6.890: Fun with Hardness Proofs Guest Lectures on PPAD-Part B November 2014

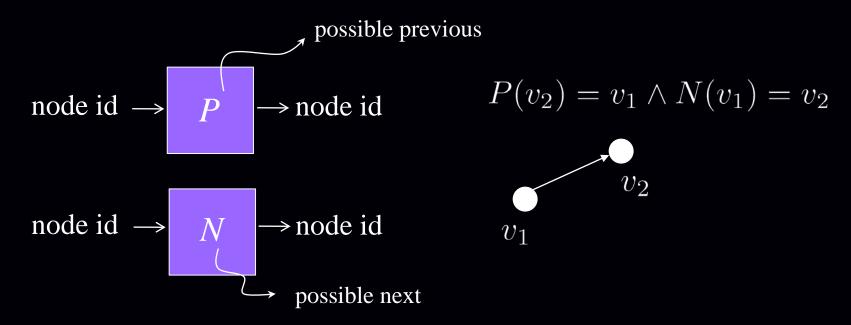
> **Constantinos Daskalakis** CSAIL, MIT

Last time

- → Existence Theorems: Nash, Brouwer, Sperner
- → Total Search Problems in NP
- → Totality = Parity Argument on Directed Graphs

The PPAD Class [Papadimitriou '94]

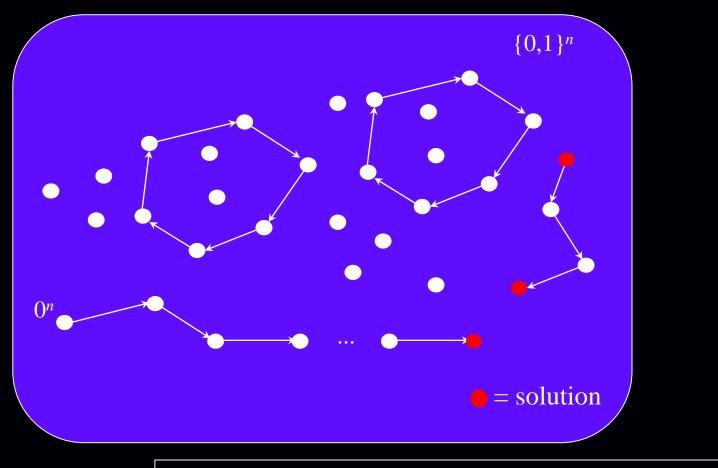
A graph with vertex set $\{0,1\}^n$ can be defined by two circuits:

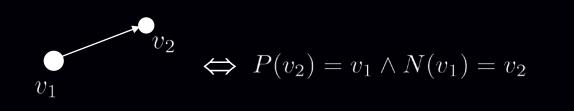


END OF THE LINE: Given P and N: If O^n is an unbalanced node, find another unbalanced node. Otherwise output O^n .

PPAD = { Search problems in FNP reducible to END OF THE LINE }

END OF THE LINE





ARITHMCIRCUITSAT

[Daskalakis, Goldberg, Papadimitriou'06]

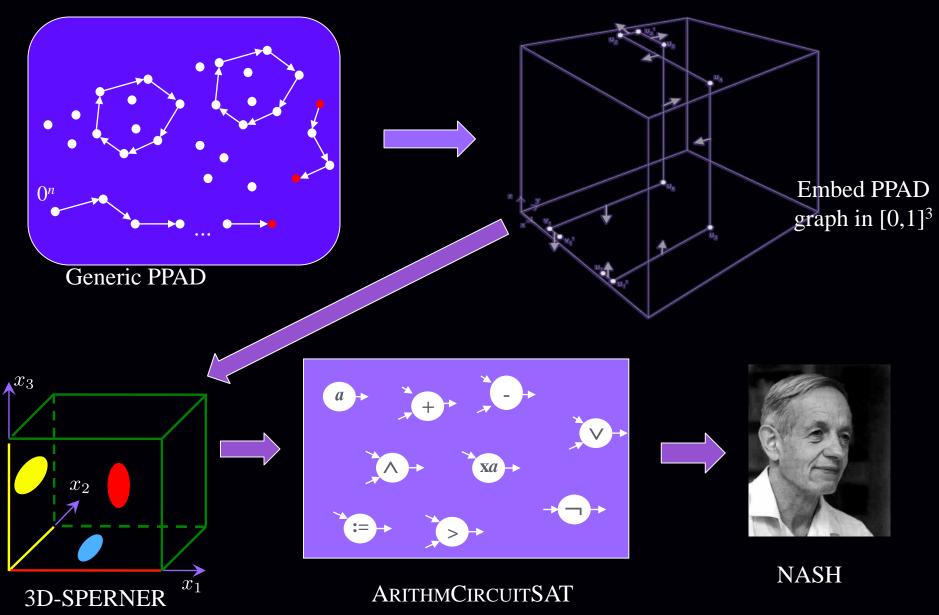
- **INPUT:** 1. A circuit comprising:
 - variable nodes v_1, \ldots, v_n

 - directed edges connecting variables to gates and gates to variables (loops are allowed);
 - variable nodes have in-degree 1; gates have 0, 1, or 2 inputs depending on type as above; gates & nodes have arbitrary fan-out 2. ε ≥ 0

OUTPUT: An assignment of values $v_1, \ldots, v_n \in [0,1]$ satisfying:

PPAD-Completeness of NASH

[Daskalakis, Goldberg, Papadimitriou'06]



Last time

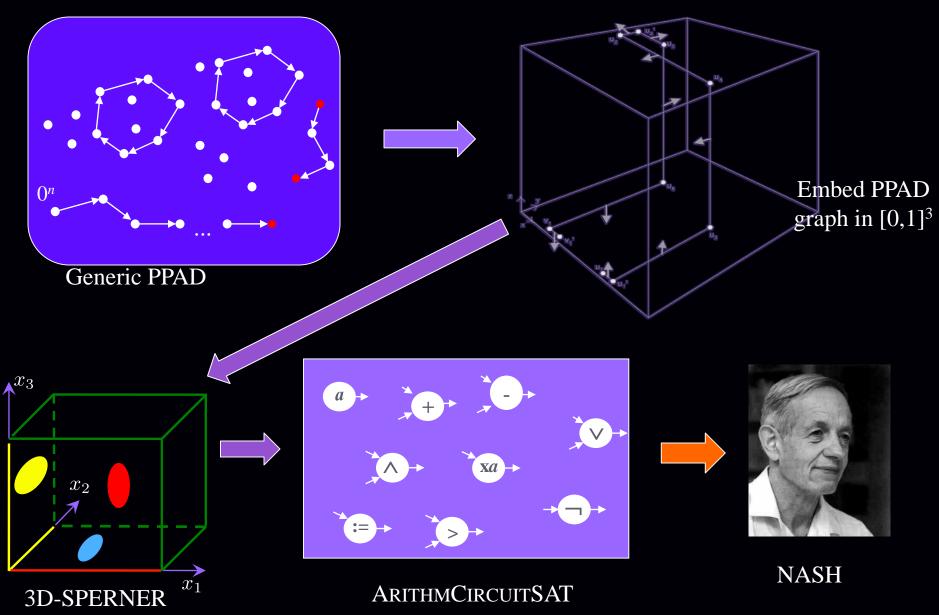
- → Existence Theorems: Nash, Brouwer, Sperner
- → Total Search Problems in NP
- Totality = Parity Argument on Directed Graphs

This time

- -> PPAD-completeness of:
 - Nash Equilibrium
 - Preference Games, Stable Hypergraph Matching
- \rightarrow Other existence arguments: PPA, PPP, PLS

PPAD-Completeness of NASH

[Daskalakis, Goldberg, Papadimitriou'06]

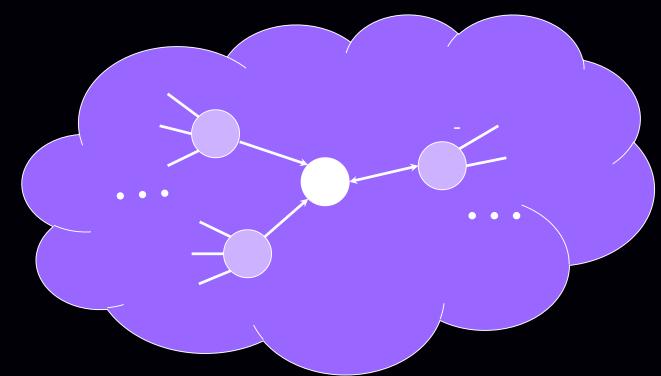


Menu Graphical and Polymatrix Games

Graphical Games

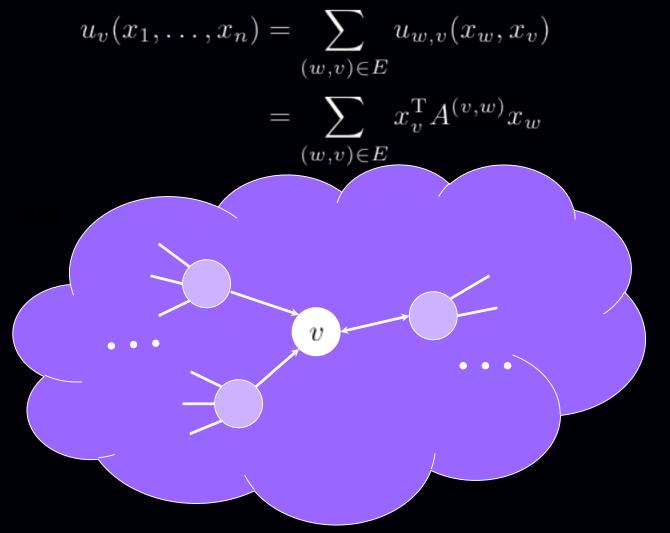
Graphical Games [Kearns-Littman-Singh'01]

- Defined to capture sparse player interactions, such as those arising under geographical, communication or other constraints.
- Players are nodes in a directed graph.
- Player's payoff only depends on own strategy and the strategies of her in-neighbors in the graph (nodes pointing to her)



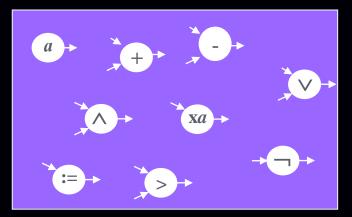
Polymatrix Games

Polymatrix Games [Janovskaya'68]: Graphical games with edge-wise separable utility functions.

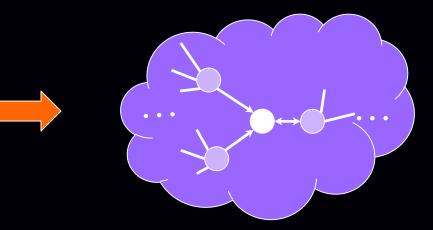


PPAD-Completeness of NASH

[Daskalakis, Goldberg, Papadimitriou'06]



ARITHMCIRCUITSAT



POLYMATRIXNASH

NASH

Menu Graphical and Polymatrix Games PPAD-completeness of POLYMATRIXNASH

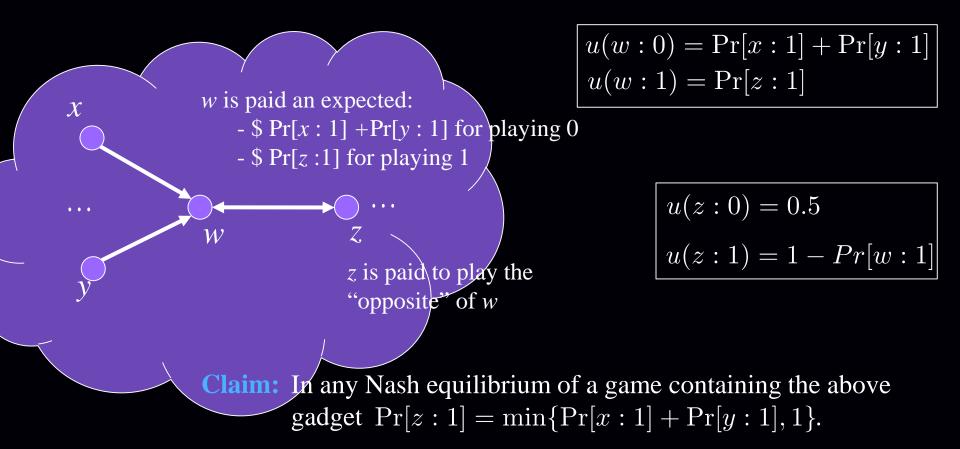
Game Gadgets: Polymatrix games performing real arithmetic at their Nash equilibrium.

Addition Gadget

Suppose two strategies per player: $\{0,1\}$

then mixed strategy \equiv a number in [0,1] (the probability of playing 1)

e.g. addition game

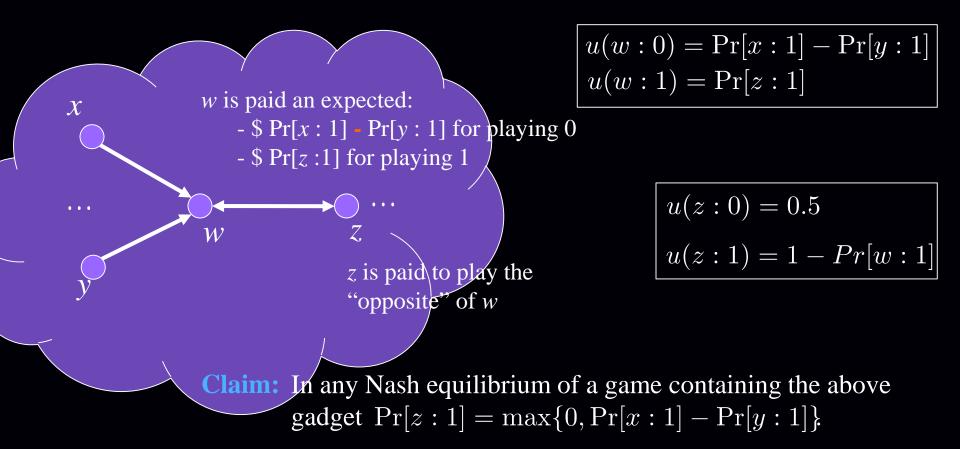


Subtraction Gadget

Suppose two strategies per player: {0,1}

then mixed strategy \equiv a number in [0,1] (the probability of playing 1)

e.g. subtraction



Notational convention: Use the name of the player and the probability of that player playing 1 interchangeably.

List of Game Gadgets

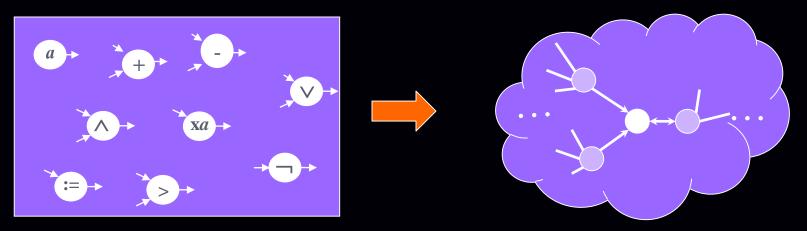
copy: z = xIf any of these addition : $z = min\{1, x + y\}$ gadgets is contained in a bigger subtraction : $z = \max\{0, x - y\}$ polymatrix game, set equal to a constant : $z = \max\{0, \min\{1, \alpha\}\}$ these conditions hold at any Nash eq. of multiply by constant : $z = \max\{0, \min\{1, \alpha \cdot x\}\}$ that bigger game. comparison : $z = \begin{cases} 1, & \text{if } x > y \\ 0, & \text{if } x < y \\ *, & \text{if } x = y \end{cases}$ Bigger game can only have edges into the "input players" and out of the "output players." "output player" of the gadget Z:

x, *y*: "input players" of the gadget

gadgets may have additional players; their graph can be made bipartite

PPAD-Completeness of POLYMATRIXNASH

[Daskalakis, Goldberg, Papadimitriou'06]



ARITHMCIRCUITSAT

POLYMATRIXNASH

Given arbitrary instance of ARITHMCIRCUITSAT can create polymatrix game by appropriately composing game gadgets corresponding to each of the gates.

At any Nash equilibrium of resulting polymatrix game, the gate conditions are satisfied.

Menu

Graphical and Polymatrix Games
 PPAD-completeness of POLYMATRIXNASH
 PPAD-completeness of NASH

Reducing Polymatrix to 2-player Games

 v_1

 v_3

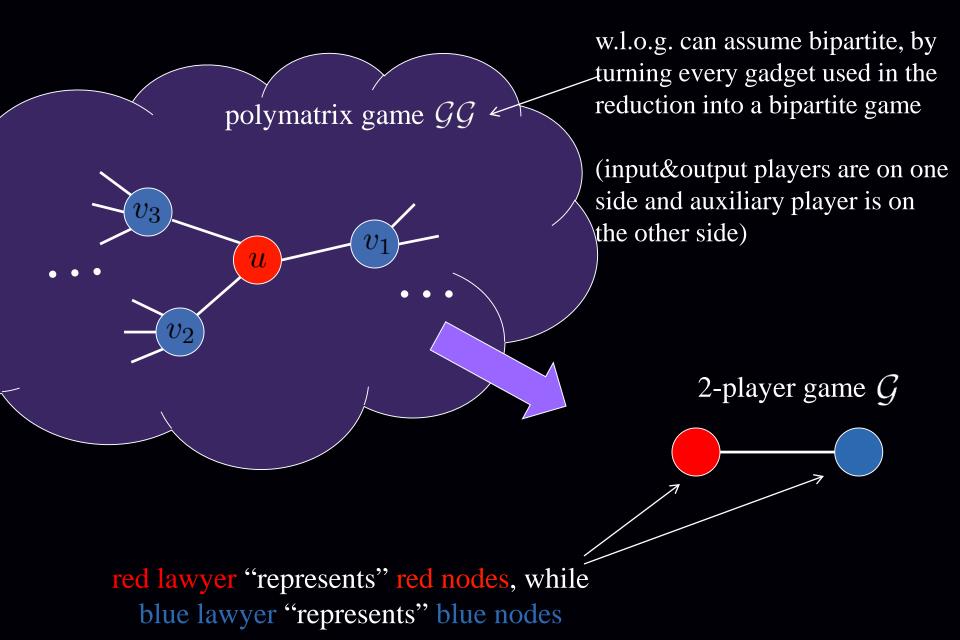
 v_2

u

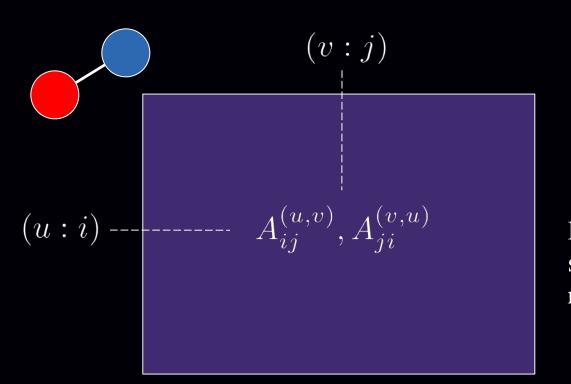
w.l.o.g. can assume bipartite, by turning every gadget used in the reduction into a bipartite game (input&output players are on one

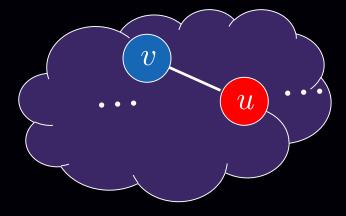
(input&output players are on one side and auxiliary player is on the other side)

Reducing Polymatrix to 2-player Games



Payoffs of the Lawyer-Game





But why would a lawyer play strategies of every node he represents?

- Each lawyer's set of pure strategies is the union of the pure strategy sets of her clients

- wishful thinking: if (x, y) is a Nash equilibrium of the lawyer-game, then the marginal distributions that x assigns to the strategies of the red nodes and the marginals that y assigns to the blue nodes, comprise a Nash equilibrium.

Ţ

Enforcing Equal Representation

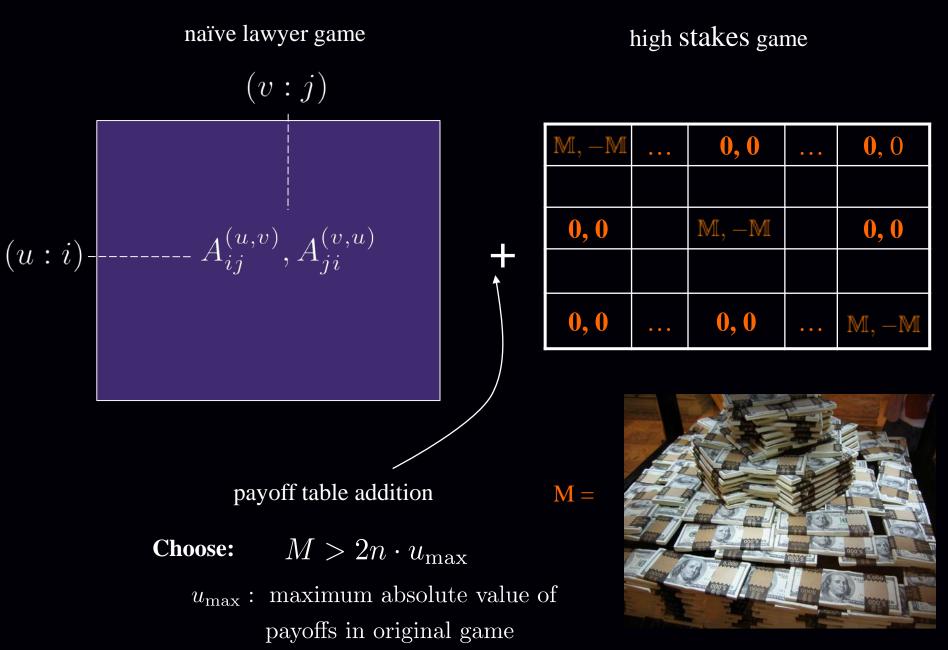
- The lawyers play on the side a high-stakes game.
- W.l.o.g. assume that each lawyer represents *n* clients. Label each lawyer's clients 1,...,*n*, arbitrarily
- Payoffs of the high-stakes game:

Suppose the red lawyer plays any strategy of client j, and blue lawyer plays any strategy of client k, then

If j = k, then red lawyer gets +*M*, while blue lawyer gets -*M*.

Claim: In any Nash equilibrium of the high stakes game, each lawyer assigns probability 1/n to the set of pure strategies of each of his clients.

Enforcing Equal Representation



Analyzing the Lawyer Game

- when it comes to distributing the total probability mass among the different nodes of , essentially only the high-stakes game is relevant to the lawyers...

Lemma 1: if (x, y) is an equilibrium of the lawyer game, for all u, v:

$$x_{u} = \frac{1}{n} \cdot \left(1 \pm \frac{2u_{\max}n^{2}}{M}\right) \qquad y_{v} = \frac{1}{n} \cdot \left(1 \pm \frac{2u_{\max}n^{2}}{M}\right)$$
Proof: exercise total probability mass assigned by lawyers on nodes *u*, *v* respectively

- when it comes to distributing the probability mass x_u among the different strategies of node u, only the payoffs of the game \mathcal{GG} are relevant...

Lemma 2: The payoff difference for the red lawyer from strategies (u:i) and (u:j) is $\sum_{v} \sum_{\ell} \left(A_{i,\ell}^{(u,v)} - A_{j,\ell}^{(u,v)} \right) \cdot y_{v:\ell}$

Analyzing the Lawyer Game (cont.)

Lemma 2 \rightarrow if $x_{u:i} > 0$, then for all j:

$$\sum_{v} \sum_{\ell} \left(A_{i,\ell}^{(u,v)} - A_{j,\ell}^{(u,v)} \right) \cdot y_{v:\ell} \ge 0$$

- define
$$\hat{x}_u(i) := \frac{x_{u:i}}{x_u}$$
 $\hat{y}_v(j) := \frac{y_{v:j}}{y_v}$ (marginals given by lawyers to different nodes)

Observation: if we had $x_u = 1/n$, for all u, and $y_v = 1/n$, for all v, then

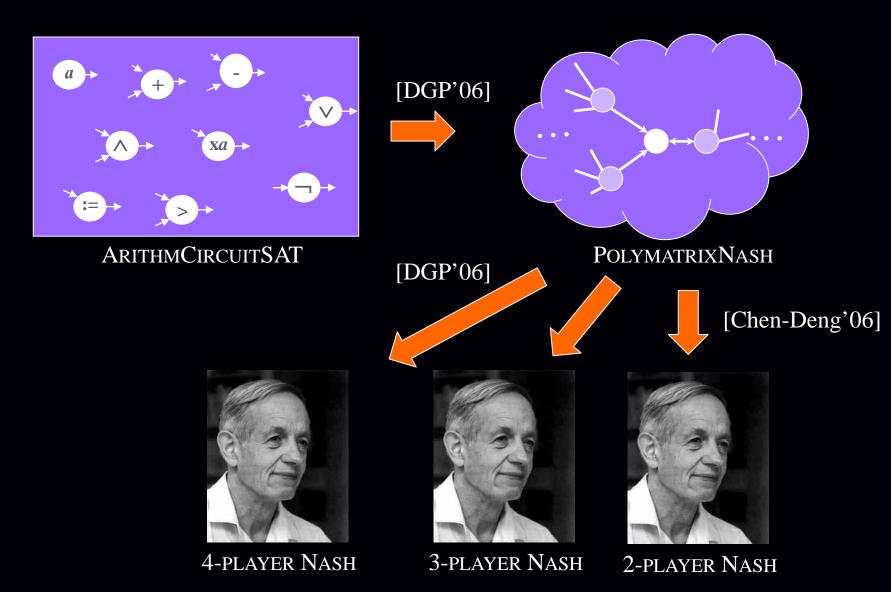
 $\{\{\hat{x}_u\}_u, \{\hat{y}_v\}_v\}$ would be a Nash equilibrium.

- the $\pm \frac{2u_{\max}n}{M}$ deviation from uniformity results in an approximate Nash equilibrium of the polymatrix game.

- but *M* can be chosen as large as we'd like, and APPROXIMATE-POLYMATRIXNASH is still PPAD-complete, as ARITHMCICRUITSAT allows approximation ε.

PPAD-Completeness of NASH

DGP=Daskalakis-Goldberg-Papadimitriou



Menu

- -> PPAD-completeness of POLYMATRIXNASH
- -> PPAD-completeness of NASH
- - PreferenceGames
 - StableHypergraphMatching

PREFERENCEGAMES

Preference Game [Kintali et al'09]:

- Player set = Strategy Set = [*n*]
- Each player *i* has preference relation \geq_i over [n]

Player Strategies: Each player *i* chooses: w_i : $[n] \rightarrow [0, 1]$.Strategies are feasible iff:(i) $\sum_j w_i(j) = 1$, $\forall i$ (ii) $w_i(j) \leq w_i(j)$, $\forall i, j$

Equilibrium: Strategies $w_1, w_2, ..., w_n$ such that for all *i*, and all w_i ' such that w_i ', w_{-i} remains feasible:

$$\sum_{k \ge_i j} w_i(k) \ge \sum_{k \ge_i j} w'_i(k), \forall j$$

[Kintali et al'09]: Finding equilibrium is PPAD-complete. Hardness reduction from ArithmCircuitSat.

STABLEHYPERGRAPHMATCHING

Input:

- Hypergraph H=(V, E)
- For all $i \in V$ a linear order \geq_i over edges $e \ni i$

Stable Matching:

Set of edges *M* that (i) is a matching

(i) is a matching (ii) $\forall e, \exists i \in e, m \in M \text{ s.t. } m \geq_i e$

Fractional Stable Matching: Function $w: E \rightarrow [0, 1]$ s.t.

(i)
$$\sum_{i \in e} w(e) \leq 1$$

(ii) $\forall e, \exists i \in e \text{ s.t.} \sum_{e' \ni i, e \leq i \in e'} w(e') = 1$

[Aharoni-Fleiner'03]: Fractional stable matching exists.

[Kintali et al'09]: Finding fractional stable matching is PPAD-complete. Hardness reduction from PREFERENCEGAMES.

Menu

- -> PPAD-completeness of POLYMATRIXNASH
- -> PPAD-completeness of NASH
- -, PPAD-completeness of
 - PreferenceGames
 - STABLEHYPERGRAPHMATCHING
- → Other Arguments of Existence in TFNP

Other arguments of existence, and resulting complexity classes

"If a graph has a node of odd degree, then it must have another." **PPA**

"Every directed acyclic graph must have a sink."

PLS

"If a function maps *n* elements to *n*-1 elements, then there is a collision."

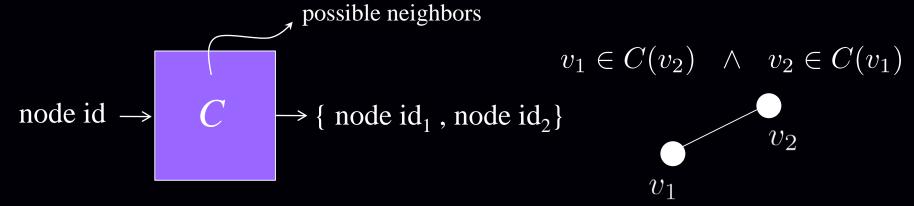
PPP

Formally?

The Class PPA [Papadimitriou '94]

"If a graph has a node of odd degree, then it must have another."

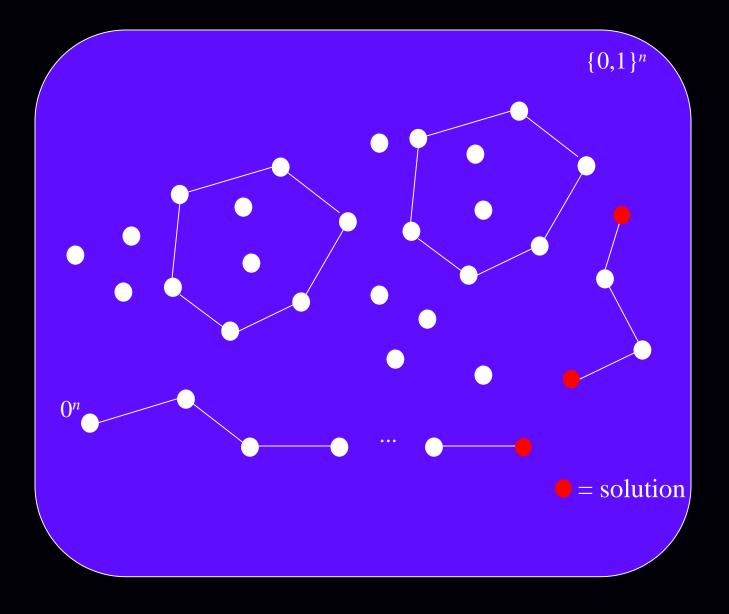
Suppose that an exponentially large graph with vertex set $\{0,1\}^n$ is defined by one circuit:



ODDDEGREENODE:Given C: If 0^n has odd degree, find another node
with odd degree. Otherwise say "yes."

PPA = { *Search problems in* FNP *reducible to* ODDDEGREENODE }

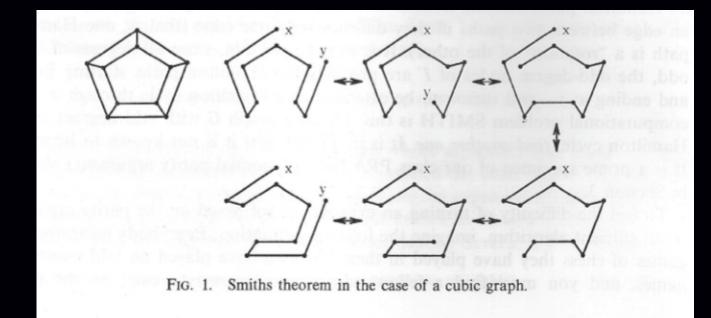
ODDEGREENODE



SMITH ∈ PPA

SMITH: Given Hamiltonian cycle in 3-regular graph, find another one.

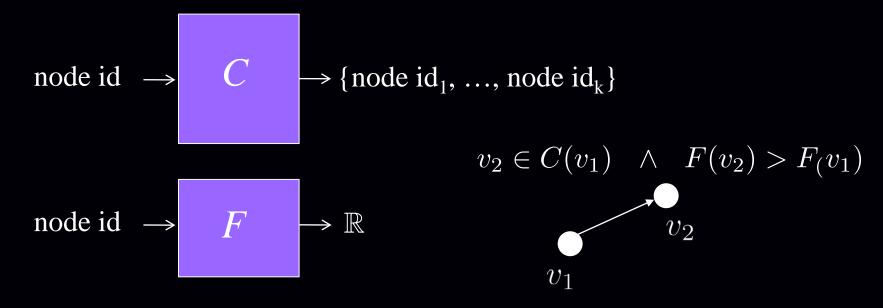
[Smith]: There must be another one.



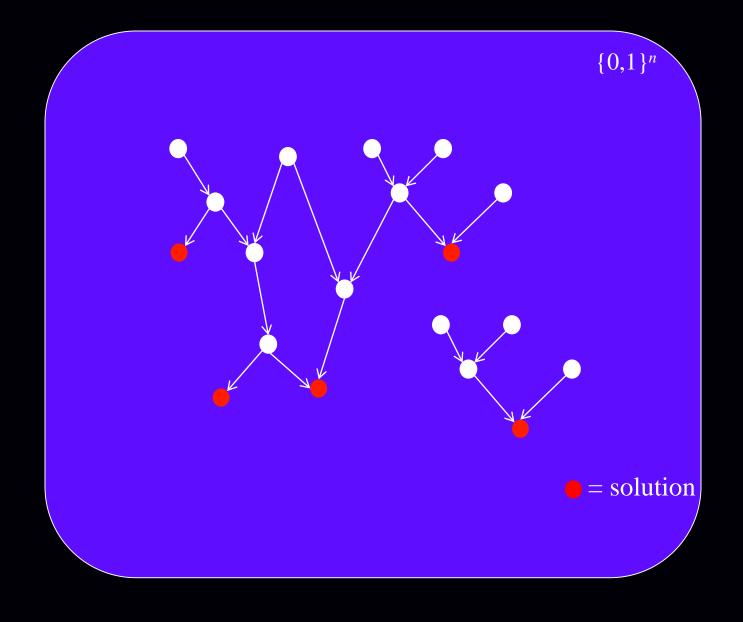
The Class PLS [JPY '89]

"Every DAG has a sink."

Suppose that a DAG with vertex set $\{0,1\}^n$ is defined by two circuits:



FINDSINK: Given *C*, *F*: Find *x* s.t. $F(x) \ge F(y)$, for all $y \in C(x)$. **PLS** = { *Search problems in* FNP *reducible to* FINDSINK }



LOCALMAXCUT is PLS-complete

LOCALMAXCUT: Given weighted graph G=(V, E, w), find a partition $V=V_1 \cup V_2$ that is locally optimal (i.e. can't move any single vertex to the other side to increase the cut size.

[Schaffer-Yannakakis'91]: LocalMaxCut is PLS-complete.

The Class PPP [Papadimitriou '94]

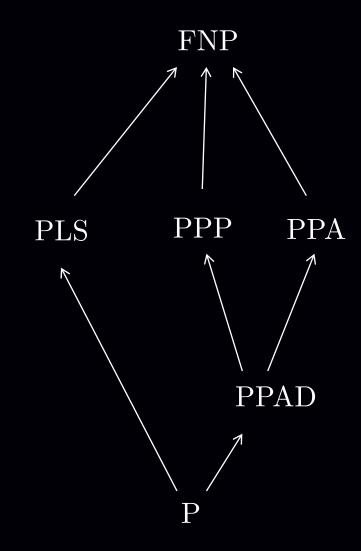
"If a function maps n elements to n-1 elements, then there is a collision."

Suppose that an exponentially large graph with vertex set $\{0,1\}^n$ is defined by one circuit:

node id
$$\rightarrow$$
 C \rightarrow node id

COLLISION: Given C: Find x s.t. $C(x) = 0^n$; or find $x \neq y$ s.t. C(x) = C(y).

PPP = { Search problems in FNP reducible to COLLISION }



Advertisement

6.891: Games, Decision, and Computation

 \rightarrow Games, Auctions, and more fun