Bounded team private-information games:

NEXPTIME-complete [Peterson, Reif, Azhar-C&M 2001]
- Dependency QBF (DQBF):
 \(\forall X_1 : \forall X_2 : \exists Y_1(X_1) : \exists Y_2(X_2) : \text{CNF formula} \)
 - black player only sees \(X_1 \)
 - white player 1 only sees \(X_1 \) variables
 - white player 2 only sees \(X_2 \) variables
- can white force a win? (satisfied formula)
- only one round! (multiple rounds don't help)
- \(\in \) NEXPTIME: guess \(Y_1 \) \& \(Y_2 \) \& \(X_2 \) (exponential)

- Bounded Team Private Constraint Logic (TPCL)
 - with 3 players & planar graph
 - moves must be known legal with visible information
 - \(\in \) NEXPTIME: guess strategy for all possible visible information (exp.\# states)
- reduction from DQBF
- first black sets all vars. (white twiddles thumbs)
- chosen activates \(\implies \) long chain (black threat)
- white players set their vars.
- chosens \(\implies \) unlock all \(\implies \) formula activation
- white wins (just in time) if formula satisfied
Unbounded team private-information games:
undecidable \cite{HearnDemaine}
(based on work by Peterson & Reif – FOCS 1979)

Team Computation Game:
- instance = space-k algorithm/Turing machine
 (memory/tape initially blank)
- black move = run alg./machine for k more steps;
 output (if any) determines winner;
 else set $x_1, x_2 \in \{A, B\}^*$
- white i sees only x_i & can set only m_i
- white i move = set m_i
- does white have a forced win?

- reduction from Halting problem: does this Turing machine ever terminate?
- build $O(1)$-space algorithm to check white players play valid computation history \Rightarrow halt of the form $\#$ state$_0\#\text{state}_1\# \cdots\#\text{halt}\text{state}$
- in fact each white player must have in mind 2 pointers A & B into common history
- $x_i = A$ asks for character at A & advance A
- but white players have no idea of other's A/B
- alg. maintains whether 1's x_1 state = 2's x_2 state
 (identical from $\#$ with (x_1, x_2) moves since)
then if \((x_1, x_2)\) moves until 1 reports \(\geq 1 x_1\) ahead one
and if \((x_1, x_2)\) moves then continue,
then check this 1 state valid transition from 2's & vice versa with \(1 \rightarrow 2 \Rightarrow O(1)\) space!
white strategies must work for all possible black moves \(\Rightarrow\) valid computation history

Team Formula Game:
- black sets \(X\) such that \(F(X, X', Y_1, Y_2)\) (else lose)
- black wins if \(G(x)\) \(^\uparrow F \Rightarrow \neg F\)
- black sets \(X'\) such that \(F'(X, X')\) (else lose)
- white 1 sets \(Y_1\), seeing only \(Y_1\) & \(x_1 \in X\)
- white 2 sets \(Y_2\), seeing only \(Y_2\) & \(x_2 \in X\)
- standard reduction from Team Computation Game

(Unbounded) TPCL with 3 players, planar graph
Parallelism & P-completeness:

 "Limits to Parallel Computation: P-Completeness Theory"

\[\text{NC} \quad (\text{Nick's Class, after Nick Pippinger}) \]
= problems solvable in \(\log^{O(1)} n \) time
using \(n^{O(1)} \) processors (PRAM)
i.e. circuit of size \(n^{O(1)} \) & depth \(\log^{O(1)} n \)
- e.g. sorting: compare all pairs, \(\{0(lg n)\} \) time on \(0(n^2) \) proc.
 compute rank = sum of '<'s via binary tree

\[\text{P-hard} = \text{all problems } \in \text{NC can be reduced} \]
via NC algorithm to your problem \text{karp-style reduction}

\[\Rightarrow \in \text{NC if } \text{NC } \neq P \]
\[\text{P-complete} = \in \text{P} + \text{P-hard} \]
Base P-complete problems:

Generic Machine Simulation Problem:
given a sequential algorithm & time bound, written in unary, does it say YES within?
\(\text{to make } \emptyset \text{ P} \sim \text{ else EXPTIME-complete} \)

Circuit Value Problem (CVP): [Ladner - SIGACT 1975]
given an (acyclic) Boolean circuit & input bits, is the output TRUE?

- **NAND CVP:** just NAND gates
- **NOR CVP:** just NOR gates
- **Monotone CVP:** just AND & OR gates
- **Alternating monotone CVP:** (AMCVP)
 - input \(\rightarrow \) output path alternates AND/OR, starting & ending with OR
- **Fanin-2, fanout-2 AMCVP:** (AM2CVP)
 - all gates have in & out degree 2
 - allow outputs other than one of interest
- **Synchronous AM2CVP:** (SAM2CVP)
 - all inputs to each gate have same depth

Planar CVP: planar circuit [Goldschläger - SIGACT 1977]
- use NAND crossover
- but: planar monotone \(\not\in \text{ NC} \) [Yang - FOCS 1991]
- start & end with ORs
- reduce fan out to \(\leq 2 \) (also fanin to \(\leq 2 \))
- make AND & OR alternate
- fanin 1 \(\rightarrow \) fanin 2
 (preserving alternation & start with OR)
- fanout 1 \(\rightarrow \) fanout 2
 by duplicating circuit \(x \rightarrow x \& x' \)
 & combining extra outputs
 (preserving alternation & end with OR)
- synchronization: \(n = \# \text{gates} \)
 - \(n/2 \) copies of circuit
 - \(i \)th copy = levels \(2i \) & \(2i+1 \)
 inputs & ANDs ORs
 - OR takes inputs from \(i \)th copy,
 sends outputs to \((i+1)\)st copy
 (determining ANDs by alternation)
 - AND in 0th copy become \(0 \) input
 \(\Rightarrow \) level 0 = inputs
 - inputs fed to \(i \)th copy by input gadget
 - output in \(n/2 \) copy
Bounded DCL:
- edges are active (just flipped) or inactive
- vertex active if its active incoming edges have total weight \(\geq 2 \)
- round = reverse unreversed edges pointing to active vertices
 (& these are the new active edges)

- P-complete for AND, SPLIT, OR graphs
 (but not necessarily planar)
- reduction from Monotone CVP
- even easier from SAM2CVP
Lexically first maximal independent set:
- as found by greedy algorithm: \(\Rightarrow \epsilon P \)
 \[S = \emptyset \]
 \[\text{for } v = 1, 2, \ldots, |V| : \]
 \[\text{if } v \text{ not adjacent to } S : \]
 \[S = S \cup \{ v \} \]
- decision question: is \(v \in S ? \)
- \(\Pi \)-hard: [Greenlaw, Hoover, Ruzzo - Book 1995]
 - reduction from NOR CVP
 - number gates & inputs in topological order
 - drop edge orientations
 - add vertex \(\emptyset \) connected to all \(\emptyset \) inputs
 \[\Rightarrow v \in S \iff v = \emptyset \text{ or gate } v \text{ outputs true} \]

- computing whether size \(\leq k \) also \(\Pi \)-complete:
 - reduction from previous problem
 - connect \(v \) to \(n + 1 \) new vertices, set \(k = n \)
 \[\Rightarrow \text{size } \leq n \iff v \in S \]

- gap-producing reduction: \(n + 1 \rightarrow n^c \)
 \[\Rightarrow n^{1-\varepsilon} \text{-gap problem is } \Pi \)-complete
 \[\Rightarrow n^{1-\varepsilon} \text{-approximation is } \Pi \)-complete

- Game of Life: cell \((x,y)\) alive at unary time \(t\)?
- 1D cellular automata
- acyclic Generalized Geography
- is point \(p\) on \(k\)th convex hull of point set?
- multiset ranking: given \(k\) lists, is \(x\) the \(k\)th smallest in the union?
- \(a \mod b_1 \mod b_2 \cdots \mod b_n = 0\)?
- first fit decreasing bin packing \(\frac{\not{\square}}{\square}\) strongly P-complete
- LP with coefficients 0 & 1
- max flow \(-\) has fully RNC approx. scheme

OPEN:

- are two numbers relatively prime?
- \(a^b \mod c\)
- feasibility of LP with \(\leq 2\) variables per inequality
- maximum edge-weighted matching
 - pseudo RNC algorithm
- bounded-degree graph isomorphism