
6.890: Algorithmic Lower Bounds
Fall 2014

Prof. Erik Demaine
TAs: Sarah Eisenstat, Jayson Lynch

Problem Set 3
Due: Wednesday, October 22nd, 2014

Problem 1. A Tour of Hamiltonicity Variants
For each of the following variations on the Hamiltonian Cycle problem, either prove it is in P by
giving a polynomial time algorithm, or prove it is NP-hard.

(a) Given a simple graph, is there a cycle that visits every node at least once and no more than
twice?

Solution: We will prove this is NP-hard by a simple reduction from Hamiltonian Cycle. We
take the original input graph and to every vertex we attach two extra nodes in a triangle. If
there was a Hamiltonian Cycle in the original graph, we can solve this problem by traversing
the original nodes in that order and traversing the triangle at every node, visiting the auxiliary
nodes once and the original nodes twice. To visit the auxiliary nodes, we are forced to visit
each node twice, once to enter the triangle and once to exit. Thus if there is not a Hamiltonian
Cycle, we would either be forced to skip a triangle or visit an original node more than once.

Many of the given solutions add a single leaf to every node. This is also correct, and it is
interesting to note that this reduction is parsimonious, whereas the triangle gadget is not,
since each can be traversed in two different directions.

(b) Given a simple directed graph, is there a path that visits every node at least once, but does
not cross an edge more than once?

Solution: We will reduce from finding Hamiltonian paths in directed graphs. We replace
each node with two nodes, one with all the incoming edges and one with all the outgoing
ones, connected by an edge. Then, if we ever return to a node we cannot recross the edge to
the outgoing node and thus cannot leave this node.

(c) Given a simple graph, is there a path that visits at least half the nodes, but never visits a
node more than once?

Solution: We will reduce from finding Hamiltonian paths in a graph. Create four copies of
the graph and hook them up to a central node. You can only get to two graph copies and
thus you must decide if one copy is Hamiltonian.

This problem was intended to be on a connected graph, but this was not specified. If the
graph need not be connected, there is a far simpler solution of creating two disconnected
copies of the original graph to be solved. Thus if there is a Hamiltonian Path in one, then
one finds a Hamiltonian Path in exactly half of the nodes.

(d) Given a simple dense graph (|E| = Θ(|V |2)), is there a Hamiltonian Cycle?

1

Solution: We reduce from the Hamiltonian Path Problem with a specified starting node
s and specified ending node t. We construct a clique of even size Θ(n), then connect two
different nodes in the clique to each of the two nodes s and t with a single edge. The
clique trivially has a Hamiltonian Path from any one node to any other, and we’ve added
Θ(|V |)2 edges to the graph. Since the clique is only connected to the rest of the graph at the
nodes s and t, the new graph will only have a Hamiltonian Cycle if the original graph had a
Hamiltonian Path from s to t.

Problem 2. Quartet Ordering
Suppose that you are given a set of elements U = {u1, . . . , un} and a set of ordered quartets
Q = {〈a1, b1, c1, d1〉, . . . , 〈ak, bk, ck, dk〉} containing elements of U . For each quartet 〈ai, bi, ci, di〉,
the four elements must be distinct. Prove that it is NP-complete to find an ordering for U such that
for each 〈ai, bi, ci, di〉, either ai and bi are the extremes of the quartet (minimum and maximum,
not necessarily in that order), or ci and di are the extremes of the quartet.

Solution: We solve this problem by reducing from Betweenness. To simulate the constraint
forcing C to lie between A and B, create two new elements x and y, and use the quartets (A,B,C, x),
(A,B,C, y), (A,B, x, y). If C is not between A and B, then both x and y must lie on the opposite
side of A and B from C. This contradicts the constraints of the third quartet, so our assumption
must be false, and C must lie between A and B. Hence, any solution to the Quartet Ordering
problem will result in a solution to the original Betweenness Problem. Furthermore, as long as C
lies between A and B, x and y can be placed wherever inside the [A,B] range, so any Betweenness
solution can be converted to a corresponding Quartet Ordering solution by placing the newly
created elements for each quartet adjacent to the middle element C.

Problem 3. n Days Later
Suppose that you are given a grid graph, representing a network of cities connected by roads.
Several of the cities are marked as infected. One city is marked as the player’s starting position.
The player has two possible actions: place the city that they’re in under quarantine (which keeps
that city from becoming infected in the future), or move to an adjacent city. Each day, two things
happen in sequence: the player performs a single action, and then the infection status of each city
is updated according to the following rules:

R1. If the city was infected at the start of the day, it remains infected.

R2. If the city is not under quarantine and is adjacent to another city that was infected at the
start of the day, it becomes infected.

R3. All other cities remain uninfected.

The scenario is over when the infection cannot spread any further. Prove that it is NP-hard for
the player to maximize the number of cities left uninfected.

Solution: Reduction from the Hamiltonian Path problem in a grid graph with maximum degree
3. Let n be the number of points in the graph, and let m be the number of edges. Let k be a
very large number, such as 100n100 + 100. We start by scaling up our grid graph, placing a point
(x, y) at position (kx, ky). Call these the “major cities.” For each edge connecting two nodes in the
original graph, place a path of (k− 2) nodes between the corresponding nodes in the scaled graph.

2

Call these the “connecting cities.” The resulting graph will have n+m(k− 2) cities in total. Note
that a Hamiltonian path in the original graph, consisting of n nodes and n− 1 edges, corresponds
to a path of k(n− 1) edges and k(n− 1) + 1 vertices in this scaled graph.

Because the graph that we started with has maximum degree 3, we know that for each city
(x, y) in the original graph, either (x− 1, y), (x+ 1, y), (x, y − 1), or (x, y + 1) doesn’t have a city
placed there. Suppose that the city (x−1, y) doesn’t exist. Then we can use that space to the west
of the major city (kx, ky) in the scaled graph to construct a gadget.

The gadget that we use consists of three sections: the city grid, the countdown fuse, and the
connector. The grid is just that: a grid of (k/2− 4)× (k/2− 4) cities that the player has to save.
The countdown fuse is a path consisting of ` = k(n− 1) + 1 + 5n nodes, arranged within a square
of dimensions (k/2− 4)× (k/2− 4) by zig-zagging back and forth. (Note that by using alternating
columns, connected at the appropriate end, we are guaranteed to get a path containing at least
(k/2− 4)2/2 = k2/8− 2k + 8 nodes, which is more than enough to fit a fuse of that length.) One
end of the countdown fuse starts out infected; the other end is attached to the city grid using one
connector node. Finally, the other connector node is used to join the gadget to one of the major
cities. The following figure shows an example of what this gadget looks like:

city grid

countdown fuse

infection

major city

3

Note that for every city in the grid, there exists a path consisting of ≤ `+ 2 + 2(k/2− 4− 1) =
` + k − 8 edges to the initially infected city at the other end of the countdown fuse. That path
only uses cities inside the gadget. Hence, if the player doesn’t quarantine at least one of the cities
inside the gadget by day `+ k − 8, the entire city grid will be overrun.

We construct one of these gadgets for each major city, rotated to fit into the space that is
guaranteed to exist near that city (as argued above). Our goal will be to allow at most n` of those
cities to be sacrificed. By construction, this means that we sacrifice at most:

n` = n(k(n− 1) + 1 + 5n)

= n2k − nk + n+ 5n2

< n2k − nk + k + k < n2k

< (k/4− 4)k = k2/4− 4k

< (k/2− 4)2

So we cannot allow any single city grid to become fully infected. This means that in any valid
solution to the problem we have constructed, we must quarantine at least one node in each gadget
by day `+k−8. Each gadget is connected to the rest of the graph only through a major city, so this
means that our solution must visit every major city in the first `+k−8 turns. Furthermore, for each
gadget, the player must spend at least 2 turns walking from the major city into the gadget, at least
1 turn quarantining a city, and at least 2 turns walking out again. This requires a total of at least
5n turns, leaving the player with only `+k−8−5n = k(n−1) + 1 + 5n+k−8−5n = kn−7 turns
to navigate between major cities. The distance (number of edges) between any pair of major cities
is always a multiple of k, so in those kn−7 turns, the player can make at most b(kn−7)/kc = n−1
trips between cities, and each of those trips must have length k (and therefore must correspond to
an edge in the original graph). Hence, the sequence of cities visited gives us a Hamiltonian Path
in the original graph.

To complete the proof, we wish to show that if we have a Hamiltonian Path in the original
graph, we can convert it to a sequence of moves for the player that will result in at most n`
cities becoming infected. The player’s sequence of moves is constructed as follows. First, take the
Hamiltonian Path, and convert it into a path navigating from major city to major city, using the
connecting cities to travel between them. This requires k(n − 1) moves. Modify this sequence of
moves so that whenever the player first arrives at a major city (and at the beginning, in the starting
city), they should take two moves out into the gadget, then quarantine the connector city, then move
back to the major city again. This increases the number of moves to k(n− 1) + 5n. Note, however,
that because the last two actions of this sequence are movement, the player’s last quarantine occurs
on day k(n − 1) + 5n − 2. The length of each countdown fuse is ` = k(n − 1) + 1 + 5n, so the
infection will not make it out of the countdown fuse before the player has finished quarantining all
of the necessary cities. Hence, this plan will allow the player to save every city except for the n`
cities used for the countdown fuse.

Problem 4. Cheating on Puzzles
Sometimes puzzles are too hard to solve exactly. What if we’re satisfied with a solution that’s
“almost” correct?

Recall that a Light Up puzzle1 consists of a board with black squares and white squares. Some
of the black squares are labeled with a number. For this problem, we also specify the number of

1Refer to Lecture 6 and http://www.mountainvistasoft.com/docs/lightup-is-np-complete.pdf

4

http://www.mountainvistasoft.com/docs/lightup-is-np-complete.pdf

lights to be placed. Two white squares on this board can see each other if they lie in the same row
or column, and they do not have a black square between them. In a solution, lights are placed in
some of the white squares, subject to the following constraints:

C1. Every white square can see a light.

C2. No two lights can see each other.

C3. Every black square labeled with value k has exactly k lights adjacent to it.

Here we consider what happens when a solution is allowed to violate these constraints. Define
the cost of a solution to be the number of violated constraints, i.e., the number of white squares
that cannot see a light, plus the number of pairs of lights that can see each other, plus the number
of black squares with incorrect labels.

(a) Given a Light Up puzzle, prove that it is NP-hard to decide whether there is a solution that
violates at most an ε fraction of the constraints, for any constant ε > 0.

Solution: The general strategy here will be to make a copy of our original Light Up puzzle
and then introduce constraints that must be violated. First, we will deal with the fact that
now we have exactly k lights, rather than any number as in the original Light Up puzzle. To
deal with this we introduce the L gadget, simply three white squares arranged in an L shape
with no numbered black squares near them. This can be fully satisfied by 1 or 2 lights, and
thus allows more flexibility in potential solutions with respect to k. Capping the number of
lights at k was done because Constraint 2 is quadratic in the number of lights placed. This
causes significant complications if one assumes a numbered black square must be next to a
white square.

1

1

1

1

Now we need gadgets to adjust the number of constraints that must be violated. Most
important, we introduce a gadget that forces a violation of a constraint. The simplest way
to do this is have a positive numbered black square surrounded only by black squares. There

5

is no possible way to satisfy that numbered square and thus we will incur one violation for
each copy. Other examples include isolated white squares (since k is fixed, we simply cannot
place enough lights to satisfy all of them), white squares surrounded by zeros, numbered black
squares where the number is greater than the number of white squares adjacent to it, and
white squares adjacent to black squares with different numbers. These different gadgets may
introduce different numbers or ratios of violated to unviolated constraints, so some care will
need to be taken in the next step of the analysis depending on which is chosen. Second, we
need to be able to add extra satisfied constraints. We do this by creating a long row of b white
squares surrounded by non-numbered black squares. This allows a single light to satisfy b
constraints. Let the number of constraints that are satisfied by our original Light Up problem
be C. We now construct a new problem with a copies of the unsatisfiable gadget, a length b
satisfiable gadget, and a number of lights k′ = k+ 1. Now the ratio of satisfied to unsatisfied
constraints needed to solve the problem is a

C+a+b . It is easy to see this is continuous on the
open interval (0, 1) and thus we can achieve any fraction ε of violated constraints.

(b) Given a Light Up puzzle, prove that it is APX-hard to minimize the cost of a solution. (Hint:
first convert the Circuit SAT reduction from class to a reduction from 3SAT.)

Solution: Several students pointed out that it is NP-hard to distinguish between 0 viola-
tions and 1 violation, and thus the problem is trivially APX-hard. This is similar to why we
see Max 3SAT but not Min 3SAT in approximation lower bounds. However, we now present
an example of a proof in the intended manner.

First we adapt the proof of Light Up by using two OR gadgets to form clauses and terminating
all of the output wires with True. This gives a sequence of clauses, each with three literals,
all of which must be satisfied. It is now a satisfiability problem in 3-CNF. We can lay out the
problem in a grid, with variables along one axis and clauses along the other. Each variable is
split into three wires, moves to the appropriate column for the clause, and heads down.

6

1

1

1

1

0
0

0

0 0

0 0
0 0

00
0

We will prove this is APX-hard by an L-reduction from Max E3SAT-3. First, we look at
the gadgets in Light Up. The Parity, Wire, and Split gadget can only shift the value along
that one wire. Violating the constraints in a wire cannot impact more than a single variable.
Violating the constraints in a clause will only resolve up to one clause. Crossover gadgets,
which are required to complete the proof, can be easily constructed using two intersecting
hallways. Violating the constraints in a crossover gadget affects the values of at most two
variables. So any violation lets us change at most one variable — which, because we are
reducing from Max E3SAT-3, means that any violation allows us to (incorrectly) satisfy at
most six clauses. Since it isn’t useful to alter the wires more than once, OPT will not increase
with the wire length. Thus we have a linear relationship between OPT for Light Up and OPT
for Max E3SAT-3. The cost also only changes by a constant factor, so this will enable an
L-Reduction.

7

