LECTURE 12
TRANSACTIONAL MEMORY

DANIEL SANCHEZ AND JOEL EMER

[BASED ON EE382A MATERIAL FROM KOZYRAKIS]

6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE
SPRING 2013

I I I I Massachusetts Institute of Technology |

CSAIL




Transactional Memory (TM)

Memory transaction [Lomet'’77, Knight'86, Herlihy & Moss’93]
An atomic & isolated sequence of memory accesses

Inspired by database transactions

Atomicity (all or nothing)

At commit, all memory writes take effect at once

On abort, none of the writes appear to take effect
Isolation

No other code can observe writes before commit
Serializability

Transactions seem to commit in a single serial order

The exact order is not guaranteed though

6.888 Spring 2013 - Sanchez and Emer - L12



Programming with TM

3
vold deposit (account, amount) { void deposit (account, amount) {
lock (account) ; atomic {
int t = bank.get (account); int t = bank.get (account);
t = t + amount; ‘ t = t + amount;
bank.put (account, t); bank.put (account, t);
unlock (account) ; }

Declarative synchronization
Programmers says what but not how

No explicit declaration or management of locks

System implements synchronization

Typically with optimistic concurrency [Kung'81]
Slow down only on conflicts (R-W or W-W)

6.888 Spring 2013 - Sanchez and Emer - L12



Advantages of TM

Easy to use synchronization
As easy to use as coarse-grain locks

Programmer declares, system implements

Performs as well as fine-grain locks
Automatic read-read & fine-grain concurrency

No tradeoff between performance & correctness

Failure atomicity & recovery
No lost locks when a thread fails

Failure recovery = transaction abort + restart

Composability
Safe & scalable composition of software modules

6.888 Spring 2013 - Sanchez and Emer - L12



Performance: Locks Vs Transactions

5
|—0—coarse locks === fine locks TCC |
11—

- ———————%
(] g 08
= '~ 06
c = =
T 3 04
(qv) % 02

Lu .
I 0 T T T

1 2 4 8 16
Processors
=@ coarse locks == fine locks TCC

D
) 4 .\
I: o 35 C

£ 3

|_
T g —~m
o § 1.5 \
c il o

L - .
— 05 AN \ \
m O T T A T —\! T —
at) 1 2 4 8 16

Processors

TCC: a HW-based TM system
[Hammond et al, ISCA'04]

6.888 Spring 2013 - Sanchez and Emer - L12



TM Implementation Basics

TM systems must provide atomicity and isolation without
sacrificing concurrency

Basic implementation requirements
Checkpointing
Data versioning
Conflict detection & resolution

Implementation options
Hardware transactional memory (HTM)
Software transactional memory (STM)

Hybrid transactional memory
Hardware accelerated STMs and dual-mode systems

6.888 Spring 2013 - Sanchez and Emer - L12



Motivation for Hardware TM

Measured single-thread STM performance:

2.0 6
3 5 I
o35 1.5 — m STMwrite
3 4 —
- (]
é__.g 1.0 —— |3 - B STMread
20
o N
X = 2 S B STMcommit
“£0.5 .
2 1 I
£ E Busy
O-O | O |
kmeans vacation

Software TM suffers 2-8x slowdown over sequential
Short term issue: demotivates parallel programming

Long term issue: not energy-efficient

Industry adopting HTM: Sun (Rock), Intel (Haswell), IBM (Blue Gene
and zSeries)

6.888 Spring 2013 - Sanchez and Emer - L12



Data Versioning

Manage uncommited (new) and commited (old) versions of data for concurrent

transactions

Eager versioning (undo-log based)
Update memory location directly
Maintain undo info in a log
Faster commit, direct reads (SW)

Slower aborts, fault tolerance issues

Lazy versioning (write-buffer based)
Buffer data until commit in a write-buffer
Update actual memory location on commit
Faster abort, no fault tolerance issues

Slower commits, indirect reads (SW)

6.888 Spring 2013 - Sanchez and Emer - L12



Eager Versioning lllustration

Beqgin Xaction

Write X<—15

Thread Thread
Undo ?I Undo
Log @ x: 10| Log
X: 10 [ Memory X:15 | Memory
Commit Xaction Abort Xaction
Thread Thread
| IUndo J |Undo
IX:iOlLog @X;iolLog
X: 15 Memory X: 10 Memory

6.888 Spring 2013 - Sanchez and Emer - L12



Lazy Versioning lllustration

10
Begin Xaction Write X<-15
Thread Thread I@
Write Write
Buffer X: 15 |Buffer
X: 10 Memory X: 10 Memory
Commit Xaction Abort Xaction
Thread Thread
| I ‘Write Write
( é I Yo 18 |Buffer X: 15 | Buffer
X: 15 Memory X:10 Memory
6.888 Spring 2013 - Sanchez and Emer - L12



Conflict Detection

Detect and handle conflicts between transaction

Read-Write and (often) Write-Write conflicts

Must track the transaction’s read-set and write-set
Read-set: addresses read within the transaction

Write-set: addresses written within transaction

Pessimistic (Eager) detection

Check for conflicts during loads or stores
SW: SW barriers using locks and /or version numbers
HW: check through coherence actions

Use contention manager to decide to stall or abort

Various priority policies to handle common case fast

6.888 Spring 2013 - Sanchez and Emer - L12

11



Pessimistic Detection

<+ JAIL

Case 1

X0 X1

commit

commit

Success

Case 2
X0 X1

wr A
check

rd A

check
stall

commit

commit

Early Detect

lllustration

Case 3

X0

check

! restart

commit

Abort

6.888 Spring 2013 - Sanchez and Emer - L12

Irestart
No progress

12



Conflict Detection (cont)

13

Optimistic (Lazy) detection

Detect conflicts when a transaction attempts to commit
SW: validate write /read-set using locks or version numbers

HW: validate write-set using coherence actions

Get exclusive access for cache lines in write-set

On a conflict, give priority to committing transaction
Other transactions may abort later on

On conflicts between committing transactions, use contention manager to

decide priority

Note: optimistic & pessimistic schemes together

Several STM systems are optimistic on reads, pessimistic on writes



Optimistic Detection lllustration

Case 1

X0 X1

<+ JAIL

Success

Case 2

commit
check

restart

rd A

commit
check

Abort

X0

Case 3

X1

Success

6.888 Spring 2013 - Sanchez and Emer - L12

14
| restart
rd A
wr A
commit
check
Forward progress



Conflict Detection Tradeoffs

Pessimistic conflict detection (aka eager, encounter)

Detect conflicts early

Undo less work, turn some aborts to stalls
No forward progress guarantees, more aborts in some cases

Locking issues (SW), fine-grain communication (HW)

Optimistic conflict detection (aka lazy, commit)
Forward progress guarantees
Potentially less conflicts, shorter locking (SW), bulk communication (HW)

Detects conflicts late, still has fairness problems

6.888 Spring 2013 - Sanchez and Emer - L12

15



