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Today’s Menu 
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 Review of vector processors 

 Basic GPU architecture 

 Paper discussions 
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Vector Processors 

 Scalar processors operate on single numbers (scalars) 

 Vector processors operate on linear sequences of 
numbers (vectors) 
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What’s in a Vector Processor? 

 A scalar processor (e.g. a MIPS processor) 

 Scalar register file (32 registers) 

 Scalar functional units (arithmetic, load/store, etc) 

 

 A vector register file (a 2D register array) 

 Each register is an array of elements 

 E.g. 32 registers with 32 64-bit elements per register 

 MVL = maximum vector length = max # of elements per register 

 

 A set of vector functional units 

 Integer, FP, load/store, etc 

 Some times vector and scalar units are combined (share ALUs) 
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Example of Simple  

Vector Processor 5 
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Basic Vector ISA 

Instr.      Operands    Operation  Comment 

VADD.VV  V1,V2,V3    V1=V2+V3      vector + vector 

VADD.SV  V1,R0,V2    V1=R0+V2      scalar + vector 

VMUL.VV  V1,V2,V3    V1=V2*V3      vector x vector 

VMUL.SV  V1,R0,V2    V1=R0*V2      scalar x vector 

VLD    V1,R1    V1=M[R1...R1+63]       load, stride=1 

VLDS    V1,R1,R2    V1=M[R1…R1+63*R2]      load, stride=R2 

VLDX    V1,R1,V2    V1=M[R1+V2i,i=0..63]      indexed("gather") 

VST    V1,R1    M[R1...R1+63]=V1       store, stride=1 

VSTS    V1,R1,R2    V1=M[R1...R1+63*R2]      store, stride=R2 

VSTX    V1,R1,V2    V1=M[R1+V2i,i=0..63]      indexed(“scatter") 

 

+ regular scalar instructions… 
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Advantages of Vector ISAs 

 Compact: single instruction defines N operations 

 Amortizes the cost of instruction fetch/decode/issue 

 Also reduces the frequency of branches 

 

 Parallel: N operations are (data) parallel 

 No dependencies   

 No need for complex hardware to detect parallelism (similar to VLIW) 

 Can execute in parallel assuming N parallel datapaths 

 

 Expressive: memory operations describe patterns 

 Continuous or regular memory access pattern 

 Can prefetch or accelerate using wide/multi-banked memory 

 Can amortize high latency for 1st element over large sequential pattern 
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Vector Length (VL) 
8 

 Basic: Fixed vector length (typical in narrow SIMD) 

 Is this efficient for wide SIMD (e.g., 32-wide vectors)? 

 

 Vector-length (VL) register: Control the length of any vector operation, 

including vector loads and stores 

 e.g. vadd.vv with VL=10  for (i=0; i<10; i++) V1[i]=V2[i]+V3[i] 

 VL can be set up to MVL (e.g., 32) 

 How to do vectors > MVL? 

 What if VL is unknown at compile time? 
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Optimization 1: Chaining 

 Suppose the following code with VL=32: 

vmul.vv V1,V2,V3 

vadd.vv V4,V1,V5 # very long RAW hazard 

 Chaining 

 V1 is not a single entity but a group of individual elements 

 Pipeline forwarding can work on an element basis 

 Flexible chaining: allow vector to chain to any other active vector 

operation => more read/write ports 

vadd 

vmul vadd 

vmul 

Unchained 

Chained 
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Optimization 2: Multiple Lanes 

 Modular, scalable design  

 Elements for each vector register interleaved across the lanes 

 Each lane receives identical control 

 Multiple element operations executed per cycle 

 No need for inter-lane communication for most vector instructions 
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Chaining & Multi-lane Example 

VL=16, 4 lanes, 

2 FUs, 1 LSU 
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Optimization 3: Conditional Execution 

 Suppose you want to vectorize this:  

for (i=0; i<N; i++) if (A[i]!= B[i]) A[i] -= B[i]; 

 Solution: Vector conditional execution (predication) 

 Add vector flag registers with single-bit elements (masks) 

 Use a vector compare to set the a flag register 

 Use flag register as mask control for the vector sub 

 Add executed only for vector elements with corresponding flag element set 

 

 Vector code 

 vld   V1, Ra   

 vld  V2, Rb 

 vcmp.neq.vv   M0, V1, V2    # vector compare 

 vsub.vv    V3, V2, V1, M0  # conditional vadd 

 vst  V3, Ra 
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Example: Intel Xeon Phi (Knights Corner) 

 A multi-core chip with x86-based vector processors 

 Ring interconnect, private L2 caches, coherent 

 Targeting the HPC market 

 Goal: high GFLOPS, GFLOPS/Watt 

PCIe 

Client 

Logic 

Core 

L2 

Core 

L2 

Core 

L2 

Core 

L2 

TD TD TD TD 

Core 

L2 

Core 

L2 

Core 

L2 

Core 

L2 

TD TD TD TD 
GDDR MC 

GDDR MC 

GDDR MC 

GDDR MC 

    

    

    

    

13 

6.888 Spring 2013 - Sanchez and Emer - L14 



Xeon Phi Core Design 

 4-way threaded + vector processing 

 In-order (why?), short pipeline 

 Vector ISA: 32 vector registers (512b), 8 mask registers, 
scatter/gather 
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Graphics Processors Timeline 

 Till mid 90s 

 VGA controllers  used to accelerate some display functions 
 

 Mid 90s to mid 00s 

 Fixed-function graphics accelerators for the OpenGL and DirectX APIs 

 Some GP-GPU capabilities by on top of the interfaces 

 3D graphics: triangle setup & rasterization, texture mapping & shading 
 

 Modern GPUs 

 Programmable multiprocessors optimized for data-parallel ops 

 OpenGL/DirectX and general purpose languages (CUDA, OpenCL, …) 

 Some fixed-function hardware (texture, raster ops, …) 

 Either a PCIe accelerator (discrete), or in same die as CPU (integrated) 

 Tradeoffs? 
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Our Focus 

 GPU hardware architecture 

 

 Good high-level mental model 

 GPU = Multicore chip, with highly-threaded vector cores 

 Not 100% accurate, but helpful as a SW developer 

16 

6.888 Spring 2013 - Sanchez and Emer - L14 



Refresh: Software GPU Thread Model (CUDA) 

 Single-program multiple data 

(SPMD) model  

 

 Each thread has local memory 

 

 Parallel threads packed in blocks 

 Access to per-block shared memory 

 Can synchronize with barrier 

 

 Grids include independent groups 

 May execute concurrently 
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Code Example: SAXPY 

 CUDA code launches 256 threads per block 

 Thread = 1 iteration of scalar loop (1 element in vector loop) 

 Block = body of vectorized loop (with VL=256 in this example) 

 Grid = vectorizable loop 

C Code CUDA Code 
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Example: Nvidia Kepler GK110 

 15 SMX processors, shared L2, 6 memory controllers 

 1TFLOP DP 

 HW thread scheduling 
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Streaming Multiprocessor (SMX) 

 Cores are 

 Multithreded 

 Data parallel 
 

 Capabilities 

 64K registers 

 192 simple cores 

 Int and SP FPU 

 64 DP FPUs 

 32 LSUs, 32 SFUs 
 

 Scheduling 

 4 warp schedulers 

 2 inst dispatch per warp 
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Instruction & Thread Scheduling:  Thread + Data Parallelism 

 In theory, all threads can be independent 

 HW implements zero-overhead switching 

 For efficiency, 32 threads are packed in warps 

 Warp: set of parallel threads the execute same instruction 

 Wrap = a thread of vector instructions 

 Warps introduce data parallelism  

 1 warp instruction keeps cores busy for multiple cycles 

 Individual threads may be inactive 

 Because they branched differently 

 This is the equivalent of conditional execution (but implicit) 

 Loss of efficiency if not data parallel 

 SW thread blocks mapped to warps 

 When HW resources are available 
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Warp Scheduling 

 64 warps per SMX 

 32 threads per warp 

 64K registers/SMX 

 Up to 255 registers per thread (8 warps) 

 

 Scheduling  

 4 schedulers select 1 warp per cycle 

 2 independent instructions issued per 
warp (double-pumped FUs) 

 Total bandwidth = 4 * 2 * 32 = 256 ops 
per cycle 

 

 Register scoreboarding 

 To track ready instructions 

 Simplified using static latencies 

 Binary incompatibility?  
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Hardware Scheduling 

 HW unit schedules grids on SMX  

 Priority based scheduling 

 

 32 active grids 

 More queued/paused 

 

 Grids launched by CPU or GPU 

 Work from multiple CPU cores 
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Memory Hierarchy 

 Each SMX has 64KB of memory 

 Split between shared mem and L1 cache 

 16/48, 32/32, 48/16 

 256B per access 

 48KB read-only data cache 

 

 1.5MB shared L2 

 Supports synchronization operations 
(atomicCAS, atomicADD, …) 

 

 Throughput-oriented main memory 

 Memory scheduling? TCM-like? 

 GDDRx standards 
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Paper Discussions 
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 DWF, Fung et al., MICRO’07 

 RF/WS, Gebhart et al., ISCA’11 
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Lost in Translation: Vector vs GPU 
26 
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Lost in Translation: Vector vs GPU  

 From Computer 

Architecture, 4th 

edition by J. 

Hennessy and D. 

Patterson 
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