Problem Set 10 - Solutions

In this problem set you will develop an algorithm for canceling flow cycles in a given flow assignment. In general graphs this can be done in $O(m \log n)$ time using Sleator's and Tarjan's dynamic trees. You will use the relation between dual shortest paths and circulations to give a linear time algorithm in planar graphs.

1. Let G be a planar graph with non-negative capacities on its arcs. Let ϕ be shortest path distances from f_{∞} in G^* . Let θ be the circulation induced by ϕ . That is,

$$\theta(d) = \phi(\text{head}(d)) - \phi(\text{tail}(d)).$$

Recall that a residual path is a path whose darts all have strictly positive capacities. Show that there are no counterclockwise residual cycles in the residual graph G_{θ} .

Solution: Let T^* be a shortest path tree in G^* rooted at f_{∞} , and let C be a counterclockwise cycle. Since C encloses at least one face (and by definition does not enclose f_{∞}), and since T^* is a spanning tree of G^* , there must be a dart d^* of T^* whose dual d belongs to C. By definition of θ , the residual capacity of darts of T^* is zero, so C is not residual.

2. What price function ϕ' would you use to get the same property as in (1), but with no clockwise residual cycles?

Solution: Reverse the directions of all darts in G^* . Then the argument applies to clockwise cycles in G.

- 3. Use parts (1) and (2) to give a linear time algorithm that, given a flow assignment γ in G makes γ acyclic by removing all flow cycles in γ . That is, it produces another flow assignment γ' s.t.
 - (a) $\gamma' \gamma$ is a circulation
 - (b) for every arc $a, \gamma'((a, 1)) \leq \gamma((a, 1))$
 - (c) for any cycle C there is a dart $d \in C$ s.t. $\gamma'(d) \leq 0$

Solution: Consider the graph G with arc capacities $\gamma(a)$. Let θ_1 be the circulation from part 1. Let γ_1 be the flow obtained from γ by pushing $-\theta_1$ (i.e., $\gamma_1 = \gamma - \theta_1$). γ_1 consists of no counterclockwise cycles, and $\gamma_1((a, 1)) \leq \gamma((a, 1))$ for all arcs a.

Next consider the graph G with arc capacities γ_1 . Let θ_2 be the circulation from part 2. Let γ_2 be the flow obtained from γ_1 by pushing $-\theta_2$ (i.e., $\gamma_1 = \gamma - \theta_1 - \theta_2$). γ_2 consists of no clockwise cycles, and since $\gamma_2((a, 1)) \leq \gamma_1((a, 1))$ for all arcs a, no counterclockwise cycles are introduced. Hence γ_2 is the desired flow.