Packing Squares into a Square is Strongly NP-complete

\[3B + t \]

\[B + a_i \]

\[3B + t \]

\[B + t \]

\[(B + t) \frac{n}{3} \]

[Leung, Tam, Wong, Young, Chin 1990]
Edge-Unfolding Polyhedra

[Biedl, Demaine, Demaine, Lubiw, Overmars, O’Rourke, Robbins, Whitesides 1998]

[Bern, Demaine, Demaine, Eppstein, Kuo, Mantler, Snoeyink 1998]
Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete

[Abel & Demaine 2011]
Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete
[Abel & Demaine 2011]
Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete

[Abel & Demaine 2011]
Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete

[Abel & Demaine 2011]
Snake Cube (Cubra)

Open:
History? (c. 1990?)
Snake Cube is NP-complete
[Abel, Demaine, Demaine, Eisenstat, Lynch, Schardl 2012]

• Reduction from 3-Partition

\(a_i \) gadget:

\[
\text{huge} \quad 8 a_i \quad \text{huge}
\]

\[
\text{zigzag is universal}
\]

\[
\text{target shape}
\]
Snake Cube is NP-complete

[Abel, Demaine, Demaine, Eisenstat, Lynch, Schardl 2012]

- Zigzag is universal
 - $2 \times 2 \times 2$ refinement makes any Hamiltonian shape
 - $4 \times 4 \times 4$ refinement makes any shape

- Parity issue: Path alternates cell parity each step

- Claim: Can start and end at any faces of cells of opposite parity
Snake Cube is NP-complete
[Abel, Demaine, Demaine, Eisenstat, Lynch, Schardl 2012]

- Reduce target box \rightarrow target shape

- Reduce target cube \rightarrow target box

\Rightarrow NP-hard to fold snake cube into target cube
Disk packing

Viet Elser’s disk packing puzzle

Robert Lang
Disk packing is NP-hard

[Demaine, Fekete, Lang 2010]
Disk packing is NP-hard

[Demaine, Fekete, Lang 2010]
Clickomania / Same Game
[Schuessler ~2000?]

- **Move** = Remove any connected group of size > 1

Goal: Remove everything
Clickomania Complexity
[Biedl, Demaine, Demaine, Fleischer, Jacobsen, Munro 2000]

- **Polynomial** for one row/column via CFG
- **NP-hard** for
 - 2 columns & 5 colors
 - 5 columns & 3 colors
- **Open:**
 - 2 rows
 - 2 colors
inverse of below

\[
B \cdot t = B \cdot a_i
\]

\[
\frac{n}{3}
\]

\[
\frac{n}{3}
\]

\[
B = \frac{4}{3} n
\]

[Biedl, Demaine, Demaine, Fleischer, Jacobsen, Munro 2000]
In Honor of your Intellectual Contribution to the Art of Tetris,

for proving NP-completeness in maximization of lines,
tetrises, pieces played, or minimization of square height,

we, masters of the Harvard Tetris Society hereby confer the title of

TETRIS MASTER

upon

Erik D. Demaine

on the sixteenth day of the twelfth month in the year 17 Anno Tetri (2002)

David Bernard
HTS President

Seymour M. Lesgold
HTS Treasurer
Claim 5: When terminate, we do so on the left.

If not:
- no RG
- no LS

First LG goes into R-terminus:
- Red LG goes in here
- Otherwise, LG goes in here

Problems:
- If multiple R-termini, then have a LG-sink.
- Have a LG, LS, LG-sink, & partial LS sink.
- LS could be picked up & come early.
- Idea: Count each piece using sinks = trouble.

Without LG, LG-sink & partial LS sink, LS could be picked up & come early.
Initial Board

$\approx t$ notches
(target sum)

[T lock]

$\frac{n}{3}$ buckets
(one per sum)

(it is possible to actually get here)

[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kisters, Liben-Nowell 2003]
Piece Sequence [Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2003]

- For each input a_i:
Failure to Launch [Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2003]

"unprimed" buckets

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
Forced Moves

[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2003]
Finale

Pieces

[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2003]
Finale

Pieces

[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2003]
Finale

Pieces

[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2003]
Finale Pieces

[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kusters, Liben-Nowell 2003]
Finale Pieces

[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2003]
Finale

Pieces

[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2003]
Hardness of Approximation
[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2003]
Tetris Open Problems
[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2003]

- Complexity of Tetris with
 - Initially empty board?
 - $O(1)$ columns?
 - $O(1)$ rows?
 - Restricted piece sets (e.g. \[\square\])?
 - No last-minute slides?

- Is two-player Tetris PSPACE-complete?
- What can we say about online (regular) Tetris?
1-planar Graph

• Each edge has at most one crossing
1-planarity is NP-complete

[Grigoriev & Bodlaender 2007]

double wheel

uncrossable edge

K_6
1-planarity is NP-complete

[Grigoriev & Bodlaender 2007]

\[A = \{2, 3, 3, 3, 4, 5\} \]
GeoLoop & Ivan’s Hinge

Piano-Hinged Dissections
Time to Fold!

Greg N. Frederickson

Jan Essebaggers & Ivan Moscovich
1993

Kenneth Stevens 1993
GeoLoop & Ivan’s Hinge
[Abel, Demaine, Demaine, Horiyama, Uehara 2014]
NP-complete
universal & polynomial
2.2. Lower Bounds

Figure 2.5. Ruler folding reduction. Here $x_1 + x_3 + x_4 = x_2 + x_5 + x_6$.

[Hopcroft, Joseph, Whitesides 1985]
(Simple) Map Folding

Arkin, Bender, Demaine, Demaine, Mitchell, Sethia, Skiena 2000

Figure 14.4. Folding a 2×4 map via a sequence of three all-layers simple folds.
[Arkin, Bender, Demaine, Demaine, Mitchell, Sethia, Skiena 2000]