

Sequencing with Release Times and Deadlines: Given a set T of tasks, where each task
t ∈ T has a positive integer length `t, cannot be started until a nonnegative integer rt (its release
time), and must be completed before a positive integer dt (its deadline), is there a feasible one-
processor schedule for T? In this problem, once the processor starts a task, it must finish that task
before starting another task.

Preemptive Sequencing with Release Times and Deadlines is the same problem, except
the processor is allowed to suspend work on its current task and start on another task at any time.
A task t is completed when the processor has spent `t total time on the task.

(a) Prove that Sequencing with Release Times and Deadlines is weakly NP-hard by
reduction from Partition.

Solution: Let A = {a1, . . . , an} be an instance of Partition, and let S =
∑
i
ai. We

construct an instance of Sequencing with Release Times and Deadlines as follows:

• For each number ai ∈ A, we have a task ti with `ti = ai, rti = 0, and dti = S + 1.

• We have a ‘separator’ task s with `s = 1, rs = 1
2S, and ds = 1

2S + 1.

Each task can be constructed in constant time, so this reduction takes linear time.

We need to show that A has a partition into two sets with sum 1
2S if and only if this set of

tasks as a feasible schedule.

Suppose A has a partition into two sets A1 and A2 with sum 1
2S. For each ai ∈ A1, we

schedule ti for some time in the interval
[
0, 12S

]
, for each ai ∈ A2, we schedule ti for some

time in
[
1
2S + 1, S + 1

]
, and we schedule the separator task for

[
1
2S,

1
2S + 1

]
. Since

∑
A1 =∑

A2 = 1
2S, there is enough time in each block to schedule all of the tasks, so this is a feasible

schedule.

Conversely, suppose there is a feasible schedule for the tasks. Then the separator task must

be scheduled during
[
1
2S,

1
2S + 1

]
, since its length is the same as the time between its release

and deadline. Each other task ti is either scheduled for before or after the separator task.
Let A1 be the set containing ai for each ti scheduled before the separator task, and let A2 be
the set containing ai for each ti scheduled after the separator task. Since the total time to
complete every task is S + 1, which is the same as the sum of the lengths of tasks, every time

1



between 0 and S + 1 must be occupied by a task. So the tasks scheduled before the separator
task must have total length 1

2S, and hence
∑

A1 = 1
2S. Similarly

∑
A2 = 1

2S, so A1 and A2

are a solution to the Partition problem.

An alternate solution is to pick one of the tasks ti, and set its release time and deadline to
1
2S and 1

2S + ai, instead of using a separator. This forces ti to be scheduled starting at time
1
2S, which similarly requires the tasks to be partitioned into sets with total length 1

2S.

(b) Prove that Sequencing with Release Times and Deadlines is strongly NP-hard by
reduction from 3-Partition.

Solution: Let A = {a1, . . . , an} be an instance of 3-Partition, and let S =
∑
i
ai. We

construct an instance of Sequencing with Release Times and Deadlines as follows:

• For each number ai ∈ A, we have a task ti with `ti = ai, rti = 0, and dti = S + n
3 − 1.

• For each j = 1, . . . , n3 −1, we have a ‘separator’ task sj with `sj = 1, rsj = j( 3
nS+1)−1,

and dsj = j( 3
nS + 1).

Again each task takes constant time to construct, and there are a linear number of them, so
the reduction takes linear time.

To show that the 3-Partition instance has a solution if and only if the Sequencing with
Release Times and Deadlines instance does, first observe that each separator sj must be

scheduled during
[
j( 3

nS + 1)− 1, j( 3
nS + 1)

]
, since there is just enough time to complete this

tasks. This leaves n
3 gaps of size 3

nS in which to schedule the remaining tasks.

Suppose we can partition A into n
3 sets Aj (j = 0, . . . , n3−1) of size 3 with sum 3

nS. For such a

set Aj = ai1 , ai2 , ai3 , we schedule ti1 , ti2 , and ti3 to the interval
[
(j − 1)( 3

nS + 1), j( 3
nS + 1)− 1

]
,

i.e. between the j − 1st separator and the jth separator. This interval has length 3
nS, so

there is just enough space for the three tasks; thus we have a feasible schedule.

Conversely, suppose there is a feasible schedule. Since the total length S + n
3 − 1 of tasks is

the same as the time available, the entire time must be filled. In particular, each gap between
seperators of length 3

n must be entirely occupied by tasks, whose lengths must sum to 3
n .

We can assume 1
4 < ai <

1
2 and still have 3-Partition strongly NP-hard; this implies there

are exactly three tasks scheduled in each gap, and their lengths sum to n
3 . The elements of

A corresponding to these three tasks sum to n
3 , so we partition A based on which gap the

corresponding task is scheduled in. The sets in the resulting partition have 3 elements which
sum to 3

nS.

It is also possible to design the reduction with n
3 or n

3 + 1 separator tasks (instead of n
3 − 1).

(c) Prove that Preemptive Sequencing with Release Times and Deadlines is in P by
giving a polynomial-time algorithm that solves it. Explain why your proofs for the non-
premptive case do not hold under preemption.

Solution: Iterate through the tasks, sorted by deadline. For each task t, schedule it in
the earliest times possible; it takes the first cumulative `t time after rt not already taken by
another task. If this results in t not being completed by dt, output no. Otherwise, after going
through all tasks, output yes.
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Suppose that this algorithm fails to schedule t before its deadline. In order to finish t on time,
we must push work on another task to either before rt or after dt. Since tasks are scheduled
to be completed as soon as possibly, we can’t push it to before rt. Since tasks scheduled
before t have deadline before t, if we push it to after dt that task will miss its deadline. So
this algorithm finds a feasible schedule if one exists.

Each step of this algorithm takes polynomial time: we sort n tasks in O(n log n) time, and for
each of n tasks, we divide it into at most n chunks and perform O(n) arithmetic operations.
So Preemptive Sequencing with Release Times and Deadlines is in P.

Another algorithm constructs a schedule in temporal order, where at each time we are working
on the task with the earliest deadlines among released unfinished tasks. In order to do this in
polynomial time, we must repeatedly skip ahead to the next ‘event,’ which is either a release
time, a deadline, or the completion of task currently being worked on. Since there are at
most 3n tasks, this can be done in polynomial time.

To show that this algorithm finds a feasible schedule if one exists, we consider the first time
a feasible schedule differs from the schedule found by the algorithm. Suppose at this time
the feasible schedule is working on task t1 and the algorithm is working on task t2. Then
dt2 ≤ dt1 , and the feasible schedule must work on t2 later. We can swap this future work on
t2 and the current work on t1 to obtain a new feasible schedule which matches the algorithm’s
schedule for longer. Repeating this, we eventually obtain a feasible schedule identical to that
found by the algorithm; in particular, the algorithm finds a feasible schedule if one exists.

The hardness proofs above do not hold under preemption because we can now split a task
across one of the separators, making separators do essentially nothing. This would be analo-
gous to solving (3-)Partition where we can split numbers apart before adding them, which
is much easier.

If an algorithm constructs a schedule by iterating through all times (working on the most
urgent task at each one), the algorithm takes pseudopolynomial time. The lengths, release
times, and deadlines of tasks may be exponentially large in the length of the input.
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