Constraint Logic: [Hearn & Demaine 2009]

Constraint graph (a model of computation)
- *graph with red & blue edges* → **MACHINE**
 - weight 1
 - weight 2
- *orientation of edges* → **CONFIGURATION**
 - such that incoming weight ≥ 2 at each vertex → **INFLOW CONSTRAINT**

- _move_ = reversal of one edge
 - resulting in valid configuration (i.e. satisfying inflow constraint)
 - every move can be undone (immediately)
- asynchronous move: directed edge → undirected
- equivalent power [Viglietta - CCCG 2013]

Nondeterministic Constraint Logic: (NCL)
- given constraint graph
- find a sequence of moves
- _goal 1_: reverse specified edge
- _goal 2_: reach specified configuration

- PSPACE-complete, even for just 2 vertex types: AND & OR
AND vertex = 2 incident red edges → inputs
+ 1 incident blue edge → output

- output can activate = be directed out
 only if both inputs active = directed in
- edges are consistently (in)active from both ends:

 ![Active/Inactive Edges Diagram]

- but there can be a delay between input activations & output activation

SPLIT vertex = 1 incident blue edge → input
+ 2 incident red edges → outputs

- outputs can activate only if input active
- alternative view of AND vertex

OR vertex = 3 incident blue edges
→ 2 inputs + 1 output

- output can activate only if at least one of the inputs active

NOT vertex is impossible:
- goal: output can activate only if input is not activated
 or: output never activated when input is
- inflow constraint always happier to have activated inputs & de-activated outputs
CHOICE vertex = 3 incident red edges
→ 1 input + 2 outputs
- output can activate only if
 input active & other output not active
- gadget reduction to AND/OR

Red-blue conversion:
- needed for e.g. output of AND or OR (blue)
 → input of AND or CHOICE (red)
- gadget on pairs
- will force even #

CNF formulas (ANDs of ORs)
via dual-rail logic for $x_i \& \overline{x_i}$
- force at most one true via SPLIT
- output can activate only if formula is satisfiable

Wire terminators: → degree-1 vertices
- unconstrained blue & red terminators
 (why red, instead of red-blue conversion?
 to force equal # red-blue conversions)
- forced-inward blue terminator

Constraint Graph Satisfaction: 3 configuration?
- NP-complete [Hearn]
NCL is PSPACE-complete:
- reduction from CNF QSAT
- latch gadget - one bit of memory
 - "unlock" input & two outputs A & B
 - when locked, state is fixed: can output A or can output B (never both)
- when unlocked, state is free to flip (and can output both A & B)
- existential quantifier gadget
 - latch to make guess
 - lock before activating rest of formula
- universal quantifier gadget
 - upper latch to set & lock variable
 - lower latch set up initially, (try-in inactive)
 settable down if x=0 & satisfied-in (⇒ try-out)
 - satisfied-out only if latch down & x=1 & sat-in
- final satisfied-out flippable ⇔ formula true
- attach latch, flip, unwind ⇒ config-to-config.

Planar NCL is PSPACE-complete
- crossover gadget:
 - B can point down ⇔ A can ⇔ I can
 - D can point right ⇔ C can ⇔ E can
- to cross red edges: convert to blue & back
- vertex with 4 red edges:
 ≥2 edges must face inward
Grid constraint graphs:
- 2×2 & 2×3 filler gadgets (all active)
- straight, turn, AND/OR gadgets

Protected OR: guaranteed ≤ 1 input activated
- can build OR
- use of red-blue conversion OK (forced config)

Reconfiguration 3SAT:
- given 2 satisfying assignments to 3CNF formula
- move = flip one variable false \Rightarrow true
- 3 move sequence from one assignment to other? [Gopalan, Kalaitis, Maneva, Papadimitriou – SICOMP 2009]
- PSPACE-complete
- easy reduction from NCL: [Eisenstat 2014]
 - edge \Rightarrow variable (0/1 indicates orientation)
 - OR vertex $\Rightarrow (x \text{ in}) \lor (y \text{ in}) \lor (z \text{ in})$

- AND vertex $\Rightarrow (x \text{ out } \Rightarrow y \text{ in}) \land (x \text{ out } \Rightarrow z \text{ in})$

- formula = AND of all these clauses
- NCL is essentially a special case of this problem
- other reconfiguration problems: [Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, Uno – TCS 2011]
Sliding-block puzzles: (initial motivation)
- rectangular blocks in rectangular box
- move = noncolliding slide
- goal: move one block, e.g. out hole of box

- PSPACE-complete even for 1x2 blocks [Hearn & Demaine 2002]

Sliding tokens = reconfig. Independent Set
- like 1x1 blocks on a graph but require no adjacent tokens

Rush Hour: [Flake & Baum 2002; Hearn & Demaine 2002]
- blocks can only slide in long direction
- PSPACE-complete for 1x2 & 1x3
- 1x2 PSPACE-complete \{Tromp & Cilibrasi 2008\}
- 1x1 OPEN
- triangular PSPACE-complete

Hinged dissection: chain of blocks folding
- polygon A \rightarrow polygon B
- always exist, avoiding collisions
 [Abbott, Abel, Charlton, Demaine, Demaine, Kominers - DCG 2008]
- polyabalo font - collisions?
- avoiding collisions is PSPACE-complete
 [Hearn & Demaine]
Sokoban: [Culberson 1998; Hearn & Demaine 2002]
- PSPACE-complete
- most blocks where they need to be
- goal: satisfy formula, move 1 block, unwind
- can’t wedge a block immovable
- AND/OR gadgets
- parity fix via stretching
- tunnels to reach all areas
- turn gadget

Push-2F: [Demaine, Hearn, Hoffmann - CCCG 2002]
- lock gadget \{ enough for Viglietta framework
- crossover
- NCL AND/OR out of that

Rolling block mazes: [Holzer & Jacobi - FUN 2012]
- 1x1x2 blocks, which can “roll” onto clear space
- rectangular frame

Plank puzzles / River Crossing [Hearn 2004]
- player can traverse, pick up, drop planks
- can hold only one at a time
- planks must end on posts
- global traversal of gadgets via length-3 planks
Dynamic map labeling: [Buchin & Gerrits - ISAAC 2013]
- want to reconfigure labels (squares) next to points while adding/panning/zooming map

Partial searchlight scheduling: [Viglietta - CCCG 2003]
- searchlight = rotatable ray around a point
- intruder can move super fast but not through a light ray
- want to guarantee a region within a polygon is intruder-free