Lecture 5

Communication Models: Shared Memory and Message Passing

Daniel Sanchez and Joel Emer

6.888 Parallel and Heterogeneous Computer Architecture
Spring 2013
HW1 is out!
- Due March 6
- Code and data under MIT certs or from Stata

Start thinking about project
- Explore possible teams!
- Project proposal (~2 page) due March 18
 - Ask us about topics, infrastructure, etc. beforehand

Start thinking about seminars
Today’s Menu

- A bit more on evaluating parallel systems
- Some notes on HW1
- Communication models & paper discussion
Statistically Significant Experiments

- Most fields: “Our experiment shows the vaccine is effective in 85%(+/-2%) of subjects…”

- Computer architects (often): “We ran each experiment once, here are the bars”
 - “What are the confidence intervals?” Common responses:
 - Madness is doing the same thing twice and expecting a different result!
 - Simulations take a long time! Better to simulate for 5x longer…
 - Confidence what?

- The Java tribe: “We ran each benchmark 10 times and report the best execution times”
 - The other 9 are to warm the JVM up…
Observational Error

- Most experiments (and definitely computers) are subject to variability

- Two types of observational error:
 - Systematic: Always occurs in the same way
 - Performance counter bugs, instrumentation overhead, room temperature & turbo, simulator bugs…
 - Random: Due to natural system variability and non-determinism
 - Initial machine state, VM mappings, ASLR, interrupts, benchmarks that use randomized algorithms, …
 - In parallel systems, amplified by lock acquisition order, barrier synchronization, etc.

- Avoiding systematic error:
 - Detect them… good luck
 - Either redesign experiment or estimate impact and adjust measurement

- Reducing random error: Make your confidence intervals small
Confidence Intervals

- We take N samples from a population (e.g., run a benchmark N times) and want to approximate a parameter about the whole population (e.g., the true mean time of all runs) with those samples (e.g., the sample mean time of the N runs)
 - Can we compute the actual error between both?

- An X% confidence interval is the range of values that is X% likely to contain the true value across the whole population
 - Multiple ways to estimate
 - Typically, assume gaussian distribution, compute sample mean and std, and use inverse CDF to compute (symmetric) range
 - In most real-world systems, increasing N makes interval smaller
 - Infinite-variance distributions exist, in paper…
The real system has randomness... does your simulator?

- Same starting state, no interrupts, deterministic event ordering? You have a problem
 - e.g., your benchmark executes +/-10% of instructions in the real system depending on e.g., starting machine state
 - Your baseline design happens to hit the -10%
 - Your 5% IPC-improved design happens to hit the +10%...
 - Often worse in parallel benchmarks

- Add some randomness, even artificially (+/-2 cycles on memory accesses) [Alameldeen and Wood, IEEE Micro 06]
 - May not model the real randomness, but often good enough
Sampling and cold-start effects

- Often, can only run short benchmarks (~100M instrs)
 - But want to estimate performance of much longer runs!
- Problem 1: Choose statistically significant portions of the program. Options:
 - Analyze the workload beforehand, pick samples [SimPoints, Sherwood et al, ISCA/SIGMETRICS 03]
 - Periodic or randomized sampling, and treat it as a sampling problem [SMARTS, Wunderlich et al, ISCA 03]
- Problem 2: Microarchitectural state (caches, predictors, etc) not warmed up!
 - Functional-only or detailed (timing) warming
Summarizing Performance

- Ideal world:
 - Ideal chip manufacturer: Compared to our old chip, our new one improves performance of benchmark 1 by 10%, benchmark 2 by 50%, benchmark 3 by -10%, etc.
 - Ideal customer 1: I mostly run (something similar to) benchmark 2, let’s upgrade
 - Ideal customer 2: I’m half ~1, half ~3, not for me…

- Real word:
 - Customer: I don’t know what I run, just give me a number!
 - Chip manufacturer: OK, here’s the mean improvement…
Means

- Arithmetic:
 \[\text{amean} = \frac{1}{N} \sum_{i=1}^{N} x_i \]

- Harmonic:
 \[\text{hmean} = \frac{N}{\sum_{i=1}^{N} \frac{1}{x_i}} \]

- Geometric:
 \[\text{gmean} = \sqrt[N]{\prod_{i=1}^{N} x_i} \]

- For positive differing quantities, amean > gmean > hmean
- Rules of thumb: amean for absolutes, hmean for rates (speeds), gmean for ratios
- In practice, use first principles as much as possible to derive aggregate metrics
 - Weighting or other means can be useful
 - And be honest… (Q: most/least used means in papers?)
Scalability

- Speedup(N) = Time on 1 processor / Time on N processors
 - What’s the best we can do? Linear?
 - Often sublinear...

- Strong scaling: Speedup on 1...N processors with fixed total problem size

- Weak scaling: Speedup on 1...N processors with fixed per-processor problem size
Work ≠ Instructions

- Especially with multithreaded benchmarks
- Classic example: Spinning
 - Increase memory latency, more spinning on lock acquires, spinning is really fast → higher IPC!
- Solution 1: Run applications to completion
- Solution 2: Instrument applications to measure units of work, measure time needed for N units
- Solution 3: Discount “useless instructions”
 - Great because we can still correlate to architectural metrics
 - But often hard in full-system simulations…
Multi-programmed setups

- Parallel processors execute multiple jobs...
- How to compute performance improvement of this?

Options (assuming work == instructions):

- Variable-work methodology: Measure time to finish N instructions
 - Issues?

- Fixed-work methodology: Measure time to finish N instructions for each program, then average
 - Terminate/keep running/rewind programs as they finish?
 - Issues?
“Here’s a simulator driver and some base code, build a cache hierarchy and measure how it does”

- Underspecified problem, on purpose
- Very simple core & memory model (why?)
- ST or MP workloads (SPECCPU2006), so no coherence needed
- Some unspecified dimensions:
 - Multilevel policies: Inclusive, non-inclusive, exclusive
 - Hard to do inclusive as is (hint: what does inclusion require?)
 - Write-through (hard, we only give you cache line addresses) vs write-back
 - Set selection policy (bit-selection or hashing)

- Remember to use an appropriate methodology
 - Most issues are minor (work ~ instructions, minimal variability…)
 - Problem 3 explores fixed vs variable-work
 - Problem 5 requires design space exploration… don’t try to bruteforce

- Questions? Mieszko, staff list
Communication Models

- **Shared memory:**
 - Single address space
 - Implicit communication by reading/writing memory
 - Data
 - Control (semaphores, locks, barriers, ...)
 - Low-level programming model: threads (e.g., pthreads)

- **Message passing:**
 - Separate address spaces
 - Explicit communication by send/rcv messages
 - Data & control (blocking msgs, barriers, ...)
 - Low-level programming model: processes + IPC (e.g., MPI)
MIMD Taxonomy

- **Shared memory:**
 - Uniform Memory Access (UMA):
 Small-scale SMPs & CMPs (e.g., P6)
 - Non-Uniform Memory Accesses (NUMA):
 - Cache-coherent (ccNUMA) (e.g., Origin, Cray T3E, modern multi-socket)
 - Cache-only (COMA) (e.g., KSR1)
 - Non-coherent (e.g., Cray T3D)

- **Message-passing:**
 - Massively Parallel Processors (MPPs):
 Tightly-coupled, high-performance parts (e.g., BlueGene/Q)
 - Clusters: Loosely coupled, commodity parts (e.g., datacenters)
Shared Memory vs Message-Passing Programming

- **Shared memory:** Typically,
 - Easier to improve incrementally
 - Start with sequential version, add synchronization, analyze bottlenecks
 - Harder to fully optimize
 - False sharing, spinning, remote accesses, harder to analyze...
 - Harder to scale
 - Communication is implicit → Ignore, overuse

- **Message passing:** Typically,
 - Harder to improve incrementally
 - Explicit data partitioning and communication; changing algorithm often requires rewrite
 - Easier to fully optimize
 - Easier to analyze, easier to hide latencies
 - Easier to scale
 - Explicit communication is explicit → Think about it, minimize
Example: Iterative Solver

double a[2][MAXI+2][MAXJ+2]; //two copies of state
 //use one to compute the other

for (s = 0; s < STEPS; s++) {
 k = s&1; // 0 1 0 1 0 1 ...
 m = k^1; // 1 0 1 0 1 0 ...

 for(i = 1; i <= MAXI; i++) { // do iterations in parallel
 for(j=1; j <= MAXJ; j++){
 a[k][i][j] = c1*a[m][i][j] + c2*a[m][i-1][j] +
 c3*a[m][i+1][j] + c4*a[m][i][j-1] +
 c5*a[m][i][j+1];
 }
 }
}

[based on Kozyrakis & Binkert, EE282 L7, 2011]
Data Partitioning & Communication

- Divide matrix in square blocks
 - e.g. 64x64 matrix, each processor owns a 16x16 submatrix

- Processor 6
 - Owns \([i][j] = [32...47][16...31]\)
 - Shares \([i][j] = [31][16...31]\)
 and three other strips

- Each processor:
 - Communicates to get shared data it needs
 - Computes its data

![Matrix Diagram]

6.888 Spring 2013 - Sanchez and Emer - L05
Fork N processes and distribute subarrays to processors

Each process computes $\text{north}[p]$, $\text{south}[p]$, $\text{east}[p]$, $\text{west}[p]$,-1 if no neighbor in direction

\begin{verbatim}
for (s=0; s<STEPS; s++) {
 k = s&1;
 m = k^1;
 if (north[p]>= 0) send(north[p], NORTH, a[m][1][1..MAXSUBJ]);
 if (east[p]>= 0) send(east[p], EAST, a[m][1..MAXSUBI][1]);
 same for south and west
 if (north[p]>= 0) receive(NORTH, a[m][0][1..MAXSUBJ]);
 same for other directions
 for (i=1; i<=MAXSUBI; i++) {
 for (j=1; j<=MAXSUBJ; j++){
 a[k][i][j] = c1*a[m][i][j] + c2*a[m][i-1][j] +
 c3*a[m][i+1][j] + c4*a[m][i][j-1] +
 c5*a[m][i][j+1];
 }
 }
}
\end{verbatim}
Create N threads

Each thread \(p \) computes \(\text{istart}[p], \text{iend}[p], \text{jstart}[p], \text{jend}[p] \)

Each thread runs:

\[
\text{for (s=0; s<STEPS; s++)} \{
 \text{\quad k = s}\&1; \text{\quad (e.g. 32..47)} \\
 \text{\quad m = k}^\text{\&1;}
\]

\[
\text{\quad for(i=istart[p]; i<=iend[p]; i++)} \text{\quad (e.g. 32..47)} \{
 \text{\quad \quad for(j=jstart[p]; j<=jend[p]; j++)} \text{\quad (e.g. 16..31)} \{
 \text{\quad \quad \quad a[k][i][j] = c1*a[m][i][j] + c2*a[m][i-1][j] +}
 \text{\quad \quad \quad \quad c3*a[m][i+1][j] + c4*a[m][i][j-1] +}
 \text{\quad \quad \quad \quad \quad c5*a[m][i][j+1];}
\}
\]

So much easier! And similar performance!

And no one would have written it this way first!
The Perils of Implicit Communication

- By writing MP version first, we forced ourselves to think about data partitioning and communication
- Most shared mem programmers just do this:

```c
for(i=istart[p]; i<=iend[p]; i++) {
    for(j=start; j<=end; j++) {
```

- High-level programming models are good, right?

```c
#pragma omp parallel for
for(i=istart; i<=iend; i++) {
    for(j=jstart; j<=jend; j++) {
```

```c
forall(i=istart; i<=iend; i++) {
    for(j=jstart; j<=jend; j++) {
```

- What’s the issue here?
Uh-oh… 2x communication/computation ratio
How does it scale to larger matrices/processor counts?
Shared Memory Discussion

- UMA Scalability?
- NUMA Scalability?
- Cache coherence, consistency, atomic operations
 - Complexity?
 - Alternatives?
- Can we cheaply emulate message-passing on shared memory HW?
Message-passing Discussion

- Network speed/latency
 - Memory bus vs I/O bus

- Messaging overheads: Buffering, copying, protection
 - OS-level vs user-level messaging
 - Protocol overheads vs network complexity

- Synchronization overheads: Synchronous vs asynchronous
 - Polling vs interrupts?

- Can we cheaply emulate shared memory on message-passing HW?
Readings for Wed

- High-level programming models

- 4 tracks, let’s divide up:
 - Task-parallel
 - Data-parallel
 - Pipeline-parallel
 - Implicit