
6.889: Algorithms for Planar Graphs and Beyond

Problem Set 1 - Solutions

1. Solution: Since every face has size at least three, and each edge is in exactly two faces,
3f ≤ 2m (here, f is the number of faces). Substituting into Euler’s formula we get 2 =
n−m + f ≤ n−m/3. Or, equivalently, m ≤ 3n− 6.

2. Solution: The crucial observation is that in any planar graph with no self loops and no
parallel edges, there always exists a node whose degree is at most 5. To see this, note that
by the sparsity of planar graphs,

∑
v∈V degree(v) = 2m ≤ 6n− 12.

The algorithm is:

1: T ← ∅
2: while G is not empty do
3: choose an arbitrary node v s.t. deg(v) ≤ 5
4: let e be the minimal weight edge incident to v
5: T ← T ∪ {e}
6: contract e, eliminating any parallel edges that occur by only keeping the one with

minimal weight.
7: end while

First, we may assume that G contains no self loops and parallel edges since we can detect and
delete them in linear time (for parallel edges delete all but the lightest edge). The correctness
of the algorithm follows from the two claims (a) and (b) by a simple induction on the number
of nodes n.

The number of iterations is at most n since the contraction at each iteration reduces the
number of nodes of the graph by one. We next argue that each iteration takes constant time.
We can maintain a list L of nodes with degree at most 5 and a table with the degree of each
vertex. Finding the node v in line 3 takes constant time (take any element in the list L).
Since the degree of v is constant, finding the minimum edge incident to it also takes constant
time. In our representation contraction takes constant time. The degree table only changes
for v and its neighbors (constant number of them). Similarly, parallel edges are only created
between neighbors of v and can be identified in constant time per edge by maintaining the
edges incident to each node in a hash table with endpoints of the edges as keys. Therefore,
all executions of line 6 require total linear time.

3. Solution: Let T ∗ be the spanning tree of G∗ comprising of the edges not in T . Consider f∞
as the root of T ∗. We first argue that, for a non-tree edge e, the subtree of T ∗ rooted at the
endpoint (face) of e further from f∞ in T ∗ consists of the faces of G enclosed by CT (e), the
elementary cycle of e with respect to T . To see this note that, by cycle-cut duality, the edges
of CT (e) form a cut in G∗, whose only edge not in T is e. Hence, since T ∗ is a spanning tree
of G∗, all faces enclosed by C must be descendants of e in T ∗.

By the claim above, it suffices to compute, for each face f , the weight of the subtree of T ∗

rooted at v. Clearly this can be done in linear time by accumulating the weights working up
from the leaves of T ∗ towards the root.


