
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE

SPRING 2013

LECTURE 12

TRANSACTIONAL MEMORY

DANIEL SANCHEZ AND JOEL EMER

[BASED ON EE382A MATERIAL FROM KOZYRAKIS]

Transactional Memory (TM)
2

 Memory transaction [Lomet’77, Knight’86, Herlihy & Moss’93]

 An atomic & isolated sequence of memory accesses

 Inspired by database transactions

 Atomicity (all or nothing)

 At commit, all memory writes take effect at once

 On abort, none of the writes appear to take effect

 Isolation

 No other code can observe writes before commit

 Serializability

 Transactions seem to commit in a single serial order

 The exact order is not guaranteed though

6.888 Spring 2013 - Sanchez and Emer - L12

Programming with TM
3

 Declarative synchronization

 Programmers says what but not how

 No explicit declaration or management of locks

 System implements synchronization

 Typically with optimistic concurrency [Kung’81]

 Slow down only on conflicts (R-W or W-W)

void deposit(account, amount){

 lock(account);

 int t = bank.get(account);

 t = t + amount;

 bank.put(account, t);

 unlock(account);

}

void deposit(account, amount){

 atomic {

 int t = bank.get(account);

 t = t + amount;

 bank.put(account, t);

 }

}

6.888 Spring 2013 - Sanchez and Emer - L12

Advantages of TM
4

 Easy to use synchronization

 As easy to use as coarse-grain locks

 Programmer declares, system implements

 Performs as well as fine-grain locks

 Automatic read-read & fine-grain concurrency

 No tradeoff between performance & correctness

 Failure atomicity & recovery

 No lost locks when a thread fails

 Failure recovery = transaction abort + restart

 Composability

 Safe & scalable composition of software modules

6.888 Spring 2013 - Sanchez and Emer - L12

Performance: Locks Vs Transactions
5

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

Processors

E
x

e
c

u
ti

o
n

 T
im

e

coarse locks fine locks TCC

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16

Processors

E
x

e
c

u
ti

o
n

 T
im

e

coarse locks fine locks TCC

B
a

la
n

c
e

d
 T

re
e

H

a
s

h
M

a
p

TCC: a HW-based TM system

[Hammond et al, ISCA’04]

6.888 Spring 2013 - Sanchez and Emer - L12

TM Implementation Basics
6

 TM systems must provide atomicity and isolation without
sacrificing concurrency

 Basic implementation requirements

 Checkpointing

 Data versioning

 Conflict detection & resolution

 Implementation options

 Hardware transactional memory (HTM)

 Software transactional memory (STM)

 Hybrid transactional memory
 Hardware accelerated STMs and dual-mode systems

6.888 Spring 2013 - Sanchez and Emer - L12

Motivation for Hardware TM
7

 Measured single-thread STM performance:

 Software TM suffers 2-8x slowdown over sequential

 Short term issue: demotivates parallel programming

 Long term issue: not energy-efficient

 Industry adopting HTM: Sun (Rock), Intel (Haswell), IBM (Blue Gene

and zSeries)

0.0

0.5

1.0

1.5

2.0

kmeans

E
x
e
cu

ti
o

n
 T

im
e

(n
o
rm

a
li
z
e
d
 t
o
 s

e
q
u
e
n
ti
a

l)

0

1

2

3

4

5

6

vacation

STMwrite

STMread

STMcommit

Busy

6.888 Spring 2013 - Sanchez and Emer - L12

Data Versioning
8

 Manage uncommited (new) and commited (old) versions of data for concurrent

transactions

1. Eager versioning (undo-log based)

 Update memory location directly

 Maintain undo info in a log

+ Faster commit, direct reads (SW)

– Slower aborts, fault tolerance issues

2. Lazy versioning (write-buffer based)

 Buffer data until commit in a write-buffer

 Update actual memory location on commit

+ Faster abort, no fault tolerance issues

– Slower commits, indirect reads (SW)

6.888 Spring 2013 - Sanchez and Emer - L12

Eager Versioning Illustration
9

Begin Xaction

Thread

X: 10 Memory

Undo

Log

Write X←15

Thread

X: 15 Memory

Undo

Log X: 10

Commit Xaction

Thread

X: 15 Memory

Undo

Log X: 10

Abort Xaction

Thread

X: 10 Memory

Undo

Log X: 10

6.888 Spring 2013 - Sanchez and Emer - L12

Lazy Versioning Illustration
10

Begin Xaction

Thread

X: 10 Memory

Write

Buffer

Write X←15

Thread

X: 10 Memory

Write

Buffer X: 15

Abort Xaction

Thread

X: 10 Memory

Write

Buffer X: 15

Commit Xaction

Thread

X: 15 Memory

Write

Buffer X: 15

6.888 Spring 2013 - Sanchez and Emer - L12

Conflict Detection
11

 Detect and handle conflicts between transaction

 Read-Write and (often) Write-Write conflicts

 Must track the transaction’s read-set and write-set

 Read-set: addresses read within the transaction

 Write-set: addresses written within transaction

1. Pessimistic (Eager) detection

 Check for conflicts during loads or stores

 SW: SW barriers using locks and/or version numbers

 HW: check through coherence actions

 Use contention manager to decide to stall or abort

 Various priority policies to handle common case fast

6.888 Spring 2013 - Sanchez and Emer - L12

Pessimistic Detection Illustration
12

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

check

check

wr C
check

commit

commit

Success

X0 X1

wr A

rd A

check

check

commit

commit

Early Detect

stall

X0 X1

rd A

wr A

check

check

commit

commit

Abort

restart

rd A
check

X0 X1

rd A

check

No progress

wr A

rd A
wr A

check

restart

rd A

check

wr A

restart

rd A
wr A

check

restart

T
IM

E

6.888 Spring 2013 - Sanchez and Emer - L12

Conflict Detection (cont)
13

2. Optimistic (Lazy) detection

 Detect conflicts when a transaction attempts to commit

 SW: validate write/read-set using locks or version numbers

 HW: validate write-set using coherence actions

 Get exclusive access for cache lines in write-set

 On a conflict, give priority to committing transaction

 Other transactions may abort later on

 On conflicts between committing transactions, use contention manager to

decide priority

 Note: optimistic & pessimistic schemes together

 Several STM systems are optimistic on reads, pessimistic on writes

6.888 Spring 2013 - Sanchez and Emer - L12

Optimistic Detection Illustration
14

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

wr C

commit

commit

Success

X0 X1

wr A

rd A

commit

Abort

restart

X0 X1

rd A

wr A

commit

Success

X0 X1

rd A

Forward progress

wr A

rd A
wr A

check

check

check

rd A

check

commit
check

commit
check

restart

rd A
wr A

commit
check

T
IM

E

commit
check

6.888 Spring 2013 - Sanchez and Emer - L12

Conflict Detection Tradeoffs
15

1. Pessimistic conflict detection (aka eager, encounter)

+ Detect conflicts early

• Undo less work, turn some aborts to stalls

– No forward progress guarantees, more aborts in some cases

– Locking issues (SW), fine-grain communication (HW)

2. Optimistic conflict detection (aka lazy, commit)

+ Forward progress guarantees

+ Potentially less conflicts, shorter locking (SW), bulk communication (HW)

– Detects conflicts late, still has fairness problems

6.888 Spring 2013 - Sanchez and Emer - L12

