Recall Mortar Graph–Brick Decomposition

Spurious construction selects a constant number of portals on each brick and adds Steiner trees for every subset of portals.

Goal: Show that any forest inside a brick can be transformed into another forest that spans the same vertices on the boundary but has few joining vertices and approx. the same weight.

Def.: Let \(H \subseteq G \) and \(P \) be a path in \(G \). A joining vertex of \(H \) with \(P \) is a vertex of \(P \) that is an endpoint of an edge of \(H - E(P) \).
Properties of a brick:

- terminals only exist on Nor S
- N is a shortest path
- every proper subpath of S is (1+\varepsilon)-short
- \(l(W) \) and \(l(E) \) are negligible

(total weight of all super-columns < \(\varepsilon \cdot 0.05 \))

\[S = S_1 \circ S_2 \circ \ldots \circ S_k \] where, for each vertex \(x \in S_\cdot \cdot \cdot \):

\[l(S; [\cdot, x]) \leq \varepsilon \cdot \text{dist}(x, N) \]

\[K = \mathcal{O}(\varepsilon^{-3}) \]

Main strategy (very rough):

Case 1:

Same for \(S \)

Case 2:

Keep \(r \), simplify \(N \) and \(S \) separately

Case 3:

Keep \(r \) and \(t \)
In the following 3 lemmas:

- B a planar embedded graph
- K a subgraph of B
- P an (1+\varepsilon)-short path on the boundary \(\partial B \).

Lemma 1: There is a procedure \(\text{Span}_o (P; K) \) that returns a subpath of \(P \) spanning \(V(K) \cap V(P) \) whose total length is at most \((1+\varepsilon) \cdot l(K) \).

Proof: \(l(K) \geq l(Q) \geq \text{dist}_G(u,v) \geq \frac{\text{dist}_P(u,v)}{1+\varepsilon} \).

Lemma 2: There is a procedure \(\text{Span}_i (P; K; r) \) for \(r \in V(K) \) that returns a subgraph of \(PVK \) such that:

- its length is at most \((1+4\varepsilon) \cdot l(K) \)
- it has at most \(11 \varepsilon^{-1.45} \) joining vertices with \(P \).
- spans \(\{r\} \cup (PVK) \).

level \(k \) how to choose?
Claim: There is a tree T that is
- rooted at r
- spans all vertices of K_N
- is binary
- $\ell(T) \leq (1 + \varepsilon) \cdot \ell(K)$.

Proof of Claim: Take a subtree of K spanning K_N and all leaves in K_N and root at r. If any vertex has at least 3 children, apply the following transformation:

Replace subtree of u by the x-y-subpath of P plus the shortest u-to-P path.

$$\ell(\text{replacement}) = \ell(P_{xy}) + \text{dist}_K(u, P) \leq (1 + \varepsilon) \ell(Q) + \ell(Q')$$

$$\leq (1 + \varepsilon) \cdot \ell(\text{subtree of } u).$$

Proof of Lemma 2:
Let a super-edge of T be a maximal subpath of T with internal vertices of degree 2. Endpoints of super-edges are called super-vertices. The level of a super-edge is the number of super-edges traversed from the root to its start.
So, we basically ignore vertices of degree 2 (except r).

Select a level \(k \) (to be determined) and transform as before:

Note: We cannot quite proceed to prove as in previous claim since there is no third path \(Q' \) to blame.

Problem: Super-edge \(e = uv \) is blamed twice!

Can we somehow make sure that the total weight of super-edges who are blamed twice is small?

Yes! Choose \(k \) appropriately!
A super-edge uv is called a zig-zag edge if when coming from the parent of v we change direction:

Let L_i denote the set of all zig-zag edges of level i.

Note that we can always designate the bad super-edge e of A and A' to be a zig-zag edge in L_k. Also, note that A and A' avoids all zig-zag edges at levels $> k + 1$, i.e., avoids $L_{k+2} \cup L_{k+3} \cup \ldots$.

Let T' be the tree obtained after transformation:

$$l(T') \leq (1 + \varepsilon) \left[\ell(T) + L_k - \left(L_{k+2} + L_{k+3} + \ldots \right) \right]$$

Claim: Let $k_0 = \lceil \log_\phi (\sqrt{5}/\varepsilon + 1) \rceil$ while ϕ is golden ratio. Then there exists $k \leq k_0$ such that $L_k \leq \varepsilon \ell(T) + L_{k+2} + \ldots + L_{k_0}$.
Proof of Claim: Otherwise, for every \(k = 1, 2, ..., k_0 \), we have
\[
L_k > \varepsilon L(T) + L_{k+2} + L_{k+3} + ... + L_{k_0}
\]

By induction, one can show that \(L_1 > \varepsilon \cdot L(T) \cdot \text{Fib}(k_0) \) where \(\text{Fib}(k_0) \) is the \(k_0 \)th Fibonacci number, which is greater than \(\frac{1}{\varepsilon} \) by choice of \(k_0 \). Thus \(L_1 > \varepsilon L(T) \).

By choosing \(h \) according to claim, we have
\[
L(T) \leq (1 + \varepsilon)^2 \cdot L(T).
\]

Also, the number of super-vertices at level \(k \) is at most:
\[
2^k \leq 2 \cdot \log \phi \left(\frac{1}{2} + \frac{1}{\varepsilon} \right) < \frac{1}{1 - \varepsilon^{-2.5}}
\]
whenever \(\varepsilon < 1 \). Hence, we obtain desired bound on number of joining vertices.

Lemma 3: There is a procedure \(\text{Span}_2^2 \) (\(P, K, r, t \)) that returns a subgraph of \(PUK \) s.t.
- spans \(\{r, t\} \cup \{P, K\} \)
- its length is at most \((1 + c_1 \varepsilon) L(K) \)
- has at most \(c_2 \varepsilon^{-2.5} \) joining vertices with \(P \).

\(\rightarrow \) see proof in book/paper
Theorem: Let B be a plane graph with boundary $NUEUSUW$ satisfying the brick properties. Let F be a set of edges of B. There is a forest \tilde{F} of B satisfying the following properties:

- (P1) If two vertices of the boundary are connected in F then they are connected in \tilde{F}.

- (P2) The number of joining vertices of \tilde{F} with N and with S is at most $2c_14 + \varepsilon^{-2.5}$.

- (P3) $\ell(\tilde{F}) \leq (1 + c_3) (\ell(F) + \ell(E) + \ell(W))$.

Proof: Define paths $\overline{P_1, P_2, \ldots, P_i}$ as follows:

- $\overline{P_{k+1}} := P_{k+1} := E$

- If $F\cup W$ has an S-to-N path that originates in $S_i \cup \ldots$ and does not intersect $\overline{P_1, P_2, \ldots, P_{k+1}}$, let P_i be the rightmost such path.

- Define $P_i = S_i \cup \text{start}(P_i)$ to P_i.
Main Idea:

- get rid of components that have leaves only on N or only on S by applying $Span_1$

More formally:

- Consider $F = W \cup \bigcup_{i=1}^{k} \overline{P_i}$

- Let F' be a minimal forest thereof that contains $\bigcup_{i=1}^{k} \overline{P_i}$ and preserves connectivity away from boundary

Note that $\ell(F_i') \leq (1+\varepsilon)\ell(P_i)$

$\implies \ell(F') \leq \ell(E) + \ell(W) + (1+\varepsilon)\ell(F)$
For $i = 1, \ldots, k+1$ if $P_i \neq \emptyset$, let r_i be the first vertex on P_i such that there is an r_i-to-N path in F' that avoids other vertices of $P_i \cup \ldots \cup P_{k+1}$.

Claim: For any vertex x of $P_i \setminus \{r_i, \ldots, J\}$, there is no non-trivial x-to-S path that avoids other vertices of $P_i \cup \ldots \cup P_{k+1}$.

Proof: by picture.

Note: r_i could be on S in which case there is a trivial path.

For $i = 1, \ldots, k$ if there is a path in F' from P_i to $P_{i+1} \cup \ldots \cup P_{k+1}$, whose internal vertices are not in $P_i \cup \ldots \cup P_{k+1}$, let Q_i be such a path. Otherwise let $Q_i = \emptyset$.

Claim: Every internal vertex of Q_i has degree 2.

Proof: by picture.

Claim: If there is an integer $j < k$ such that Q_j connects to P_i, then $\text{end}(Q_j) = r_i$.

Proof: by picture.
Now we can basically do. Consider each connected component \(K \) of \(F' \cup Q_2 \).

Apply the transformation shown under "Main Idea" to \(K \) to obtain \(\tilde{K} \) with few joining vertices.

- get rid of components that have leaves only on \(N \) or only on \(S \) by applying \(\text{Span} \).

One more issue: If \(r_i \) is on \(S_i \), then the northern part still needs to span any vertices of \(S_i \). Instead, we simply include the part of \(S_i \) that comes after \(r_i \) in the selection — it has small weight!

Define \(\tilde{F} = UK \tilde{V} \cup U_2 Q_2 \).

Need to verify bounds and covering requirements (F1), (F2), (F3) of Theorem. — easy! see book/paper.
References

See also upcoming chapter in Klein's book.