Parameter $k = \text{function: instance} \rightarrow \mathbb{N}$
- usually one of the numbers in instance
- sometimes hard to compute e.g. OPT

Parameterized problem = decision problem + parameter
- e.g. (k)-Vertex Cover: is there a vertex cover of $\leq k$?
 - k is the natural parameter: comparing with OPT
- e.g. Vertex Cover with respect to OPT (Vertex Cover)
 - similar but k not given
 - for $k=0, 1, 2, \ldots$: run k-Vertex Cover
- e.g. Vertex Cover w.r.t. crossing number

$XP = \{\text{parameterized problems solvable in } n^{f(k)} \text{ time}\}$

Fixed-parameter tractable (FPT)
\[= \{\text{parameterized problems solvable in } f(k) \cdot n^{O(1)} \text{ time}\} \]
\[= \{\text{parameterized problems solvable in } f(k) + n^{O(1)} \text{ time}\} \]
- motivation: confine exponential to parameter k
 which may be \ll problem size n

Example: (k)-Vertex Cover
- $\in XP$: guess k vertices, test coverage $|V|^k \cdot |E|$
- $\in FPT$: take edge, guess endpoint, delete, repeat 2^k "bounded search tree technique" depth k
EPTAS ∈ PTAS with running time \(f(1/\varepsilon) \cdot n^{O(1)} \)
- i.e. FPT w.r.t. \(1/\varepsilon \)
\(\Rightarrow \) FPT w.r.t. natural parameter \(k \) (\(\Rightarrow \) w.r.t. OPT)
- set \(\varepsilon = 1 + 1/2k \)
- \(\not\in \) FPT \(\Rightarrow \in \) EPTAS

Parameterized reduction: \((A, k) \rightarrow (B, k') \)
- instance \(x \) of \(A \) \(\Rightarrow \) instance \(x' = f(x) \) of \(B \)
- \(f(k(x)) \cdot |x|^{o(1)} \) time \(\Rightarrow \) \(|x'| \leq f(k(x)) \cdot |x|^{o(1)} \)
- answer preserving: \(x \) YES for \(A \) \(\iff \) \(x' \) YES for \(B \)
 (just like NP/Karp reductions)
- parameter preserving: \(k'(x') \leq g(k(x)) \)
 for some \(g: \mathbb{N} \rightarrow \mathbb{N} \)
- \(B \in \text{FPT} \Rightarrow A \in \text{FPT} \)

\(\forall x \)

Nonexample: independent set \(\rightarrow \) vertex cover
\((G, k) \rightarrow (G, n-k) \)
- preserves answer but not parameter
- indeed, vertex cover \(\in \) FPT
 but independent set is \(W[1] \)-hard
 \(\Rightarrow \) \(\not\in \) FPT unless \(\text{FPT}=\text{W}[1] \)

Example: independent set \(\rightarrow \) clique
\((G, k) \rightarrow (\overline{G}, k) \)
(or vice versa)
Canonical hard problem for W[1]: (analog to NP)
- k-step nondeterministic Turing machine
 - given nondeterministic Turing machine
 - code, state, finger to k-cell memory?
 - O(n) lines, O(n) options, O(n) states
 - (guess can have n choices/branches)
 - does some choice sequence finish in k steps?

Reduction to Independent Set:
- k² cliques, k' = k² \Rightarrow 1 node per clique
- clique (i, j) represents memory cell i
 at time j (n choices) + state of machine
 (e.g. PC=which of n instructions next)
- add edges to forbid certain transitions
 j \rightarrow j': omit edges for allowed nondet. trans.

Reduction from Independent Set: k' = \Theta(k²)
- guess k vertices
- for each pair of these vertices:
 check no edge (lookup table in code)

\Rightarrow both W[1]-complete
Clique in regular graphs: reduction from Clique
- $\Delta = \text{max. degree}$
- Δ copies of graph
- vertex v of degree $d \Rightarrow \{v_1, v_2, \ldots, v_\Delta\}$ copies
 - add $\Delta - d$ vertices
 - biclique between $\&$
 $\Rightarrow \Delta$-regular
- add no cliques (≥ 3):
 new vertices in no Δ

Independent set in regular graphs - just take complement

Partial vertex cover:
- are there k vertices that cover l edges?
 - FPT w.r.t. l
 - $\text{W}[1]$-complete w.r.t. k

Reduction from Independent set in regular graphs:
- $k' = k$
- $l' = \Delta k$

Multicolored clique: — like (Numerical) 3DM
- given graph & vertex k-coloring
- find k vertices, one of each color, that form a k-clique
- \(W[1]\)-complete

[Pietrzak - ICoS 2003]
[Fellows, Hermelin, Rosamond, Vialette - TCS 2009]

\underline{Reduction from Clique:}
- vertex \(v \) \(\rightarrow \) k copies \(v_1, v_2, \ldots, v_k \)
 colors: 1, 2, \ldots, k
- edge \((v, w) \) \(\rightarrow \) edges \((v_i, w_j) \) \(\forall i \neq j \)
- \(k' = k \)
- k-clique \(\iff \) k-colored k-clique

\underline{Reduction to Clique:}
- nothing: coloring \(\Rightarrow \) all cliques are multicolored

Multicolored independent set — just take complement
Shortest common supersequence:
- given k strings over alphabet Σ & number l
- is there a common supersequence of length l
- W[1]-hard w.r.t. k for $|\Sigma|=2$ \cite{Pietrzak-JCSS2003}
- reduction from Multicolored Clique

Reduces to restricted form where input strings never repeat character twice in a row parameterized by $k \& \Sigma$
- add new symbol s_i after every character in string $i \Rightarrow$ no repeats
- $k'=k$
- $|\Sigma'| = |\Sigma|+k$
- $l'=l+\text{total length of input strings}$

Reduces to Flood-It on trees w.r.t. \# colors ($|\Sigma|$) \& \# leaves (k)
Dominating set: (based on Cygan et al. book 2015)

Reduction from Multicolored independent set:
- vertex → vertex
- connect each color class in clique
 - also add 2 dummy vertices to each clique
- $k' = k \Rightarrow$ dominating set chooses one vertex from each clique, representing one vertex of each color in ind. set
- for each edge (v, w):
 - add vertex connected to all vertices in color classes of $v \& w$, except $v \& w$
 \Rightarrow dominated $\iff v \& w$ not both chosen (i.e. independent set)

$\Rightarrow W[1]$-hard
- $W[2]$-complete in fact
$\Downarrow \& FPT$ unless $FPT = W[2]$ (weaker assumption)

Reduction to Set Cover: same as L_{11}
- vertex $v \rightarrow$ set $N(v) \cup \{v\}$
 - $k' = k$
Weighted Circuit SAT (Circuit k-Ones)
- given acyclic Boolean circuit & parameter k
- can we set k inputs to 1 to get output = 1?

$W[P] = \{ \text{parameterized problems reducible to Weighted Circuit SAT} \}$

- depth = longest input \rightarrow output path
- $\text{weft} = \max \# \text{ big gates on input} \rightarrow \text{output path}$
- $\text{not} O(1) \text{ inputs; e.g. } \geq 3 \text{ inputs}$

$W[t] = \{ \text{parameterized problems reducible to } O(1)\text{-depth weft-t Weighted Circuit SAT} \}$

$= \{ \text{parameterized problems reducible to depth-t output=AND Weighted Circuit SAT} \}$

[Buss & Islam - TCS 2006]

$W[*] = W[O(1)]$

$W[1]$-complete:
- weighted $O(1)$-SAT

$W[2]$-complete:
- weighted CNF-SAT
- k-step 2-finger nondeterministic Turing machine $= 2$-tape

$W[\text{SAT}] = \text{reducible to SAT}$

- SAT \rightarrow CNF-SAT reduction adds extra vars.
 so weighted problems not the same