6.890: Fun with Hardness Proofs Guest Lectures on PPAD November 2014

Constantinos Daskalakis CSAIL, MIT

Existence Theorems: Nash, Brouwer, Sperner

→ Existence Theorems: Nash, Brouwer, Sperner

Games and Equilibria

		1/2	1/2
	Kick Dive	Left	Right
1/2	Left	1,-1	-1,1
1/2	Right	-1,1	1, -1

Equilibrium:

A pair of randomized strategies so that no player has incentive to deviate if the other stays put.

Penalty Shot Game

[von Neumann '28]: It always exists in two-player zero-sum games.

- + equilibrium can be computed in poly-time with Linear Programming

Games and Equilibria

		2/5	3/5
	Kick Dive	Left	Right
1/2	Left	2,-1	-1,1
1/2	Right	-1,1	1, -1

Equilibrium:

A pair of randomized strategies so that no player has incentive to deviate if the other stays put.

[Nash '50]: An equilibrium exists in every game.

no proof using LP duality known no poly-time algorithm known, despite intense effort

→ Existence Theorems: Nash, Brouwer, Sperner

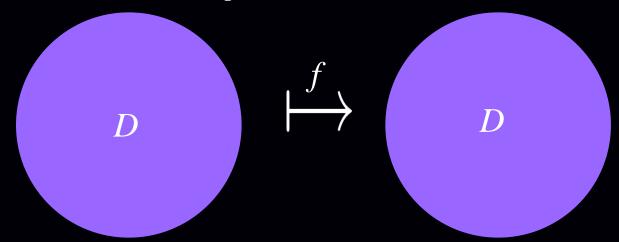
Existence Theorems: Nash, Brouwer, Sperner

[Brouwer 1910]: Let $f: D \longrightarrow D$ be a continuous function from a convex and compact subset D of the Euclidean space to itself.

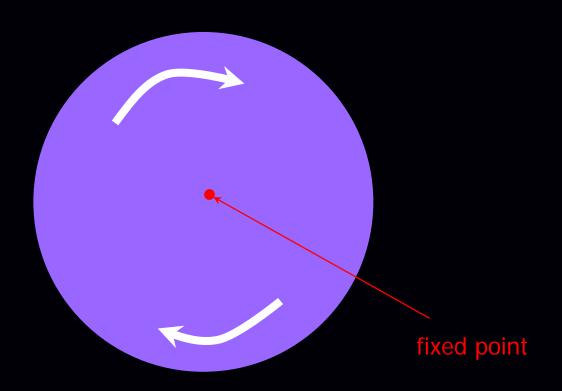
Then there exists an $x \in D$ s.t. x = f(x).

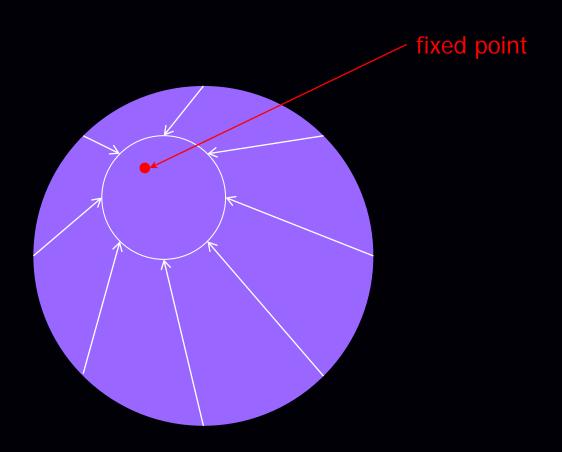
closed and bounded

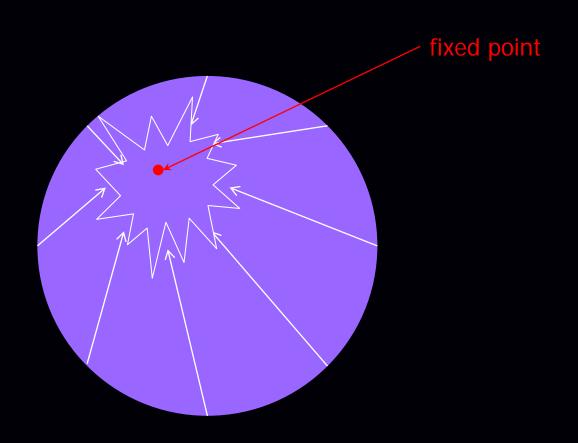
Below we show a few examples, when D is the 2-dimensional disk.



N.B. All conditions in the statement of the theorem are necessary.







 $Brouwer \Rightarrow Nash$

Kick Dive	Left	Right		C
Left	1,-1	-1,1	\longmapsto	<i>f</i> :
Right	-1,1	1, -1		

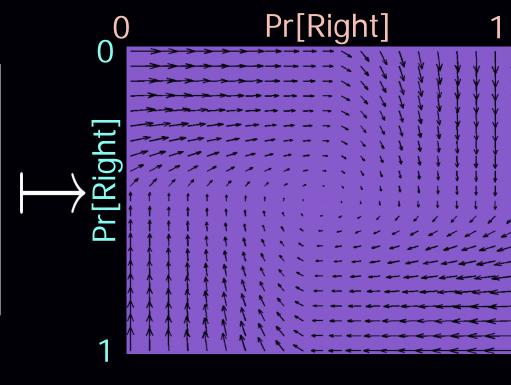
 $f: [0,1]^2 \rightarrow [0,1]^2$, continuous such that fixed points \equiv Nash eq.

Penalty Shot Game

			0	Pr[Right]	1
Kick Dive	Left	Right	ght]		
Left	1,-1	-1,1	_ Pr[Right]		
Right	-1,1	1, -1			
Penalty	v Shot	Game	1		

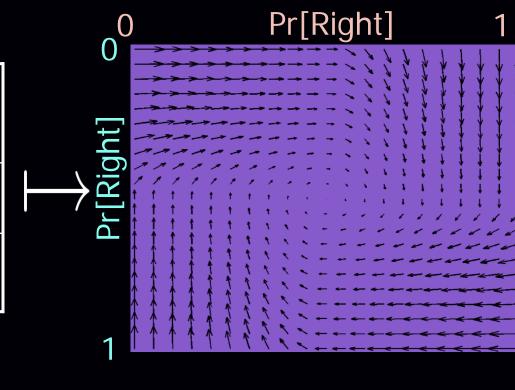
Kick Dive	Left	Right
Left	1,-1	-1,1
Right	-1,1	1, -1

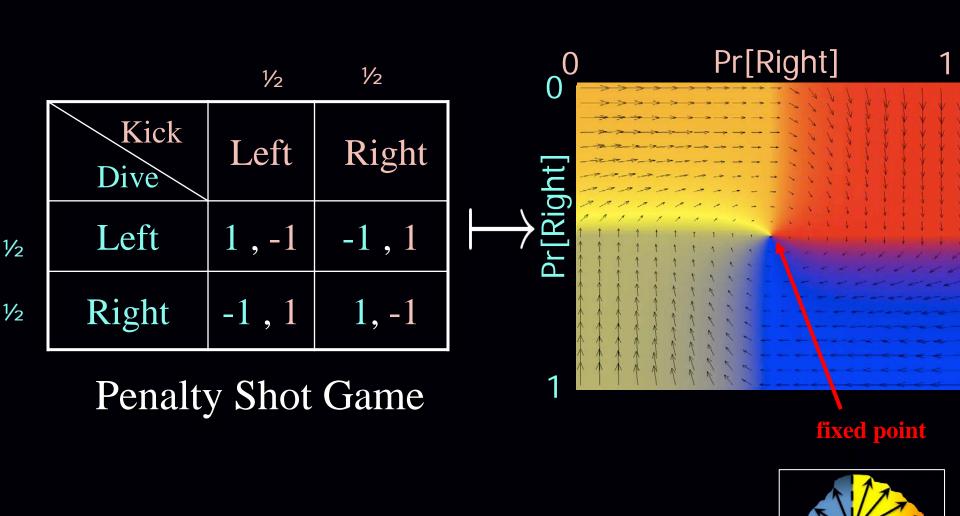
Penalty Shot Game



Kick Dive	Left	Right
Left	1,-1	-1,1
Right	-1,1	1, -1

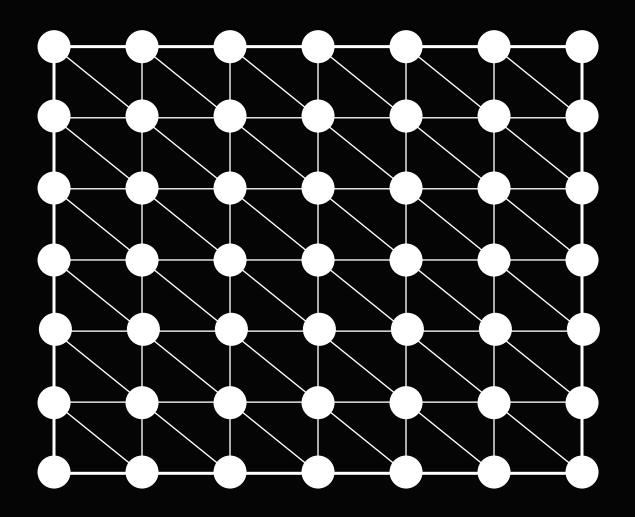
Penalty Shot Game

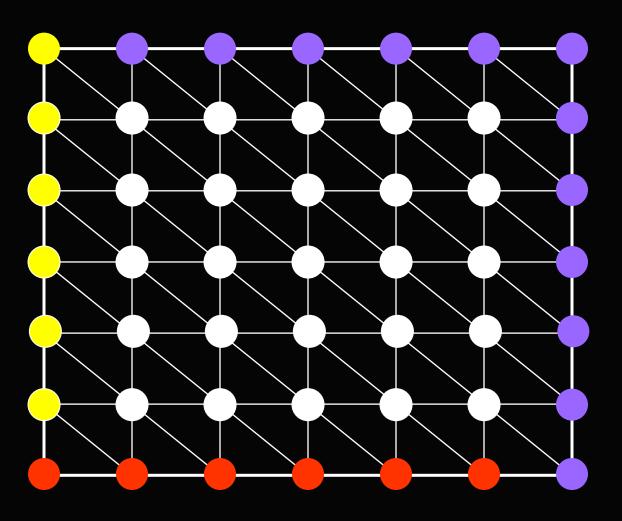




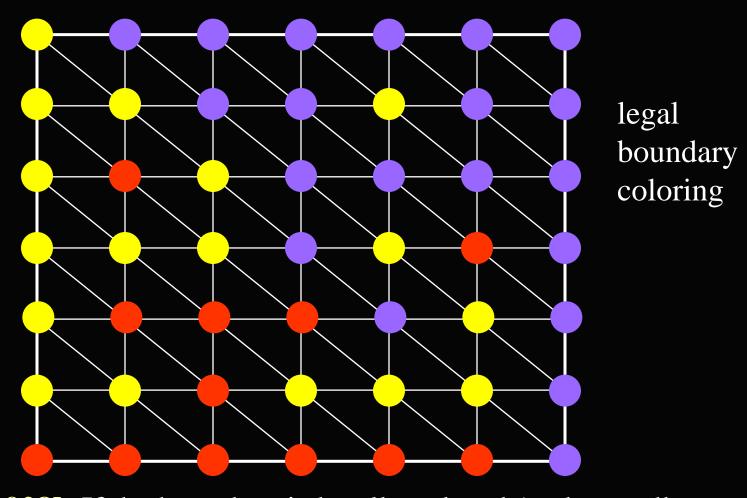
Existence Theorems: Nash, Brouwer, Sperner

→ Existence Theorems: Nash, Brouwer, Sperner

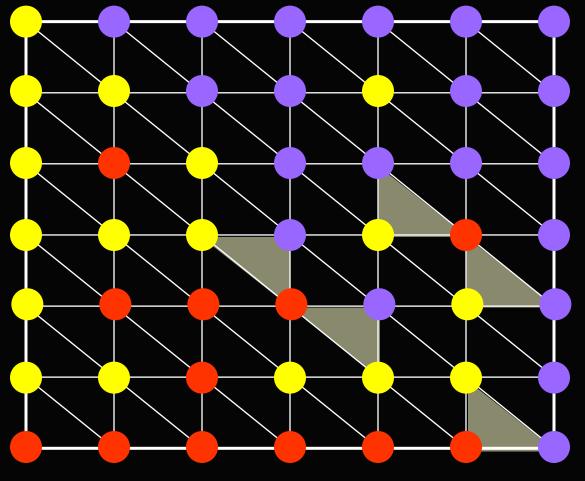




legal boundary coloring



[Sperner 1928]: If the boundary is legally colored (and regardless how the internal nodes are colored), there exists a tri-chromatic triangle. In fact, an odd number of them.



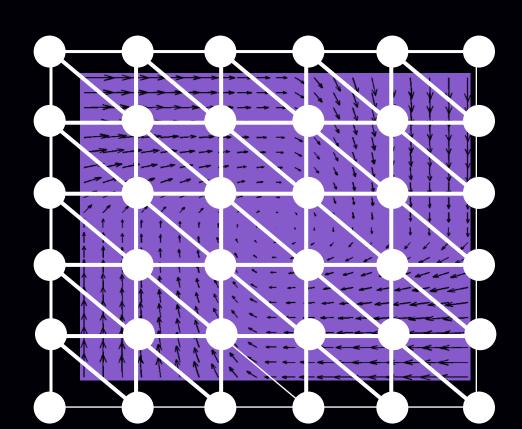
legal boundary coloring

[Sperner 1928]: If the boundary is legally colored (and regardless how the internal nodes are colored), there exists a tri-chromatic triangle. In fact, an odd number of them.

Given $f: [0,1]^2 \to [0,1]^2$

- 1. For all ε , existence of approximate fixed point $|f(x)-x| < \varepsilon$, can be shown via Sperner's lemma.
- 2. Then use compactness.

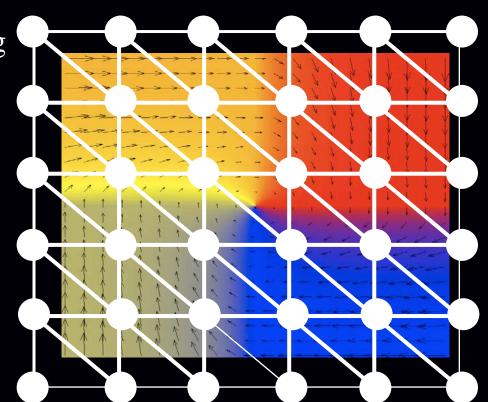
For 1: Triangulate $[0,1]^2$,



Given $f: [0,1]^2 \to [0,1]^2$

- 1. For all ε , existence of approximate fixed point $|f(x)-x| < \varepsilon$, can be shown via Sperner's lemma.
- 2. Then use compactness.

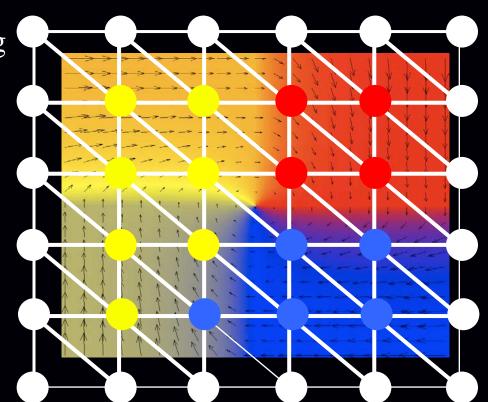
For 1: Triangulate $[0,1]^2$, then color points according to the direction of f(x)-x.



Given $f: [0,1]^2 \to [0,1]^2$

- 1. For all ε , existence of approximate fixed point $|f(x)-x| < \varepsilon$, can be shown via Sperner's lemma.
- 2. Then use compactness.

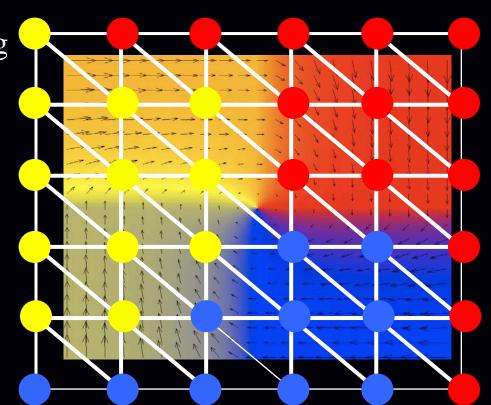
For 1: Triangulate $[0,1]^2$, then color points according to the direction of f(x)-x.



Given $f: [0,1]^2 \to [0,1]^2$

- 1. For all ε , existence of approximate fixed point $|f(x)-x| < \varepsilon$, can be shown via Sperner's lemma.
- 2. Then use compactness.

For 1: Triangulate $[0,1]^2$, then color points according to the direction of f(x)-x.

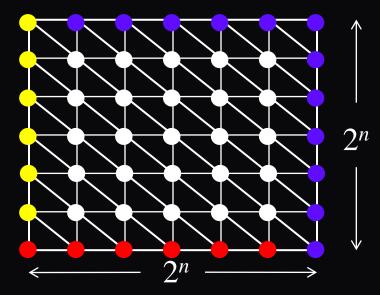


- → Existence Theorems: Nash, Brouwer, Sperner
- → Total Search Problems in NP

SPERNER

INPUT:

(i) Grid of side 2^n :



(ii) Suppose boundary has standard coloring, and colors of internal vertices are given by a circuit:

input: the coordinates of a point
$$(n \ bits \ each)$$
 $x \rightarrow C$

OUTPUT: A tri-chromatic triangle.

NASH

INPUT: (i) A Game defined by

- the number of players *n*;
- an enumeration of the strategy set S_p of every player p = 1, ..., n;
- the utility function $u_p: S \longrightarrow \mathbb{R}$ of every player.
- (ii) An approximation requirement ε

OUTPUT: An ε -Nash equilibrium of the game.

i.e. the expected payoff of every player is within additive ε from the optimal expected payoff given the others' strategies

- * Approximation: Already in 1951, Nash provides a 3-player game whose unique equilibrium is irrational. This motivates our definition of the problem in terms of approximation.
- ** 2-player Games: 2-player games always have a rational equilibrium of polynomial description complexity in the size of the game. So we can also define the exact NASH problem for 2-player games.

Function NP (FNP)

A search problem L is defined by a relation $R_L \subseteq \{0,1\}^* \times \{0,1\}^*$ such that $(x, y) \in R_L$ iff y is a solution to x

A search problem is called *total* iff $\forall x$. $\exists y$ such that $(x, y) \in R_L$.

A search problem $L \in \text{FNP}$ iff there exists a poly-time algorithm $A_L(\cdot, \cdot)$ and a polynomial function $p_L(\cdot)$ such that

- (i) $\forall x, y$: $A_L(x, y)=1 \iff (x, y) \in R_L$
- (ii) $\forall x: \exists y \text{ s.t. } (x, y) \in \mathbf{R}_L \implies \exists z \text{ with } |z| \leq \mathbf{p}_L(|x|) \text{ s.t. } (x, z) \in \mathbf{R}_L$

 $TFNP = \{L \in FNP \mid L \text{ is total}\}\$

SPERNER, NASH, BROUWER ∈ FNP.

FNP-completeness

A search problem $L \in \text{FNP}$, associated with A_L and p_L , is **poly-time** (**Karp**) **reducible** to another problem $L' \in \text{FNP}$, associated with $A_{L'}$ and $p_{L'}$, iff there exist efficiently computable functions f, g such that

(i) $f: \{0,1\}^* \rightarrow \{0,1\}^*$ maps inputs x to L into inputs f(x) to L'

(ii)
$$\forall \ x,y: A_{L'}(f(x),y)=1 \Rightarrow A_{L}(x,g(y))=1$$
 can't reduce SAT to SPERNER, NASH or BROUWER

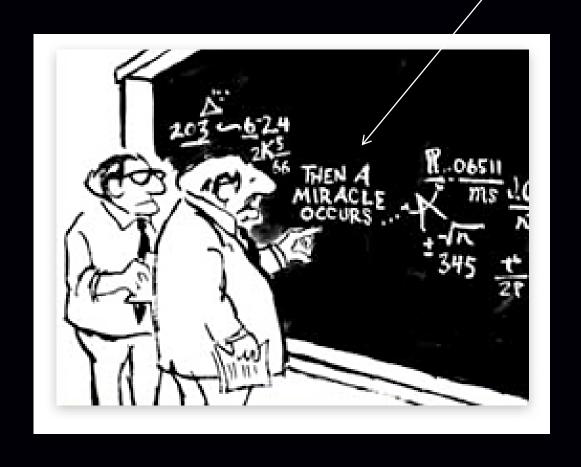
A search problem *L* is *FNP-complete* iff

e.g. SAT

 $L \in FNP$

L' is poly-time reducible to L, for all $L' \in FNP$

A Complexity Theory of Total Search Problems?

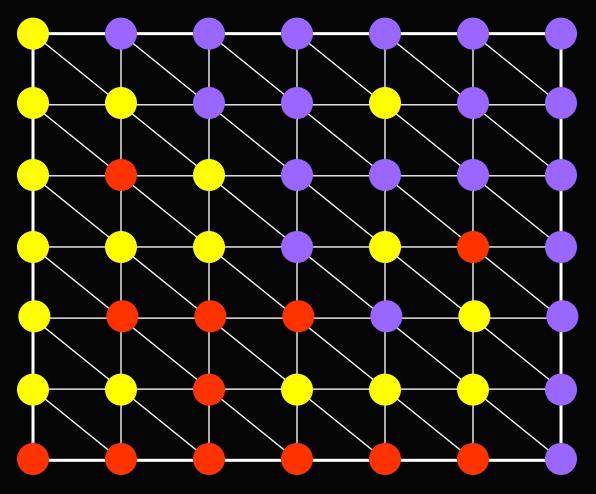


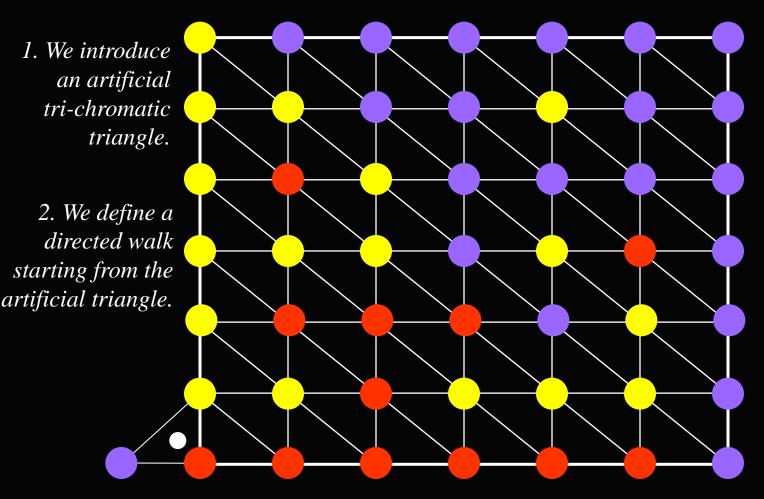
A Complexity Theory of Total Search Problems?

100-feet overview of our methodology:

- 1. identify the combinatorial argument of existence, responsible for making these problems total;
- 2. define a complexity class inspired by the argument of existence;
- 3. make sure that the complexity of the problem was captured as tightly as possible (via completeness results).

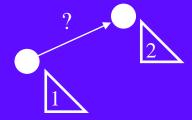
- → Existence Theorems: Nash, Brouwer, Sperner
- → Total Search Problems in NP
- ☐→ Identifying the Combinatorial Core



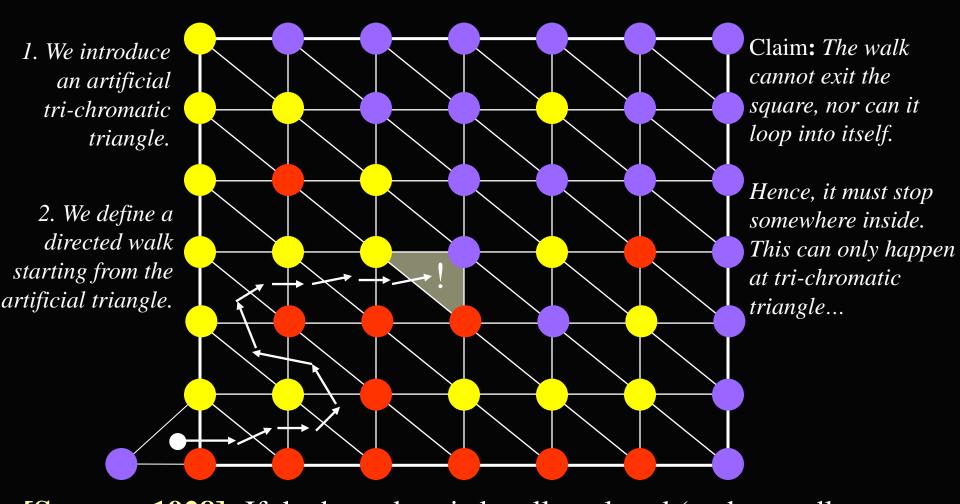


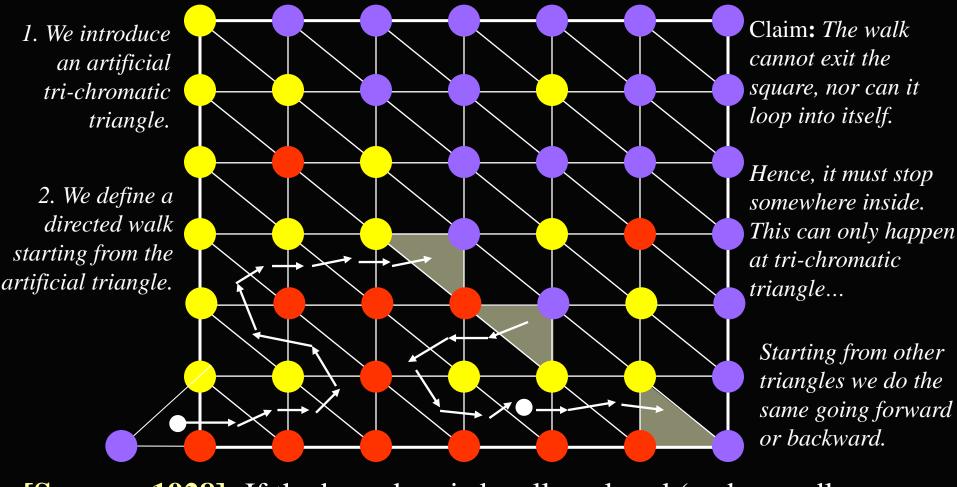
Set of Triangles

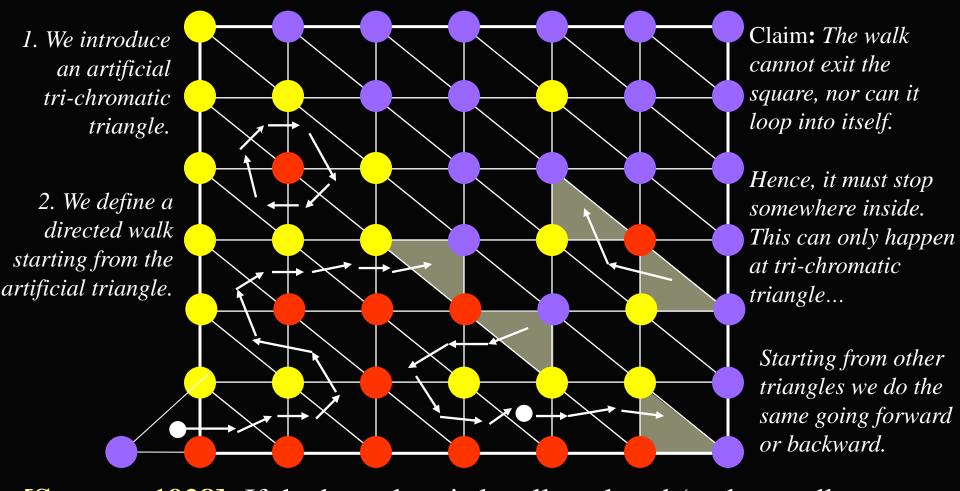
Transition Rule:



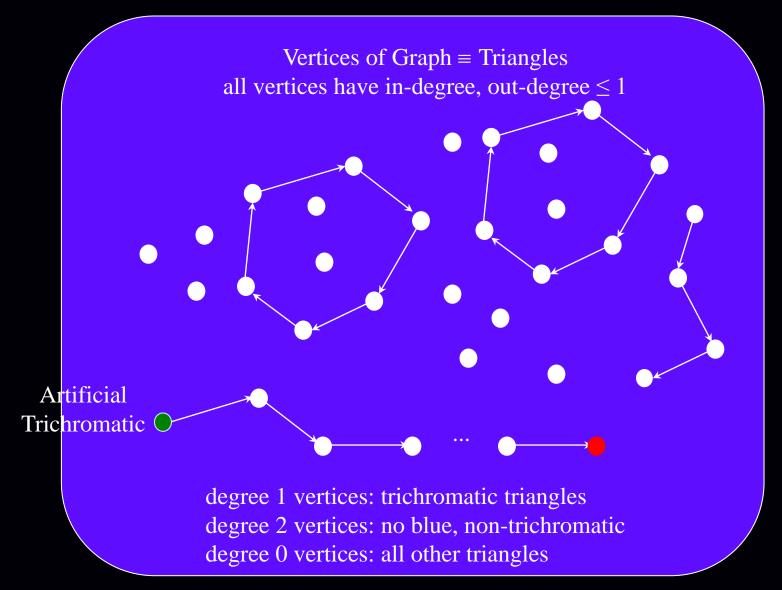
If \exists red - yellow door cross it keeping yellow on your left hand.







A directed parity argument



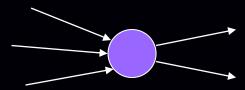
Proof: ∃ at least one trichromatic (artificial one)

 \rightarrow 3 another trichromatic

The Non-Constructive Step

An easy parity lemma:

A directed graph with an unbalanced node (a node with indegree ≠ outdegree) must have another.



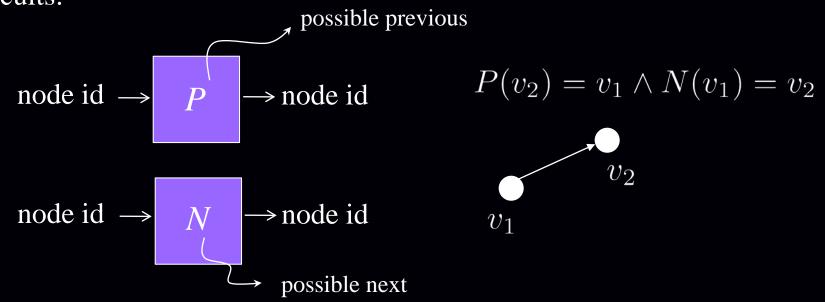
But, wait, why is this non-constructive?

Given a directed graph and an unbalanced node, isn't it trivial to find another unbalanced node?

The graph can be exponentially large, but has succinct description...

The PPAD Class [Papadimitriou '94]

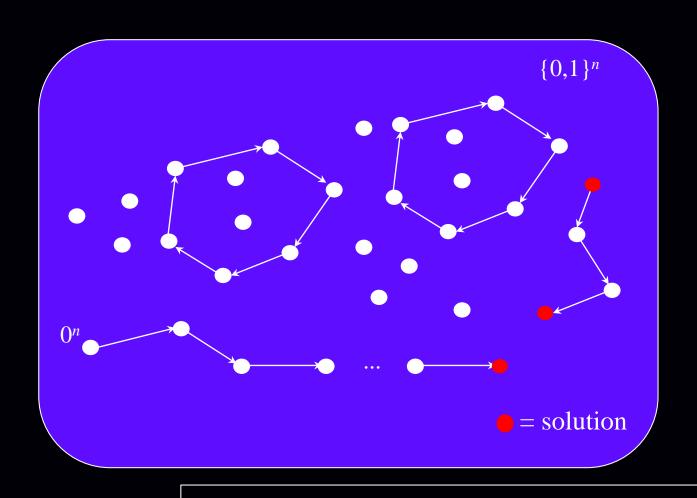
Suppose that an exponentially large graph with vertex set $\{0,1\}^n$ is defined by two circuits:

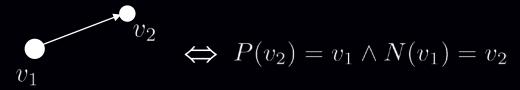


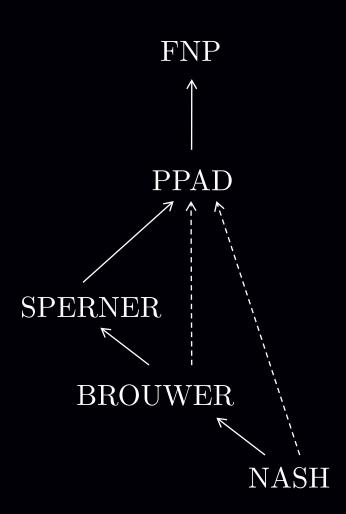
END OF THE LINE: Given P and N: If 0^n is an unbalanced node, find another unbalanced node. Otherwise output 0^n .

PPAD = { Search problems in FNP reducible to END OF THE LINE }

END OF THE LINE



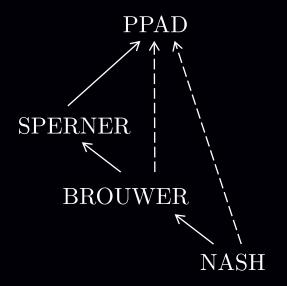




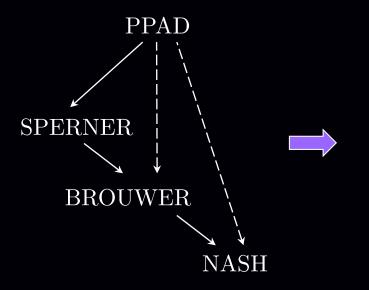
Menu

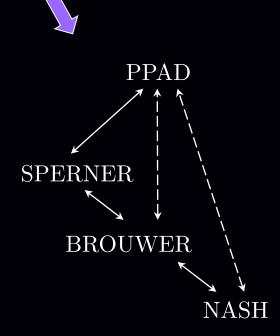
- → Existence Theorems: Nash, Brouwer, Sperner
- → Total Search Problems in NP
- → Identifying the Combinatorial Core
 - Litmus Test: PPAD-completeness Results

Inclusions that are easy to establish:



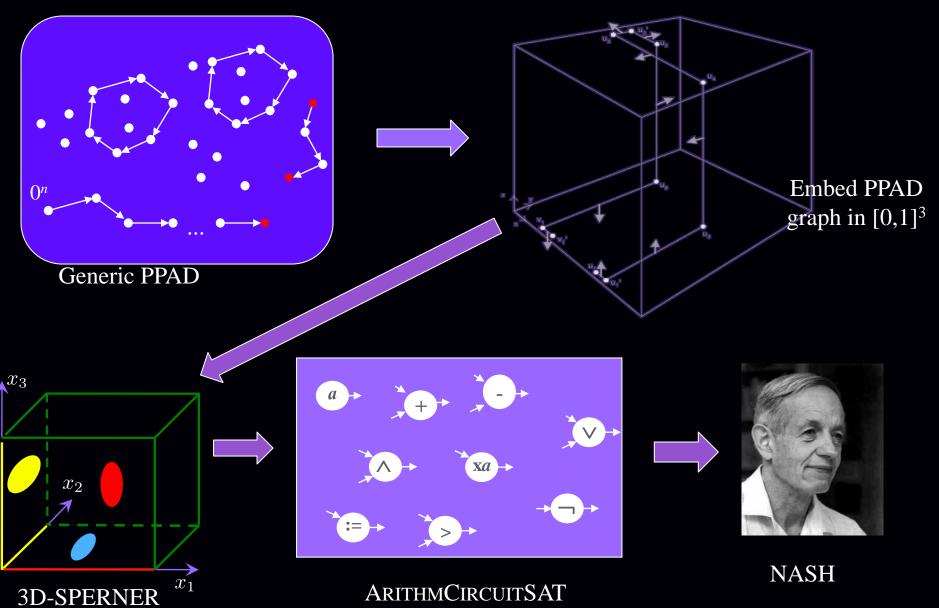
[Daskalakis-Goldberg-Papadimitriou'06]:





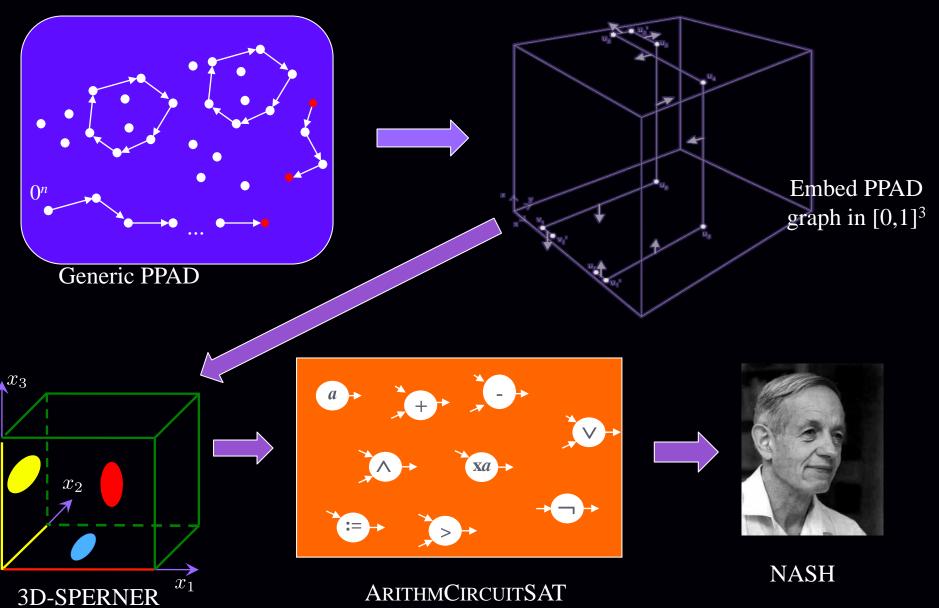
PPAD-Completeness of NASH

[Daskalakis, Goldberg, Papadimitriou'06]



PPAD-Completeness of NASH

[Daskalakis, Goldberg, Papadimitriou'06]



Menu

- → Existence Theorems: Nash, Brouwer, Sperner
- → Total Search Problems in NP
- → Identifying the Combinatorial Core
 - Litmus Test: PPAD-completeness Results
- ARITHMCIRCUITSAT

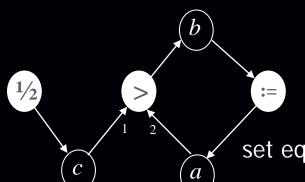
ARITHMCIRCUITSAT

[Daskalakis, Goldberg, Papadimitriou'06]

INPUT: A circuit comprising:

- variable nodes v_1, \dots, v_m
- gate nodes g_1, \ldots, g_m of types: (a, b, b, a)
- directed edges connecting variables to gates and gates to variables (loops are allowed);
- variable nodes have in-degree 1; gates have 0, 1, or 2 inputs depending on type as above; gates & nodes have arbitrary fan-out

OUTPUT: Values $v_1, ..., v_n \in [0,1]$ satisfying the gate constraints:



assignment: $y == x_1$

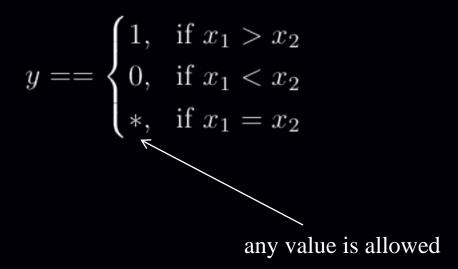
addition: $y = = \min\{1, x_1 + x_2\}$

subtraction: $y = = \max\{0, x_1 - x_2\}$

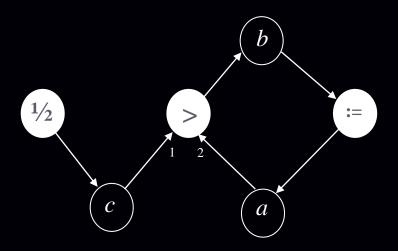
set equal to a constant : $y = = \max\{0, \min\{1, a\}\}$

multiply by constant : $y == \max\{0, \min\{1, a \cdot x_1\}\}$

Comparator Gate Constraints



ARITHMCIRCUITSAT (example)



Satisfying assignment?

$$a = b = c = \frac{1}{2}$$

ARITHMCIRCUITSAT

[Daskalakis, Goldberg, Papadimitriou'06]

INPUT: A circuit comprising:

- variable nodes v_1, \dots, v_n
- gate nodes g_1, \ldots, g_m of types: (a, b, b, a)
- directed edges connecting variables to gates and gates to variables (loops are allowed);
- variable nodes have in-degree 1; gates have 0, 1, or 2 inputs depending on type as above; gates & nodes have arbitrary fan-out

OUTPUT: An assignment of values $v_1, ..., v_n \in [0,1]$ satisfying:

[DGP'06]: Always exists satisfying assignment!

 $y = \min\{1, x_1 + x_2\}$ [DGP'06]: but is PPAD-complete to find

 $y == \max\{0, x_1 - x_2\}$

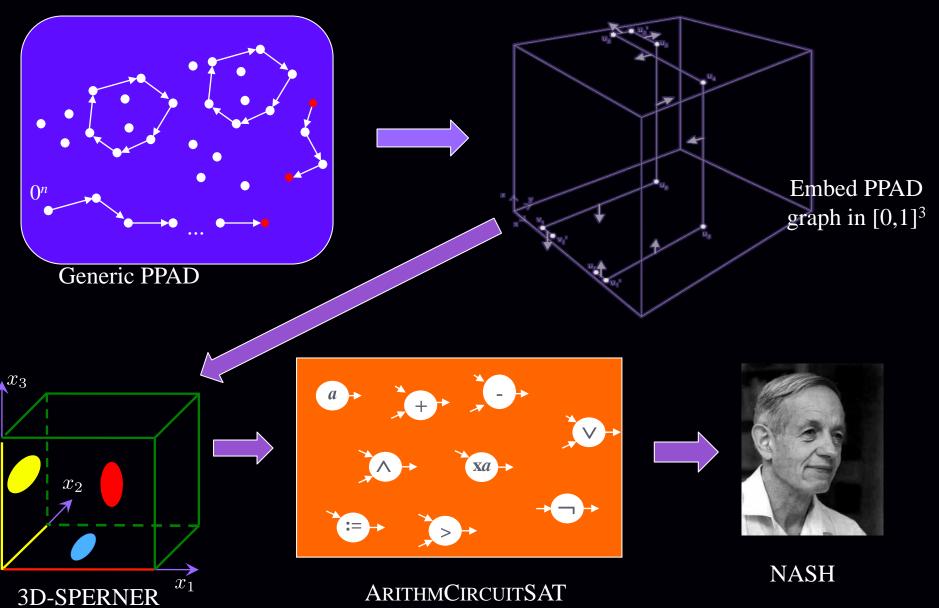
 $y == \max\{0, \min\{1, a\}\}$

 $y == \begin{cases} 1, & \text{if } x_1 > x_2 \\ 0, & \text{if } x_1 < x_2 \\ *, & \text{if } x_1 = x_2 \end{cases}$

 $y = \max\{0, \min\{1, a \cdot x_1\}\}$

PPAD-Completeness of NASH

[Daskalakis, Goldberg, Papadimitriou'06]



APPROXIMATE-ARITHMCIRCUITSAT

[Chen, Deng, Teng'06]

INPUT: 1. A circuit comprising:

- variable nodes x_1, \dots, x_n
- gate nodes g_1, \dots, g_m of types: (a, b, b, b, c)
- directed edges connecting variables to gates and gates to variables (loops are allowed);
- variable nodes have in-degree 1; gates have 0, 1, or 2 inputs depending on type as above; gates & nodes have arbitrary fan-out
- 2. $\varepsilon = 1/(n+m)^{\gamma}$, for some given $\gamma > 0$

OUTPUT: An assignment of values $x_1, ..., x_n \in [0,1]$ satisfying:

 $y = x_1 \pm \epsilon$

[CDT'06]: still PPAD-complete to find

- $y == \min\{1, x_1 + x_2\} \pm \epsilon$
- $y = \max\{0, x_1 x_2\} \pm \epsilon$
- $y == \max\{0, \min\{1, a\}\} \pm \epsilon$
- $y = \max\{0, \min\{1, a \cdot x_1\}\} \pm \epsilon$

>
$$y == \begin{cases} 1, & \text{if } x_1 > x_2 + \epsilon \\ 0, & \text{if } x_1 < x_2 + \epsilon \\ *, & \text{if } x_1 = x_2 \pm \epsilon \end{cases}$$

Menu

- → Existence Theorems: Nash, Brouwer, Sperner
- → Total Search Problems in NP
- → Identifying the Combinatorial Core
- → Litmus Test: PPAD-completeness Results
- → ARITHMCIRCUITSAT
- → PPAD-completeness of:
 - Nash, Market Equilibrium,
- **NEXT TIME:**
- Fractional Hypergraph matching, Scarf's Lemma Other existence arguments: PPA, PPP, PLS