
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE

SPRING 2013

LECTURE 14

GPUS

DANIEL SANCHEZ AND JOEL EMER

[INCORPORATES MATERIAL FROM KOZYRAKIS (EE382A),
NVIDIA KEPLER WHITEPAPER, HENNESY&PATTERSON]

Today’s Menu
2

 Review of vector processors

 Basic GPU architecture

 Paper discussions

6.888 Spring 2013 - Sanchez and Emer - L14

Vector Processors

 Scalar processors operate on single numbers (scalars)

 Vector processors operate on linear sequences of
numbers (vectors)

+

r1 r2

r3

add r3, r1, r2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

vadd.vv v3, v1, v2

VECTOR

(N operations)

3

6.888 Spring 2013 - Sanchez and Emer - L14

What’s in a Vector Processor?

 A scalar processor (e.g. a MIPS processor)

 Scalar register file (32 registers)

 Scalar functional units (arithmetic, load/store, etc)

 A vector register file (a 2D register array)

 Each register is an array of elements

 E.g. 32 registers with 32 64-bit elements per register

 MVL = maximum vector length = max # of elements per register

 A set of vector functional units

 Integer, FP, load/store, etc

 Some times vector and scalar units are combined (share ALUs)

4

6.888 Spring 2013 - Sanchez and Emer - L14

Example of Simple

Vector Processor 5

6.888 Spring 2013 - Sanchez and Emer - L14

Basic Vector ISA

Instr. Operands Operation Comment

VADD.VV V1,V2,V3 V1=V2+V3 vector + vector

VADD.SV V1,R0,V2 V1=R0+V2 scalar + vector

VMUL.VV V1,V2,V3 V1=V2*V3 vector x vector

VMUL.SV V1,R0,V2 V1=R0*V2 scalar x vector

VLD V1,R1 V1=M[R1...R1+63] load, stride=1

VLDS V1,R1,R2 V1=M[R1…R1+63*R2] load, stride=R2

VLDX V1,R1,V2 V1=M[R1+V2i,i=0..63] indexed("gather")

VST V1,R1 M[R1...R1+63]=V1 store, stride=1

VSTS V1,R1,R2 V1=M[R1...R1+63*R2] store, stride=R2

VSTX V1,R1,V2 V1=M[R1+V2i,i=0..63] indexed(“scatter")

+ regular scalar instructions…

6

6.888 Spring 2013 - Sanchez and Emer - L14

Advantages of Vector ISAs

 Compact: single instruction defines N operations

 Amortizes the cost of instruction fetch/decode/issue

 Also reduces the frequency of branches

 Parallel: N operations are (data) parallel

 No dependencies

 No need for complex hardware to detect parallelism (similar to VLIW)

 Can execute in parallel assuming N parallel datapaths

 Expressive: memory operations describe patterns

 Continuous or regular memory access pattern

 Can prefetch or accelerate using wide/multi-banked memory

 Can amortize high latency for 1st element over large sequential pattern

7

6.888 Spring 2013 - Sanchez and Emer - L14

Vector Length (VL)
8

 Basic: Fixed vector length (typical in narrow SIMD)

 Is this efficient for wide SIMD (e.g., 32-wide vectors)?

 Vector-length (VL) register: Control the length of any vector operation,

including vector loads and stores

 e.g. vadd.vv with VL=10 for (i=0; i<10; i++) V1[i]=V2[i]+V3[i]

 VL can be set up to MVL (e.g., 32)

 How to do vectors > MVL?

 What if VL is unknown at compile time?

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 1: Chaining

 Suppose the following code with VL=32:

vmul.vv V1,V2,V3

vadd.vv V4,V1,V5 # very long RAW hazard

 Chaining

 V1 is not a single entity but a group of individual elements

 Pipeline forwarding can work on an element basis

 Flexible chaining: allow vector to chain to any other active vector

operation => more read/write ports

vadd

vmul vadd

vmul

Unchained

Chained

9

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 2: Multiple Lanes

 Modular, scalable design

 Elements for each vector register interleaved across the lanes

 Each lane receives identical control

 Multiple element operations executed per cycle

 No need for inter-lane communication for most vector instructions

To/From Memory System

Pipelined

Datapath

Functional

Unit

Lane

Vector Reg.

Partition
Elements Elements Elements Elements

10

6.888 Spring 2013 - Sanchez and Emer - L14

Chaining & Multi-lane Example

VL=16, 4 lanes,

2 FUs, 1 LSU

chaining -> 12
ops/cycle

Just 1 new

instruction

issued per cycle

!!!!

vld

vmul.vv

vadd.vv

addu

vld

vmul.vv

vadd.vv

addu

LSU FU0 FU1 Scalar

Time

Element Operations: Instr. Issue:

11

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 3: Conditional Execution

 Suppose you want to vectorize this:

for (i=0; i<N; i++) if (A[i]!= B[i]) A[i] -= B[i];

 Solution: Vector conditional execution (predication)

 Add vector flag registers with single-bit elements (masks)

 Use a vector compare to set the a flag register

 Use flag register as mask control for the vector sub

 Add executed only for vector elements with corresponding flag element set

 Vector code

 vld V1, Ra

 vld V2, Rb

 vcmp.neq.vv M0, V1, V2 # vector compare

 vsub.vv V3, V2, V1, M0 # conditional vadd

 vst V3, Ra

12

6.888 Spring 2013 - Sanchez and Emer - L14

Example: Intel Xeon Phi (Knights Corner)

 A multi-core chip with x86-based vector processors

 Ring interconnect, private L2 caches, coherent

 Targeting the HPC market

 Goal: high GFLOPS, GFLOPS/Watt

PCIe

Client

Logic

Core

L2

Core

L2

Core

L2

Core

L2

TD TD TD TD

Core

L2

Core

L2

Core

L2

Core

L2

TD TD TD TD
GDDR MC

GDDR MC

GDDR MC

GDDR MC

13

6.888 Spring 2013 - Sanchez and Emer - L14

Xeon Phi Core Design

 4-way threaded + vector processing

 In-order (why?), short pipeline

 Vector ISA: 32 vector registers (512b), 8 mask registers,
scatter/gather

L2 Ctl

L1 TLB

and 32KB

Code Cache

T0 IP

4 Threads

In-Order

TLB Miss

Code Cache Miss

Decode uCode

16B/Cycle (2 IPC)

Pipe 0

X87 RF Scalar RF

X87 ALU 0 ALU 1

VPU RF

VPU

512b SIMD

Pipe 1

TLB Miss

Handler

L2 TLB

T1 IP

T2 IP

T3 IP

L1 TLB and 32KB Data Cache
DCache Miss

TLB Miss

To On-Die Interconnect

HWP

Core

512KB

L2 Cache

PPF PF D0 D1 D2 E WB

14

6.888 Spring 2013 - Sanchez and Emer - L14

Graphics Processors Timeline

 Till mid 90s

 VGA controllers used to accelerate some display functions

 Mid 90s to mid 00s

 Fixed-function graphics accelerators for the OpenGL and DirectX APIs

 Some GP-GPU capabilities by on top of the interfaces

 3D graphics: triangle setup & rasterization, texture mapping & shading

 Modern GPUs

 Programmable multiprocessors optimized for data-parallel ops

 OpenGL/DirectX and general purpose languages (CUDA, OpenCL, …)

 Some fixed-function hardware (texture, raster ops, …)

 Either a PCIe accelerator (discrete), or in same die as CPU (integrated)

 Tradeoffs?

15

6.888 Spring 2013 - Sanchez and Emer - L14

Our Focus

 GPU hardware architecture

 Good high-level mental model

 GPU = Multicore chip, with highly-threaded vector cores

 Not 100% accurate, but helpful as a SW developer

16

6.888 Spring 2013 - Sanchez and Emer - L14

Refresh: Software GPU Thread Model (CUDA)

 Single-program multiple data

(SPMD) model

 Each thread has local memory

 Parallel threads packed in blocks

 Access to per-block shared memory

 Can synchronize with barrier

 Grids include independent groups

 May execute concurrently

17

6.888 Spring 2013 - Sanchez and Emer - L14

Code Example: SAXPY

 CUDA code launches 256 threads per block

 Thread = 1 iteration of scalar loop (1 element in vector loop)

 Block = body of vectorized loop (with VL=256 in this example)

 Grid = vectorizable loop

C Code CUDA Code

18

6.888 Spring 2013 - Sanchez and Emer - L14

Example: Nvidia Kepler GK110

 15 SMX processors, shared L2, 6 memory controllers

 1TFLOP DP

 HW thread scheduling

19

6.888 Spring 2013 - Sanchez and Emer - L14

Streaming Multiprocessor (SMX)

 Cores are

 Multithreded

 Data parallel

 Capabilities

 64K registers

 192 simple cores

 Int and SP FPU

 64 DP FPUs

 32 LSUs, 32 SFUs

 Scheduling

 4 warp schedulers

 2 inst dispatch per warp

20

6.888 Spring 2013 - Sanchez and Emer - L14

Instruction & Thread Scheduling: Thread + Data Parallelism

 In theory, all threads can be independent

 HW implements zero-overhead switching

 For efficiency, 32 threads are packed in warps

 Warp: set of parallel threads the execute same instruction

 Wrap = a thread of vector instructions

 Warps introduce data parallelism

 1 warp instruction keeps cores busy for multiple cycles

 Individual threads may be inactive

 Because they branched differently

 This is the equivalent of conditional execution (but implicit)

 Loss of efficiency if not data parallel

 SW thread blocks mapped to warps

 When HW resources are available

21

6.888 Spring 2013 - Sanchez and Emer - L14

Warp Scheduling

 64 warps per SMX

 32 threads per warp

 64K registers/SMX

 Up to 255 registers per thread (8 warps)

 Scheduling

 4 schedulers select 1 warp per cycle

 2 independent instructions issued per
warp (double-pumped FUs)

 Total bandwidth = 4 * 2 * 32 = 256 ops
per cycle

 Register scoreboarding

 To track ready instructions

 Simplified using static latencies

 Binary incompatibility?

22

6.888 Spring 2013 - Sanchez and Emer - L14

Hardware Scheduling

 HW unit schedules grids on SMX

 Priority based scheduling

 32 active grids

 More queued/paused

 Grids launched by CPU or GPU

 Work from multiple CPU cores

23

6.888 Spring 2013 - Sanchez and Emer - L14

Memory Hierarchy

 Each SMX has 64KB of memory

 Split between shared mem and L1 cache

 16/48, 32/32, 48/16

 256B per access

 48KB read-only data cache

 1.5MB shared L2

 Supports synchronization operations
(atomicCAS, atomicADD, …)

 Throughput-oriented main memory

 Memory scheduling? TCM-like?

 GDDRx standards

24

6.888 Spring 2013 - Sanchez and Emer - L14

Paper Discussions
25

 DWF, Fung et al., MICRO’07

 RF/WS, Gebhart et al., ISCA’11

6.888 Spring 2013 - Sanchez and Emer - L14

Lost in Translation: Vector vs GPU
26

6.888 Spring 2013 - Sanchez and Emer - L14

Lost in Translation: Vector vs GPU

 From Computer

Architecture, 4th

edition by J.

Hennessy and D.

Patterson

27

6.888 Spring 2013 - Sanchez and Emer - L14

