Lecture 6
Parallel Programming Models

Daniel Sanchez and Joel Emer

6.888 Parallel and Heterogeneous Computer Architecture
Spring 2013
Recap: Message-passing Discussion

- Network speed/latency
 - Memory bus vs I/O bus

- Messaging overheads: Buffering, copying, protection
 - OS-level vs user-level messaging
 - Protocol overheads vs network complexity

- Synchronization overheads: Synchronous vs asynchronous
 - Polling vs interrupts?
Recap: Shared Memory Discussion

- UMA Scalability?
- NUMA Scalability?
- Cache coherence, consistency, atomic operations
 - Complexity?
 - Alternatives?
- Cost?
- What kind of applications need shared memory?
Programming Model Tradeoffs

- **Productivity**: (easy to learn, use, debug?)
- **Performance**: (is it fast? on what machines?)
- **Generality**: (what kind of programs is it well suited to?)
Many dimensions to compare programming models
- Syntax, type systems, imperative/functional/declarative...

This discussion:
- Interaction between architecture and programming model
- Types of parallelism exploited
 - Data, task, pipeline
- Scheduling features
 - Adaptive, locality-aware, focus on communication
- Productivity and generality
 - New or extension, ease of use & debug, elegance, safe parallelism
 - Does it restrict algorithms? data structures? type of parallelism?
 - At a high level: Is it worth it? Successful?