Recall interdigitating trees of planar graphs:

If T is a spanning tree of the primal, then $E(G) - E(T)$ is a spanning tree T^* of the dual.

On higher surfaces, we have the analogous concept of a tree-cotree decomposition:

A triple (T, T^*, X) where:
\(T \) is a spanning tree of the primal,
\(T^* \) is a spanning tree of the dual with \(E(T^*) \cap E(T) = \emptyset \)

\(X = E(G) - E(T) - E(T^*) \) is a set of exactly \(g \) edges, where \(g \) is the Euler genus (by Euler's formula).

Consider the graph obtained by pasting the faces of \(G \) only along edges of \(T^* \). Since \(T^* \) is a tree this is planar. In fact, it is the graph obtained by cutting \(G \) open along \(TVX \).

\(T \): 4 edges
\(T^* \): 4 edge
\(X \): 2 edges
Choose an arbitrary root for T.

For each edge $e \in X$ consider its fundamental cycle with T and extend it to a closed walk that contains r.

We call this loop (T, e).

Consider the system of loops through r defined by

$$C = \{\text{loop}(T, e) : e \in X\}$$

The graph $G \cup E$ is called a cut graph for G and is a subgraph of G consisting of some t vertices, $t+g-1$ edges, exactly 1 face, and having Euler genus g.

It is sufficient to cut G open along CG (instead of $T \cup X$) to obtain a planar graph. Indeed, we do not need to cut the "dangling" parts of T!

Note: compare fundamental polygon of surface.
Note: If we choose T to be a shortest paths tree rooted at v, then G consists of $2g$ shortest paths + g additional edges.

Recall spanners (for opt. problems):

1. a subgraph of weight $O(\text{OPT})$
2. that contains a $(1+\varepsilon)$-approx. solution

If we make sure that every shortest path and every edge of the graph are of weight $O(\text{OPT})$, then G is of weight $O(\text{OPT})$!

Spanner construction for Steiner tree in a bounded genus graph G:

1. Compute a 2-approximate Steiner tree T_0 and contract it to a single vertex v.
2. Compute a shortest-paths tree SPT rooted at v.
3. Delete all vertices v and all edges $e=uv$ with $d(v, u) > 2l(T_0)$, resp. $\min\{d(v, u), d(v, w) + l(e)\} > 2l(T_0)$.

Call this subgraph G. These vertices and edges can never be in an $(1+\varepsilon)$-approx. solution since they are more than $2\cdot\text{OPT}$ away from any terminal.

All shortest paths in G are now at length at most $4\cdot\text{OPT}$.

→ These vertices and edges can never be in an $(1+\varepsilon)$-approx. solution since they are more than $2\cdot\text{OPT}$ away from any terminal.

→ All shortest paths in G are now at length at most $4\cdot\text{OPT}$.
1. Uncontract \(r \) and set \(T = T_0 \cup SPT \)
 \(T \) is a spanning tree of \(G \)

2. Find a spanning tree \(T^* \) in \(G^* - E(T) \)
 \(T^* \) is a spanning tree of \(G^* \)

3. Let \(X = E(G) - E(T) - E(T^*) \)
 \((T, T^*, X) \) is a tree-cuttree decomposition

4. Pick an arbitrary root \(v \in V(T_0) \) for \(T \) and define
 \(CG = T_0 \cup \{ e \in E(T) : e \in X \} \)
 \(CG \) is a cut graph for \(G \) and
 \(\ell(CG) \leq 2\text{OPT} + \gamma \cdot 8\text{OPT} = (8\gamma + 2) \cdot \text{OPT} \)

5. Cut the graph open along \(CG \) to obtain a planar graph \(G_p \) with a distinguished face \(f \) that contains all terminals.
 \(\ell(f, f_{\text{outer}}) = 2 \cdot \ell(CG) \leq (16\gamma + 4) \cdot \text{OPT} \)

6. Proceed as in planar spanner construction!
 Find strips, columns, super-columns, subgraph, bisect
 portals, and add all possible Steiner trees
 among portals. \(\rightarrow \) see Lecture 16

 Crucial point: The bricks are planar
 and hence our planar structure theorem suffices!
PTAS for Steiner tree in bounded-genus graphs:

1. Find spanner as above
2. Apply contraction-decomposition to spanner
3. Solve on bounded treewidth
4. Uncontract the small part contracted in 2 to obtain solution for original graph — Lecture 23
Shallow minors:

We say H is a depth-r minor of G, $H \preceq_r G$, if G contains a model of H in which every branch-set has diameter at most r.

Hence, depth-0 minors are subgraphs
depth-n minors are minors.

For a class of graphs C define

$$C \mathcal{D}_r = \{ \text{the set of all depth-}r minors of graphs of } C \}.$$

We say C is somewhere dense if there exists an r such that $C \mathcal{D}_r$ is equal to the set of all graphs (i.e., contains arbitrarily large cliques).
C is nowhere dense if it is not somewhere dense, i.e. for every r, there exists a k such that $C \notin r$ does not contain K_k.

We say C has bounded expansion if there is a function f, s.t. every graph in $C \notin r$ has average degree at most $f(r)$.

First-order logic is FPT on bounded expansion.

- is not FPT on somewhere dense
- on nowhere dense: OPEN!

However, subgraph isomorphism, dominating set, etc. are FPT on nowhere dense.

In a nowhere dense class C and given k, there exists a t ($\gg k$) s.t. every graph in C can be colored by t colors, s.t. any k colors induce a graph of bounded treewidth.
References

