
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE

SPRING 2013

LECTURE 12

TRANSACTIONAL MEMORY

DANIEL SANCHEZ AND JOEL EMER

[BASED ON EE382A MATERIAL FROM KOZYRAKIS]

Transactional Memory (TM)
2

 Memory transaction [Lomet’77, Knight’86, Herlihy & Moss’93]

 An atomic & isolated sequence of memory accesses

 Inspired by database transactions

 Atomicity (all or nothing)

 At commit, all memory writes take effect at once

 On abort, none of the writes appear to take effect

 Isolation

 No other code can observe writes before commit

 Serializability

 Transactions seem to commit in a single serial order

 The exact order is not guaranteed though

6.888 Spring 2013 - Sanchez and Emer - L12

Programming with TM
3

 Declarative synchronization

 Programmers says what but not how

 No explicit declaration or management of locks

 System implements synchronization

 Typically with optimistic concurrency [Kung’81]

 Slow down only on conflicts (R-W or W-W)

void deposit(account, amount){

 lock(account);

 int t = bank.get(account);

 t = t + amount;

 bank.put(account, t);

 unlock(account);

}

void deposit(account, amount){

 atomic {

 int t = bank.get(account);

 t = t + amount;

 bank.put(account, t);

 }

}

6.888 Spring 2013 - Sanchez and Emer - L12

Advantages of TM
4

 Easy to use synchronization

 As easy to use as coarse-grain locks

 Programmer declares, system implements

 Performs as well as fine-grain locks

 Automatic read-read & fine-grain concurrency

 No tradeoff between performance & correctness

 Failure atomicity & recovery

 No lost locks when a thread fails

 Failure recovery = transaction abort + restart

 Composability

 Safe & scalable composition of software modules

6.888 Spring 2013 - Sanchez and Emer - L12

Performance: Locks Vs Transactions
5

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

Processors

E
x

e
c

u
ti

o
n

 T
im

e

coarse locks fine locks TCC

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16

Processors

E
x

e
c

u
ti

o
n

 T
im

e

coarse locks fine locks TCC

B
a

la
n

c
e

d
 T

re
e

H

a
s

h
M

a
p

TCC: a HW-based TM system

[Hammond et al, ISCA’04]

6.888 Spring 2013 - Sanchez and Emer - L12

TM Implementation Basics
6

 TM systems must provide atomicity and isolation without
sacrificing concurrency

 Basic implementation requirements

 Checkpointing

 Data versioning

 Conflict detection & resolution

 Implementation options

 Hardware transactional memory (HTM)

 Software transactional memory (STM)

 Hybrid transactional memory
 Hardware accelerated STMs and dual-mode systems

6.888 Spring 2013 - Sanchez and Emer - L12

Motivation for Hardware TM
7

 Measured single-thread STM performance:

 Software TM suffers 2-8x slowdown over sequential

 Short term issue: demotivates parallel programming

 Long term issue: not energy-efficient

 Industry adopting HTM: Sun (Rock), Intel (Haswell), IBM (Blue Gene

and zSeries)

0.0

0.5

1.0

1.5

2.0

kmeans

E
x
e
cu

ti
o

n
 T

im
e

(n
o
rm

a
li
z
e
d
 t
o
 s

e
q
u
e
n
ti
a

l)

0

1

2

3

4

5

6

vacation

STMwrite

STMread

STMcommit

Busy

6.888 Spring 2013 - Sanchez and Emer - L12

Data Versioning
8

 Manage uncommited (new) and commited (old) versions of data for concurrent

transactions

1. Eager versioning (undo-log based)

 Update memory location directly

 Maintain undo info in a log

+ Faster commit, direct reads (SW)

– Slower aborts, fault tolerance issues

2. Lazy versioning (write-buffer based)

 Buffer data until commit in a write-buffer

 Update actual memory location on commit

+ Faster abort, no fault tolerance issues

– Slower commits, indirect reads (SW)

6.888 Spring 2013 - Sanchez and Emer - L12

Eager Versioning Illustration
9

Begin Xaction

Thread

X: 10 Memory

Undo

Log

Write X←15

Thread

X: 15 Memory

Undo

Log X: 10

Commit Xaction

Thread

X: 15 Memory

Undo

Log X: 10

Abort Xaction

Thread

X: 10 Memory

Undo

Log X: 10

6.888 Spring 2013 - Sanchez and Emer - L12

Lazy Versioning Illustration
10

Begin Xaction

Thread

X: 10 Memory

Write

Buffer

Write X←15

Thread

X: 10 Memory

Write

Buffer X: 15

Abort Xaction

Thread

X: 10 Memory

Write

Buffer X: 15

Commit Xaction

Thread

X: 15 Memory

Write

Buffer X: 15

6.888 Spring 2013 - Sanchez and Emer - L12

Conflict Detection
11

 Detect and handle conflicts between transaction

 Read-Write and (often) Write-Write conflicts

 Must track the transaction’s read-set and write-set

 Read-set: addresses read within the transaction

 Write-set: addresses written within transaction

1. Pessimistic (Eager) detection

 Check for conflicts during loads or stores

 SW: SW barriers using locks and/or version numbers

 HW: check through coherence actions

 Use contention manager to decide to stall or abort

 Various priority policies to handle common case fast

6.888 Spring 2013 - Sanchez and Emer - L12

Pessimistic Detection Illustration
12

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

check

check

wr C
check

commit

commit

Success

X0 X1

wr A

rd A

check

check

commit

commit

Early Detect

stall

X0 X1

rd A

wr A

check

check

commit

commit

Abort

restart

rd A
check

X0 X1

rd A

check

No progress

wr A

rd A
wr A

check

restart

rd A

check

wr A

restart

rd A
wr A

check

restart

T
IM

E

6.888 Spring 2013 - Sanchez and Emer - L12

Conflict Detection (cont)
13

2. Optimistic (Lazy) detection

 Detect conflicts when a transaction attempts to commit

 SW: validate write/read-set using locks or version numbers

 HW: validate write-set using coherence actions

 Get exclusive access for cache lines in write-set

 On a conflict, give priority to committing transaction

 Other transactions may abort later on

 On conflicts between committing transactions, use contention manager to

decide priority

 Note: optimistic & pessimistic schemes together

 Several STM systems are optimistic on reads, pessimistic on writes

6.888 Spring 2013 - Sanchez and Emer - L12

Optimistic Detection Illustration
14

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

wr C

commit

commit

Success

X0 X1

wr A

rd A

commit

Abort

restart

X0 X1

rd A

wr A

commit

Success

X0 X1

rd A

Forward progress

wr A

rd A
wr A

check

check

check

rd A

check

commit
check

commit
check

restart

rd A
wr A

commit
check

T
IM

E

commit
check

6.888 Spring 2013 - Sanchez and Emer - L12

Conflict Detection Tradeoffs
15

1. Pessimistic conflict detection (aka eager, encounter)

+ Detect conflicts early

• Undo less work, turn some aborts to stalls

– No forward progress guarantees, more aborts in some cases

– Locking issues (SW), fine-grain communication (HW)

2. Optimistic conflict detection (aka lazy, commit)

+ Forward progress guarantees

+ Potentially less conflicts, shorter locking (SW), bulk communication (HW)

– Detects conflicts late, still has fairness problems

6.888 Spring 2013 - Sanchez and Emer - L12

