
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE

SPRING 2013

LECTURE 9

ADVANCED MULTICORE CACHING

DANIEL SANCHEZ AND JOEL EMER

[BASED ON EE382A MATERIAL FROM KOZYRAKIS & SANCHEZ]

Administrivia
2

 Project proposal due next week

 2-3 pages

 Idea, motivation, expected results

6.888 Spring 2013 - Sanchez and Emer - L09

Caches? Again?

 Caches set performance and power of multi-core chips

 Why?

 Caches take ~50% of multi-core chips

 Our focus today: last-level caches (LLC)

45nm 11nm

16b integer multiply 2 pJ 0.4 pJ

64b FP multiply-add 50 pJ 8 pJ

64b read, 8KB SRAM 14 pJ 2 pJ

256b read, 1MB SRAM 566 pJ 94 pJ

256b 10nm wire 310 pJ 174 pJ

256b DRAM interface 5,120 pJ 512 pJ

256b read DRAM 2,048 pJ 640 pJ

Compute

Memory

3

6.888 Spring 2013 - Sanchez and Emer - L09

Motivations for Caching

 Main benefit in uniprocessors

 Reduce average memory access time (latency)

 Additional crucial benefits in CMPs

Memory bandwidth amplification

 Energy efficiency

 Faster inter-thread communication

CPU

Cache

(small, fast

memory)

Main mem

(large, slow

memory)

CPU
Large, fast

memory ≈

4

6.888 Spring 2013 - Sanchez and Emer - L09

Outline

 Shared vs private CMP caches

 Addressing CMP caching issues

 High access latency [shared]: placement, migration,

replication

 Lost capacity [private]: controlled replication

 Interference [shared]: cache partitioning, replacement

policies for shared caches

 Underutilization [private]: capacity sharing

5

6.888 Spring 2013 - Sanchez and Emer - L09

Private Caches

 Low access latency

 Isolation (capacity, bandwidth)

 Lower bandwidth interconnect

 Underutilization of resources (capacity, replicated data)

 Expensive coherence, slow inter-core communication

core

L1$

core

L1$

core

L1$

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

L2 $ L2 $ L2 $

core

L1$

L2 $

Main memory

…

Directory

Interconnect

Note, private
caches are still

coherent!

6

6.888 Spring 2013 - Sanchez and Emer - L09

Shared Caches

 Resource sharing (capacity, bandwidth)

 Cheaper coherence, fast inter-core communication

 High L2 avg. access latency

 Requires high-bandwidth interconnect

 Destructive interference (capacity)

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

core

L1$

core

L1$

core

L1$

core

L1$

Shared L2

…

Directory

Main memory

c L1

c L1

c L1

c L1

c L1

c L1

c L1

c L1

Dir
Shared

L2 bank

Dir
Shared

L2 bank

Dir
Shared

L2 bank

Dir
Shared

L2 bank

Dir
Shared

L2 bank

Dir
Shared

L2 bank

Dir
Shared

L2 bank

Dir
Shared

L2 bank

c L1

c L1

c L1

c L1

c L1

c L1

c L1

c L1

Interconnect

7

6.888 Spring 2013 - Sanchez and Emer - L09

Notes

 Can also have hybrid models (hierarchical cache)

 E.g., parts of the LLC shared between a group of cores

 Note difference between logical and physical origination

 E.g., shared cache with private-like chip layout

 Notice anything interesting with this distributed way of implementing shared

caches?

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Shared

L2 bank

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

SW c L1

Dir
Private

L2

8

6.888 Spring 2013 - Sanchez and Emer - L09

Shared/Private Pros & Cons

Private Shared

Access latency Low High

Duplication of read-shared data Yes No

Destructive interference No Yes

Resource underutilization Yes No

Interconnect bandwidth Low High

Coherence & communication cost High Low

9

6.888 Spring 2013 - Sanchez and Emer - L09

Addressing Limitations

 Shared cache limitations

 High latency: line placement, migration, and replication

 Interference: controlled sharing

 Private cache limitations

 Duplication of shared data: controlled replication

 Underutilization: capacity stealing

10

6.888 Spring 2013 - Sanchez and Emer - L09

Shared Caches:

Latency Reduction Techniques

 Placement: make linebank mapping flexible

 Normally, line address determines bank

 Instead, cache line in bank close to cores that use it

 Migration: move cache lines to close banks

 Adapts to changing access patterns

 Power-hungry, has pathological behavior

 Replication: enable multiple copies (replicas) of frequently-

accessed read-shared lines

 Lower access latency

 Reduces total capacity

11

6.888 Spring 2013 - Sanchez and Emer - L09

NUCA: Non-Uniform Cache Access

 Idea: accept & manage differences in

access latencies

 Some banks are closer than other

 From static to dynamic placement

 Static: address bits determine bank

 Dynamic: allow lines to migrate

 Hopefully, important data are mostly in

the nearby banks

12

6.888 Spring 2013 - Sanchez and Emer - L09

NUCA Management

 Approach: organize cache banks into bank sets

 Bank group determined by address bits

 Banks within the group provide cache associativity

 Need to look in all the banks in bank group

 Cache lines can move within a group to get closer to requesting CPU

 Works because of LRU, most hits normally happen to first cache ways

 Mechanisms: mapping, searching, migration

 Mapping: simple, fair, shared

 Searching: incremental, multicast, smart

 Migration: data moves closer as it is accessed, evicted data moved further

13

6.888 Spring 2013 - Sanchez and Emer - L09

NUCA & Multi-core

Dark  more

 accesses

OLTP (on-line

 transaction

 processing)

 Ocean 

 (scientific code)

14

6.888 Spring 2013 - Sanchez and Emer - L09

NUCA Discussion & Ideas

 What are the complication of dynamic NUCA?

 Ideas for improvements

 Centralized tags but distributed data

 Prediction of bank search

 See syllabus for additional refs

15

6.888 Spring 2013 - Sanchez and Emer - L09

Victim Replication

 Idea: use local L2 bank as victim cache

 Each line has a single home L2 bank

 When evicting from L1, write data in local L2 bank

 Victim can evict invalid lines, replicas and unshared lines

 Can’t evict actively shared blocks that have local L2 as home

 Implementation: simple modifications to shared L2

 On a miss, search local L2 slice before remote L2 slices

 Directory or banking structure does not change

 Victim does not change sharer’s info (still as if in local L1)

 Invalidations need to check both L1 and local L2 bank

 Pros/cons over shared and private?

16

6.888 Spring 2013 - Sanchez and Emer - L09

Adaptive Selective Replication

Very useful
profiling approach

 Private caches always replicate, lose capacity

 Idea: cost/benefit analysis to decide how much to replicate

 Benefit: faster hits on replicas

 Cost: more misses due to lost capacity

 Implementation:

 Choose to keep block or not in L1 eviction probabilistically

 Adapt replication probability

 Small victim tag buffer to profile extra misses

 Count hits on replicas to estimate gains on hit latency

17

6.888 Spring 2013 - Sanchez and Emer - L09

Capacity sharing:

Dynamic Spill-Receive

 Capacity sharing by spilling evicted lines to nearby L2s

 Caches can be spillers or receivers

 Spilled lines served using cache

coherence

 Implementation:

 Dedicate a few sets in each

cache to always-spill or

always-receive, measure

which one works best

18

6.888 Spring 2013 - Sanchez and Emer - L09

Example of Cache Interference

 Slowdown for SPECCPU2000 apps when running in parallel with swim, sharing the L2 cache

Run-Time Slowdown
(Swim in 2nd core)

m
cf ar

t

eq
ua

ke vp
r

am
m

p

fa
ce

re
c

bz
ip
2

lu
ca

s

vo
rte

x

ga
lg
el

w
up

w
is
e

ap
pl
u

sw
im

pa
rs

er

m
gr

id
tw

ol
f

gc
c

fm
a3

d
ga

p

pe
rlb

m
k

cr
af

ty
ap

si

m
es

a

si
xt
ra

ck
gz

ip
eo

n

Run-time

slowdown

Baseline

2x

3x

4x

5x

19

6.888 Spring 2013 - Sanchez and Emer - L09

Can OS Priorities Solve the Problem?

 What is the problem with OS priority mechanisms?

Run-Time Slowdown with thread prioritization
(Swim in 2nd core)

m
cf ar

t

eq
ua

ke vp
r

am
m

p

fa
ce

re
c

bz
ip
2

lu
ca

s

vo
rte

x

ga
lg
el

w
up

w
is
e

ap
pl
u

sw
im

pa
rs

er

m
gr

id
tw

ol
f
gc

c

fm
a3

d
ga

p

pe
rlb

m
k

cr
af

ty
ap

si

m
es

a

si
xt
ra

ck
gz

ip
eo

n

Run-time

slowdown

Normal priority SpecSuite-High, Swim-Low priority

Baseline

2x

3x

4x

5x

20

6.888 Spring 2013 - Sanchez and Emer - L09

Is Interference a Common Problem?

 Need mechanisms for isolation & QoS

Performance Impact

0x

1x

2x

3x

4x

5x

6x

1 85 169 253 337 421 505 589 673

SPEC App Pairs

S
lo

w
d

o
w

n
 F

a
c

to
r

Spec apps 20% line

Rest exhibit <10%

slowdown

20% pairs

exhibit 10-

20%

slowdown

30% pairs exhibit

20%-500%

slowdown

21

6.888 Spring 2013 - Sanchez and Emer - L09

Isolation via Cache Partitioning

 Idea: eliminate interference by partitioning the

capacity of the cache

 Different apps and different uses get their own partition

 We need two techniques

 A policy to assign the capacities to cores

 A mechanism to enforce capacity assignments

22

6.888 Spring 2013 - Sanchez and Emer - L09

Enforcing Allocations

 Way partitioning: Restrict evictions/fills to specific ways

 How many partitions can we have?

What happens with associativity?

 Can we partition the cache by sets?

 Issues and challenges?

 Any other schemes?

23

6.888 Spring 2013 - Sanchez and Emer - L09

Capacity Management Policies

 Capitalist (most systems today)

 No management

 If you can generate the requests, you take over resources

 Communist

 Equal distribution of resources across all apps

 Guarantees fairness but not best utilization

 Elitist

 Highest prio for one app through biased resource allocation

 Best effort for the rest of the apps

 Utilitarian

 Focus on overall efficiency (e.g., throughput)

 Provide resources to whoever needs it the most

24

6.888 Spring 2013 - Sanchez and Emer - L09

Utility-based Cache Partitioning

 Idea: assign capacity to apps based on how well they use it

 Maximize reduction in number of misses)

 Implementation: find utility of using each way

 Naïve: one auxiliary set of L2 tags per core, count hits/way

 Dynamic set sampling: simulate a small number of sets

25

6.888 Spring 2013 - Sanchez and Emer - L09

Replacement policies for CMPs

 Replacement policy keeps a rank of blocks

 Select least desirable candidate on an eviction

 Control how to change the block’s rank on an insertion or hit

(promotion)

 LRU

 Select last line in LRU chain for eviction

 Put block in head of chain (MRU) on ins/promotion

 Does not work well with streaming/scanning applications

(many lines w/o reuse) or under thrashing (working set > size

of cache)

27

6.888 Spring 2013 - Sanchez and Emer - L09

Replacement Policies: DIP

 LRU insertion policy (LIP)

 Insert in LRU position, promote to MRU  scan-resistance

 Bimodal insertion policy (BIP)

 Randomly insert few lines at MRU, others LRU  thrash-resistance

 Dynamic insertion policy (DIP)

 Profile and choose between LRU and DIP

 Achieves good performance on LRU-friendly workloads

 Thread-aware DIP

 Select between DIP and LRU per thread

 Scanning/thrashing/low-utility applications use BIP, get less effective
capacity  similar effects as UCP

 S/D/TAD-RRIP, SHiP, …

28

6.888 Spring 2013 - Sanchez and Emer - L09

