
Distributed Dynamic Scheduling For End-to-end Rate
Guarantees In Wireless Ad Hoc Networks

Theodoros Salonidis
Department of Electrical and

Computer Engineering
Rice University

6100 Main Street
Houston, TX, USA

thsalon@ece.rice.edu

Leandros Tassiulas
Department of Computer and
Communication Engineering

University of Thessaly
Argonafton Filellinon 38221

Volos, Greece

leandros@inf.uth.gr

ABSTRACT
We present a framework for the provision of deterministic end-to-
end bandwidth guarantees in wireless ad hoc networks. Guided by
a set of local feasibility conditions, multi-hop sessions are dynam-
ically offered allocations, further translated to link demands. Us-
ing a distributed Time Division Multiple Access (TDMA) protocol
nodes adapt to the demand changes on their adjacent links by local,
conflict-free slot reassignments. As soon as the demand changes
stabilize, the nodes must incrementally converge to a TDMA sched-
ule that realizes the global link (and session) demand allocation.

We first derive sufficient local feasibility conditions for certain
topology classes and show that trees can be maximally utilized. We
then introduce a converging distributed link scheduling algorithm
that exploits the logical tree structure that arises in several ad hoc
network applications.

Decoupling bandwidth allocation to multi-hop sessions from link
scheduling allows support of various end-to-end Quality of Service
(QoS) objectives. We focus on the max-min fairness (MMF) objec-
tive and design an end-to-end asynchronous distributed algorithm
for the computation of the session MMF rates. Once the end-to-end
algorithm converges, the link scheduling algorithm converges to a
TDMA schedule that realizes these rates.

We demonstrate the applicability of this framework through an
implementation over an existing wireless technology. This imple-
mentation is free of restrictive assumptions of previous TDMA ap-
proaches: it does not require any a-priori knowledge on the number
of nodes in the network nor even network-wide slot synchroniza-
tion.

Categories and Subject Descriptors
C.2 [Computer Communication Networks]: Local and Wide Area
Networks—Access Schemes; C.2 [Computer Communication Net-
works]: Network Architecture and Design—Wireless Communica-
tion; F.2 [Analysis of algorithms and problem complexity]: Mis-
cellaneous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’05 May 25–27, 2005, Urbana-Champaign, Illinois, USA.
Copyright 2005 ACM 1-59593-004-3/05/0005 ...$5.00.

General Terms
Algorithms, Performance, Design

Keywords
Ad Hoc Networks, Distributed, Scheduling, Rate Control

1. INTRODUCTION
Ad hoc networks can be established on the fly and form an all-

wireless infrastructure without the need of any centralized admin-
istration. Due to the multi-access nature of the wireless medium,
provision of bandwidth guarantees in ad hoc networks heavily de-
pends on the underlying medium access (MAC) protocol. Such a
protocol must use local information and coordinate transmissions
so that bandwidth is shared among users in a controlled fashion.
Fulfilling both requirements is a well-known problem with no satis-
factory solutions to date. Random access methods, such as the one
used in the 802.11 standard, use local information at the expense
of unpredictable transmission conflicts and lack of strict allocation
guarantees. On the other hand, scheduled access methods such as
TDMA, achieve deterministic allocations via perfect coordination
of transmissions but typically need global network knowledge to
reach their goal.

According to TDMA, bandwidth can be allocated to the network
links using a schedule of period Tsystem slots. During every slot,
several links are activated for transmission such that no conflicts
occur at the intended receivers. The number of conflict-free slots
each link receives within a system period determines its allocated
bandwidth.

TDMA has been used for QoS routing in mobile ad hoc net-
works [10, 17, 30, 49]. Chen and Nahrstedt [10] and Gerla and
Tsai [17] focus on mobility issues but assume that conflict-free
slots have been preallocated to the links in an arbitrary manner.
Admission control for multi-hop sessions is performed based on
these static allocations. Better utilization of network resources can
be achieved if the higher layer needs drive the link layer to allocate
bandwidth accordingly. Zhu and Corson [49] and Lin [30], reserve
slots for incoming sessions on links on an as-needed basis. Finding
the maximum available bandwidth (number of conflict-free slots)
on a path subject to the reserved slot positions of the existing ses-
sions is an NP-complete problem. Distributed heuristic methods
are proposed for admission control and slot allocation. The result
is network underutilization in a different form–several blocked ses-
sions would have been accepted had the arrangement of slots in the
TDMA schedule been different.

145

Network utilization can be increased by allowing dynamic re-
computation of the TDMA schedule upon session arrivals. An in-
coming session is admitted if the additional load it places on the
links of its path is such that the induced demand allocation on the
network links is realizable by a TDMA schedule. Existing results
for the static version of the link scheduling problem are not en-
couraging even if global network topology information is available.
According to the seminal works in [2, 21], determining feasibility
of a set of link rates in an ad hoc network of arbitrary topology is
an NP-complete problem. Several centralized [29, 34, 41], semi-
centralized [33], or distributed [3, 31] heuristics for TDMA link
scheduling have been proposed, but they either do not possess well-
defined performance guarantees or cannot be applied to dynamic
operational settings.

In this paper, we introduce a framework and implementation for
transparent integration of bandwidth allocation to multi-hop ses-
sions with distributed dynamic TDMA link scheduling. The core
idea is that we can achieve guaranteed performance by controlling
the network topology or the set of supported allocations using a set
of local conditions specific to the wireless setting. Guided by the
local conditions, an end-to-end mechanism allocates feasible rates
to multi-hop sessions sharing the network. These rates are trans-
lated to link demands to be realized by a TDMA schedule. The
nodes adjust the rates on their adjacent links by local slot reassign-
ments until the desired allocation is reached.

We first derive sufficient local feasibility conditions for certain
topology classes and show that trees can be maximally utilized.
Trees manifest in several ad hoc network applications as logical
overlays over the physical topology defined by the node wireless
proximities. In mesh networks, users share high speed internet ac-
cess from a wired entry point through a low cost multi-hop wireless
infrastructure [12, 15, 24]. In sensor networks data is reported to
a single source over a tree structure [25, 48]. Trees are also used
in Bluetooth scatternets [18, 47, 42] and mobile ad hoc networks
(MANETs) for power-aware multicasting [44] or routing backbone
structures [35]. Motivated by such applications, we present a dis-
tributed dynamic link scheduling algorithm that realizes all feasible
link demand allocations in tree topology structures. According to
this algorithm, nodes can start from any initial TDMA schedule and
incrementally converge in a finite number of steps to a new sched-
ule realizing any desired link demand allocation.

The distributed link scheduling algorithm focuses on realizing
the link demands and is agnostic of the bandwidth allocation mech-
anisms running at higher layers. This allows realization of end-to-
end service models where the session rates are not required to be
known in advance. For example, a session may not have a specific
rate requirement but may request the maximum possible bandwidth
from the network. To this end, we consider end-to-end services
where bandwidth must be shared to the sessions in a fair manner.
While various fairness objectives have been considered for single-
hop sessions (links) [19, 22, 32, 38, 43], fairness for multi-hop ses-
sions has not yet been adequately addressed. Max-min fairness and
utility-based fairness have been considered in [39] and [9, 14, 45],
respectively. The authors propose distributed algorithms to com-
pute the fair session rates subject to the wireless access constraints;
however, so far no distributed link scheduling mechanism exists
that can realize these rates. In [39], the rates are enforced using
centralized TDMA link scheduling; in [14] a distributed random
access mechanism is used but there are no analytical guarantees for
the realization of the computed rates. We introduce a rate-based,
asynchronous distributed algorithm for sharing bandwidth to ses-
sions in a max-min fair (MMF) manner. Combined with the de-
rived local feasibility conditions, it can compute MMF rates for any

topology form. Coupled with the distributed link scheduling algo-
rithm, it enforces the computed rates for wireless ad hoc networks
employing tree structures.

Another important issue is that most TDMA implementations
rely on global slot synchronization and require knowledge of the
number of nodes in the network to split the periodic TDMA frame
in a control and data portion. While such assumptions may hold for
special cases (e.g. custom designs for military applications), they
impose a major restriction for the deployment of ad hoc networks
in general settings. We introduce a TDMA architecture where each
link uses a local time slot reference for communications provided
by the hardware clock of one of the node endpoints. A distributed
coordination mechanism is used to maintain the network TDMA
schedule free of transmission conflicts while the nodes re-assign
slots to reach the desired allocation.

2. ASYNCHRONOUS TDMA ARCHITEC-
TURE

The wireless ad hoc network is represented as a graph G(N,E).
Each edge (u, v) signifies that nodes u and v are in range and have
established a wireless link. Each node has a single radio transceiver
and can communicate (transmit or receive) to at most one adja-
cent link at a time. We assume that interference among links exists
only due to this constraint and that hidden terminals are avoided-
there is no interference among any links that belong to distinct node
pairs. This can be achieved by a set of orthogonal channels and a
distributed signaling mechanism that assigns different channels to
such interfering links. For example, if a distinct channel is used for
each node, hidden terminals can be avoided by assigning to each
link the channel of one of its node endpoints. Instead of N orthog-
onal channels, it is sufficient to useD(D− 1) +1 channels, where
D is the maximum number of intended recipients per node [16].
Channels can be implemented in the frequency domain or code
domain (Direct Sequence codes or frequency hopping sequences).
Hidden terminals can also be avoided using directional antennae
pointing toward the intended recipients–this can be viewed as chan-
nelization in the space domain.

In such a multi-channel system, the set of links that can transmit
simultaneously without conflict in the network is any matching in
G(N,E). This interference model has also been used in [20, 29,
38, 43, 46], among other works. As in every study of coordination
problems at the MAC layer and above, we assume no losses due to
channel errors.

Although the introduction of multiple channels mitigates hidden
terminals, it introduces certain restrictions: Nodes need to coordi-
nate their presence on common links (and tune to the correspond-
ing channels) in mutual time intervals. To resolve this problem,
we utilize an asynchronous TDMA architecture. Based on its own
hardware clock, each node u divides time in fixed-size slots and co-
ordinates transmissions on its adjacent links using a local periodic
link schedule Su of period Tsystem slots. Slot synchronization for
each link is provided by the clock of one of its node endpoints,
termed as the link master. Each slot on a link supports full-duplex
communication initiated by the master: During the first part of the
slot the master polls the slave; during the second part the slave re-
sponds.

The local schedule determines communication action for the du-
ration of a full-duplex slot: the node can either be active on a single
link (start polling if master or start listening for a poll if slave) or
remain idle. Due to the phase difference between the node hard-
ware clocks the local schedules of different nodes are not necessar-
ily slot-aligned. For conflict-free communication on τl consecutive

146

slots on link l, the master must allocate τl slots in its local schedule
while the slave must allocate at least τl + 1 time-overlapping slots
for tuning to the channel and aligning to the time reference of this
master.

- - 1 1 1 - - - - 2 2 2 - - - 1

3 3 - - - 3 3 3 2 2 2 2 3 3 - -

- - - - - - - - 4 4 4 4 - - - -

3 1 1 1 1 3 3 4 4 4 4 4 3 1 1 1

0 101 2 3 4 5 6 7 8 9 11 0 1

0 101 2 3 4 5 6 7 8 9 11 0 1

0 101 2 3 4 5 6 7 8 9 11 0 1

0 101 2 3 4 5 6 7 8 9 11 0 1

1110

10 11

10 11

10 11

SC

SD

SA

SB

........

....

........

....

Tsystem=12

B D1

C

A

2

4

3

Figure 1: (a) Network topology: Arrows denote master-slave
relationships. Links 2 and 4 can transmit simultaneously with-
out conflict on different channels. (b) Network asynchronous
TDMA schedule of period Tsystem = 12 slots: each slot sup-
ports full-duplex communication. Link slaves switch channel
and time reference during the red slots. The realized slot allo-
cation is τ = (τ1, τ2, τ3, τ4) = (3, 3, 3, 4) slots.

The local schedules collectively form the network asynchronous
TDMA schedule. A link slot allocation τ = (τ1, .., τl, ..., τ|E|)
realized by the network TDMA schedule is the number of slots
every link l transmits conflict-free during Tsystem slots and equals
the number of slots allocated to the local schedule of the master
endpoint (see Fig. 1 for an example).

3. THE DYNAMIC LINK SCHEDULING
PROBLEM

During network operation each link is characterized by its slot
allocation (provided by the current network TDMA schedule) and
by its slot demand. A higher-layer process may change the link de-
mands at asynchronous time instants. In section 7, we will instanti-
ate this process to an end-to-end bandwidth allocation mechanism.
Mobility can also be captured by viewing a link failure as transition
to zero demand and a link establishment as a transition from zero
to a positive demand.

The higher-layer process alternates between two states: an active
state where the link demands change and a quiescent state where
no changes occur. This implies that network topology and traffic
dynamics must remain stable for a sufficient time period to allow
convergence. However, the nodes are not aware which of the two
states the network is currently in. They can only detect the demand
changes on their adjacent links and react by local slot reassign-
ments. The end of each active state corresponds to a link demand
allocation to be realized by a network TDMA schedule. The chal-
lenge: starting from the current TDMA schedule nodes must incre-
mentally converge to such a schedule using only local information.

Our approach for the dynamic link scheduling problem consists
of three components:

1) Local feasibility conditions: In order for convergence to oc-
cur, the higher layer process must provide the link layer with feasi-
ble link demands. A link demand allocation τ = (τ1, ..., τl, ..., τ|E|)
is feasible if there exists a TDMA schedule that can allocate τl
conflict-free slots to every link l without exceeding Tsystem slots.

Feasibility determination of any demand allocation is a NP-complete
problem even if global slot synchronization and topology knowl-
edge are available [21]. However, in practice, the link demand
changes will be due to end-to-end bandwidth allocation or hand-off
mechanisms running locally at the nodes. Hence, we are interested
in identifying certain instances where feasibility can be character-
ized by a set of local conditions.

2) Distributed coordination mechanism: Since nodes have ac-
cess only to local information they will respond independently to
the demand changes on their adjacent links. The coordination mech-
anism ensures that the network TDMA schedule remains free of
transmission conflicts despite the simultaneous slot reassignments.

3) Distributed link scheduling algorithm: Determines how
nodes should re-assign slots to reach a schedule realizing the de-
sired demand allocation.

4. LOCAL FEASIBILITY CONDITIONS

4.1 Synchronized TDMA
Let us first assume that global slot synchronization is supported.

Local conditions require the demand sum of the links adjacent to
each node not to exceed Tsystem slots. Due to the link schedul-
ing interdependence, these local conditions cannot alone guarantee
feasibility (see Fig. 2). The additional non-local conditions require
that, for every odd node subset Q (|Q| > 1) in the topology graph,
the sum of the demands of all links adjacent to the nodes inQmust
not exceed �(|Q| − 1)/2 · Tsystem� slots [13].

B1

C

A

2 3

Figure 2: Without loss of generality, assume that all nodes are
slot-synchronized and Tsystem is even. No schedule exists for
allocating Tsystem/2 conflict-free slots per link, even if the local
conditions τ1 + τ2 ≤ Tsystem, τ1 + τ3 ≤ Tsystem and τ2 + τ3 ≤
Tsystem for nodes A, B, C, respectively allow this allocation.
The non-local condition τ1 + τ2 + τ3 ≤ Tsystem is also needed.

There are two ways to guarantee feasibility using only local con-
ditions: Control the topology or underutilize the network.

Topology control is inherent in multi-channel systems due to
the need for assigning channels to the links before communication
takes place. If the network topology is bipartite, the entire set of
feasible allocations can be captured only by the local conditions.
Bipartite topologies can be enforced using local information if ev-
ery node acts either as master or slave to all its adjacent links and
the channel assigned to each link is derived from the (unique) ad-
dress of the master node endpoint.

Alternatively, if no mechanism for topology control exists, fea-
sibility is ensured by requiring the sum of link demands on every
node not to exceed �2/3 · Tsystem� slots [40]. Local conditions of
this form are sufficient: they guarantee feasibility but only capture
a fraction of the entire set of feasible allocations. The network must
be underutilized1 in this case.

1The terms ”underutilization” and ”feasibility” are only with re-
spect to the realization of a desired set of link rates in the network
(QoS traffic). The remaining slots in the nodes’ local schedules can
always be used for control or best-effort traffic.

147

4.2 Asynchronous TDMA
In an asynchronous TDMA system such as the one considered in

this paper, the region of feasible rates is further restricted. In [36]
it has been shown that a set of sufficient local feasibility conditions
is for nodes to offer half the slots they would offer in the corre-
sponding synchronized system: for bipartite topologies, feasibility
is guaranteed if every node offers �1/2 · Tsystem� slots while for
arbitrary topologies �1/3 · Tsystem� slots. These conditions imply
further underutilization.

Let Lmin(τ) be the minimum period realizing link demand al-
location τ . A lower bound on Lmin(τ) is given by:

LB(τ) = max
u∈N

∑
l∈L(u)

(τl + J
(u)
l) (1)

where L(u) is the set of links adjacent to node u and,

J
(u)
l =

{
1 if u is slave on link l
0 otherwise

(2)

The term τl in the sum of the RHS of (1) exists because each node
u can communicate to only one link at a time. The term J(u)

l is due
to the need for at least one additional slot for time reference align-
ment on every link where node u acts as slave. The lower bound
on the minimum period is not necessarily tight; however, it can be
used to identify instances where the entire set of feasible alloca-
tions is captured by local conditions:

Proposition 1: Consider an asynchronous TDMA ad hoc net-
work G(N,E). If for every demand slot allocation τ , Lmin(τ) =
LB(τ), then, the entire set of feasible allocations can be captured
by the following set of local conditions:∑

l∈L(u)

τl ≤ Tsystem −
∑

l∈L(u)

J
(u)
l , ∀u ∈ N (3)

Proof: Let τ ∗ be an allocation satisfying eq. (3) but is not feasible.
Since τ ∗ is not feasible, the minimum period realizing it must be
strictly greater than Tsystem: Lmin(τ ∗) > Tsystem. From eq. (3):∑

l∈L(u)

(τ∗l + J
(u)
l) ≤ Tsystem, ∀u ∈ N ⇒

max
u∈N

∑
l∈L(u)

(τ∗l + J
(u)
l) ≤ Tsystem ⇒

LB(τ ∗) ≤ Tsystem

Since Lmin(τ) = LB(τ) for every τ in G(N,E) we conclude
Lmin(τ ∗) ≤ Tsystem, i.e. τ ∗ is feasible. This contradicts our
initial hypothesis.

Proposition 1 states that topologies for whichLmin(τ) = LB(τ)
for all τ , can be fully utilized by distributed algorithms. Next, we
show that trees are a topology class that satisfies this property:

Theorem 1: If G(N,E) is a tree, any link demand slot alloca-
tion τ can be realized by a periodic schedule of LB(τ) slots.

By induction on the tree levels, it is possible to show that no node
runs out of slots during the algorithm execution. The detailed proof
can be found in [37].

To summarize the above discussion, we have arrived at the fol-
lowing local feasibility conditions for multi-channel, asynchronous
TDMA ad hoc networks:∑

l∈L(u)

τl ≤ TR
u , ∀u ∈ N (4)

where

TR
u =




�1/3 · Tsystem� ifG arbitrary
�1/2 · Tsystem� ifG bipartite

Tsystem −
∑

l∈L(u)

J
(u)
l ifG tree

(5)

The utilization factor TR
u depends on the topology control mech-

anism used by the network (if any). In practice, each incoming
node u queries its neighbors about the topology control algorithm
used in the network and uses eq. (5) to set its TR

u accordingly.
This ensures that a distributed link scheduling algorithm will al-
ways seek a feasible allocation.

According to Proposition 1 and Theorem 1, all feasible alloca-
tions for tree structures can be captured only by the local condi-
tions. Hence, trees can be maximally utilized by distributed al-
gorithms. It is also interesting to note that, according to eq. (5),
more restricted topologies allow higher per/node utilization, with
trees allowing the maximum possible. This does not necessarily
indicate that trees are the optimal topology structures. For certain
traffic patterns, additional links could be useful to exploit shorter
paths toward destinations. However, if a non-tree structure is to be
used, the utilization of every node in the network must be reduced
to ensure feasibility under distributed operation.

We now proceed to introduce a topology-independent distributed
coordination mechanism and a distributed dynamic link schedul-
ing algorithm that reaches any desired feasible allocation in a tree
topology.

5. DISTRIBUTED COORDINATION
MECHANISM

During network operation, several links may be asynchronously
triggered in parallel for rate adjustment. Rate adjustment on a link
occurs when the node endpoints re-assign concurrent slot positions
for this link in their local schedules. The criteria to trigger adjust-
ment may depend on local traffic load on the nodes and the current
communication needs of the link. The coordination mechanism is
also used to assign an initial number of conflict-free slots on a link
that has just been established.

Each node can be involved at only one link rate adjustment at a
time. It conveys its current busy status to its neighbors using an
internal one-bit variable called BusyBit. This bit is copied to the
corresponding field of every outgoing packet (be it data or control
one). Rate adjustment on a link l can be initiated when none of
its endpoints are currently busy on a rate adjustment of other links.
Upon initiation, both endpoints set their BusyBits to one. Then
they exchange their current local schedules using SC INFO control
packets. This information aids one of the endpoints to determine a
new set of slot positions to be assigned to this link. Some of these
slots may be currently assigned to the other links adjacent to the
endpoint nodes and need to be canceled.

Each endpoint stores the new positions in LOCK V EC (a lo-
cal variable) and signals schedule modifications to all its affected
neighbors using SC UPD packets. An SC UPD packet trans-
mitted on a link, contains new slot positions to refresh the old ones
for this link in the recipient’s local schedule. After all affected
neighbors acknowledge schedule modifications, the endpoints as-
sign the new positions (stored in their LOCK V EC variables) to
link l in their own local schedules. Then, they become available
for rate adjustment on other links by clearing their BusyBit and
LOCK V EC variables.

Communications are not suspended during the rate adjustment
process. The control packets are transmitted using the conflict-free

148

slots in the old TDMA schedule until the endpoints modify their
local schedules once they have received all acknowledgments from
their neighbors. The coordination mechanism keeps the network
free of transmission conflicts at all times. Conflicts would arise if
the same slots were simultaneously assigned on adjacent links to
the same node or nodes re-assigned slots on links without notifying
the corresponding neighbors. The first case cannot arise because
the BusyBit precludes all one-hop neighbors to initiate rate adjust-
ment with the endpoints. The second case cannot arise because
the endpoints modify their schedules only after having received ac-
knowledgements from all their affected neighbors.

6. STABLE TREE
We now introduce a distributed dynamic link scheduling algo-

rithm, called STABLE TREE, that operates within the state space
defined by tree topologies and the corresponding conditions in eq.
(4). Nodes are only aware of the parent/child relationship and the
current demands on their adjacent links. The algorithm is self-
stabilizing: it may start from any initial TDMA schedule and con-
verge to a new schedule realizing a desired allocation τ . Mobil-
ity can also be supported as long as a dynamic tree formation and
maintenance protocol such as [6, 18, 42] runs in the network.

6.1 Notations and definitions
Before presenting the algorithm we introduce some notations

and definitions. Slots in each local schedule Su of node u are in-
dexed from 0 to Tsystem − 1. We denote by W (u)

l = [s
(u)
l , e

(u)
l] a

window of consecutively assigned slots to link l in Su, starting at
slot s(u)

l and ending at slot e(u)
l . Due to the periodicity of Su:

W
(u)
l = [s

(u)
l , e

(u)
l] =

{
s
(u)
l , ..., e

(u)
l if s(u)

l ≤ e(u)
l

s
(u)
l , .., 0, ..., e

(u)
l otherwise

(6)

Let τl be the current demand for link l = (u, υ), and t(u)
l be

the number of conflict-free slots currently assigned to l in the local
schedule Su of node u. Link l is called satisfied by node u if the
following conditions hold:

STF1: The link is scheduled in a single windowW (u)
l = [s

(u)
l , e

(u)
l]

in Su.

STF2: The current demand is exactly satisfied by the current as-
signment: t(u)

l = τl + J
(u)
l .

where J(u)
l is given by eq. (2).

Let the parent link lp = (p, u) of node u be satisfied by a window
W

(u)
lp

= [s
(u)
lp
, e

(u)
lp

] in Su. Also, let the children links lc = (u, c)

of u be assigned distinct priorities plc . A child link lc of u is stable
if it is satisfied and the position of window W (u)

lc
= [s

(u)
lc
, e

(u)
lc

] in
Su provides enough room for scheduling all links of lower priority
according to their current demands. More formally, a child link lc
is called stable by node u if the following conditions hold:

STBL1: Link lc is satisfied.

STBL2: |[e(u)
lc

⊕ 1, s
(u)
lp

� 1]| ≥
∑

k∈CH(u):pk<plc

(τk + J
(u)
k)

where CH(u) is the set of children links of u and ”⊕” and ”�” are
Modulo-Tsystem addition and subtraction, respectively.

6.2 Operation
Central to the algorithm operation is procedure SampleResched-

ule(). This procedure is asynchronously triggered for execution at
a node either when the higher layer process changes the demand
of an adjacent link or after an adjacent link is rescheduled. When
either of these events occurs, a non-root node u proceeds in exe-
cution of SampleReschedule() only if its parent link lp is satisfied;
the root proceeds in execution unconditionally.

During execution of SampleReschedule() at node u the following
actions are performed:

1) Let W (u)
lp

= [s
(u)
lp
, e

(u)
lp

] be the window in Su satisfying the
parent link lp of node u. First, u assigns decreasing priorities to its
children links in the (circular) order that they currently appear in
Su, starting at slot e(u)

lp
and ending at s(u)

lp
. (The root node assigns

priorities using 0 and Tsystem − 1 as start and end slots, respec-
tively).

2) By inspecting Su, node u samples its children in decreas-
ing priority for violation of the stability conditions. If all links are
found stable, SampleReschedule() terminates and no further action
takes place. Otherwise, the highest priority unstable child link lc
needs to be rescheduled and stabilized.

3) Node u initiates rate adjustment on lc by exchanging SC INFO
packets with the child endpoint c. After the exchange, u erases
from Su all slots currently allocated to lc and considers a fresh al-
location for a windowWlc of τlc +J

(u)
lc

slots. The position ofWlc

in Su is determined as follows:

• First, u computes the closest slot position to s(u)
lp

for which
the stability conditions for lc will hold:

smax = s
(u)
lp

�
∑

k∈CH(u):pk<plc

(τk + J
(u)
k) (7)

Let lm be the (stable) link of immediately higher priority than
lc. If lc is the highest priority child link, lm is defined to be
the parent link lp. In either case, link lm is satisfied. Let
W

(u)
lm

= [s
(u)
lm
, e

(u)
lm

] be the window satisfying the demand of
lm in Su. Link lc will be stable if windowWlc is scheduled
within the windowW (u)

max = [e
(u)
lm

⊕ 1, smax � 1].

• Node u decides on the position of W (u)
lc

within Wmax: The

new position ofW (u)
lc

may cancel slots of lower-priority chil-

dren links in Su. Also, the position ofW (u)
lc

will be enforced
to the local schedule of the child node c and may cancel slots
on some of the children links of c. Using the local sched-
ule of c (provided in the SC INFO packet) the position of
W

(u)
lc

is selected withinWmax such that the total number of
affected links at both node endpoints is minimized.

4) Once u determines the position of W (u)
lc

, it issues SC UPD
packets to its affected neighbors. The coordination mechanism
(Section 5) ensures that the local schedules of endpoint nodes u
and c, as well as the local schedules of their affected neighbors,
will be free of transmission conflicts after the update.

After lc has been scheduled, node u must restart sampling from
the highest priority child link for violation of the stability con-
ditions. This is because the demands of links of higher priority
than lc may have changed while the rate adjustment was taking
place. If the demands stop changing, repetitive invocation of pro-
cedure SampleReschedule() will reschedule and stabilize the un-
stable links in decreasing priority. The sampling-rescheduling loop
terminates when all child links are found stable.

149

2 - - - 1 1 4 3 3 3 3 - - 4 4 lp
167 8 9 10 11 12 13 14 15 174 5 186 0

- lp lp 2 2
1 2 318 0

Su

2 1 1 - - - 4 3 3 3 3 - - 4 4 lp
167 8 9 10 11 12 13 14 15 174 5 186 0

4 lp lp 2 2
1 2 318 0

Su

2 1 1 - 4 4 4 3 3 3 3 - - - - lp
167 8 9 10 11 12 13 14 15 174 5 186 0

- lp lp 2 2
1 2 318 0

Su

2 1 1 - 4 4 4 - 3 3 3 3 3 3 3 lp
167 8 9 10 11 12 13 14 15 174 5 186 0

3 lp lp 2 2
1 2 318 0

Su

W max

W max

W max

(c)

(d)

(e)

(f)

(a) (b)

u

p

c 1 c 2 c 4c 3

lp

3 41 2

2

2 2 6 3

u

p

c 1 c 2 c 4c 3

lp

3 41 2

2

2 2 3 3

Figure 3: (a) Arrows denote master-slave relationships and red
slots denote switching slots of links where u is slave. (b) De-
mand of link 3 changes from 3 to 6. (c) The highest prior-
ity child link (2) is satisfied and the distance of slot 5 to slot
18 (|[5, 18]| = 14) is greater than the current demand sum
of the lower priority child links ((2+0)+(6+1)+(3+0)=12)–link
2 is stable. The next priority link 1 is satisfied but not sta-
ble (|[10, 18]| = 9 < (6 + 1) + (3 + 0) = 10). To satisfy
condition STBL2, window W1 (τ1 + J

(u)
1 = 2 + 0 = 2 slots)

must be within Wmax = [5, 8]. (d) Su after link 1 has been
rescheduled. The position was decided after the link coordina-
tion mechanism with node c1 and consulting with Sc1 . Link 4
is not satisfied (STF1 does not hold); it needs to be rescheduled
within Wmax = [7, 10] to become stable. (e) Su after link 1
has been rescheduled. Link 3 is not satisfied; it can be resched-
uled within Wmax = [11, 18]. (f) All links are now stable–the
sampling-rescheduling loop is complete.

An example of SampleReschedule() is shown in Fig. 3. Ac-
cording to the initial local schedule Su (Fig. 3(c)), the allocations
on adjacent links of node u are (t

(u)
lp
, t

(u)
1 , .., t

(u)
4) = (2, 2, 3, 4, 3)

and corresponding demands are (τlp , τ1, ..., τ4) = (2, 2, 2, 3, 3).
In Fig. 3(b) the demand of link 3 changes from 3 to 6 slots. Since
the parent link lp is satisfied (t(u)

lp
= τlp + J

(u)
lp

= 4), node u ini-
tiates SampleReschedule(). Using the window [0, 1] assigned to its
parent link lp, u assigns decreasing priorities to its children links in
the cyclic order they appear in Su, starting from slot 1 towards slot
0. The links in decreasing priority are 2, 1, 4, 3. Figures 3(c)-(f)
illustrate a sequence of steps and modifications of Su that stabilize
the links.

The above description corresponds to the desired operation of
SampleReschedule() at a node u. However, the fact that nodes may
be busy at any time makes things more complicated. For exam-
ple, when the highest priority unstable child link is sampled, it
may be currently busy scheduling a child of its own and, there-
fore, unavailable for re-scheduling. Hence, a need exists for co-
ordinating parent and children to allow proper operation of the
sampling re-scheduling loop. This is accomplished by the STA-

BLE REQ/STABLE ACK packet exchange. Before executing Sam-
pleReschedule() node u sends a STABLE REQ packet to its parent.
The parent will respond in one of two possible ways: either 1) it
replies with a STABLE ACK packet as permission for node u to
continue sampling and rescheduling its children or 2) it initiates a
rate adjustment on this link via a SC INFO packet.

In Fig. 3, node u must perform a STABLE REQ/STABLE ACK
handshake with its parent p for every child link it reschedules.
If, meanwhile, link lp becomes unstable, the parent will respond
to STABLE REQ with an SC INFO packet and link lp will be
rescheduled. Based on the new stable window lp, node u will re-
assign priorities and resume the sampling-rescheduling loop. The
detailed operation of STABLE TREE is described in Fig. 7 and
Fig. 8 in the Appendix.

6.3 Properties
In this section we establish the convergence properties of STA-

BLE TREE.

Convergence Theorem: Consider an initial tree topology and
network TDMA schedule. Assume that a set of arbitrary demand
and topology changes occur that eventually stabilize to a new tree
topology and demand allocation τ obeying the corresponding ca-
pacity condition of eq. (4). STABLE TREE will converge to a new
TDMA schedule realizing τ in a finite number of link rate adjust-
ments.

Sketch of Proof: In general, nodes re-assign slots using Sam-
pleReschedule() when their adjacent links are detected ”unsatis-
fied”. We show that, as soon as the changes in link demands sta-
bilize, convergence is guaranteed to occur progressively from the
root downward. The detailed proof appears in [37].

The convergence delay of STABLE TREE depends on the tree
depth and Tsystem. For a worst-case analysis, let us assume that
all links have become unsatisfied due to the changes. Since con-
vergence is guaranteed from the root downward, in the worst-case
scenario all links will need to be rescheduled in this order. Also,
the worst tree topology is a line starting at the root node–in this
case all (N − 1) links will be scheduled sequentially in time.

According to the link coordination mechanism, the endpoints
wait for acknowledgements from all the affected neighbors before
updating their local schedules. In the worst case, all neighbors
are affected and acknowledgments will arrive within Tsystem slots.
Therefore, each link activation for rate adjustment has a maximum
duration of Tsystem slots.

When a node samples the highest priority unstable link, it will
wait at most Tsystem slots in case the child node is busy. Thus each
link on the line will be scheduled in at most 2Tsystem slots. We
conclude that once link demands have stabilized, STABLE TREE
will converge within 2Tsystem(N − 1) slots.

The worst-case analysis assumes that all links become unsat-
isfied and rescheduling will happen in the order that guarantees
convergence–starting from the root downwards. Since nodes con-
tinuously detect changes and reassign slots locally, convergence
may occur faster in practice. In addition, demands may be chang-
ing locally at lower tree levels; only part of the tree will need to be
rescheduled in this case. Existing tree topology control algorithms
strive to maintain balanced structures. In this case, even if links
will need to be scheduled from the root downward, multiple links
will be scheduled in parallel. The convergence behavior of STA-
BLE TREE in practice is investigated in Section 8, together with
end-to-end bandwidth allocation mechanisms (addressed next).

150

7. END-TO-END FRAMEWORK
We now introduce a framework for integrating link scheduling

with end-to-end bandwidth allocation. The asynchronous TDMA
ad hoc network is shared by a set of unicast multi-hop sessions.
Without loss of generality, we assume that half-duplex parts of a
slot assigned to a link have equal duration Dslot and are used by
the same session. Although bidirectional transfer is supported over
a path, we assume that data traffic is unidirectional.

Let the maximum radio transmission rate be R bps. To support
a rate of ρi (≤ R) bps for session i the network must be able to
allocate τi = �(ρi/R) · Tsystem� conflict-free slots for i to all
links over the session path. Since each slot assigned to a link can
be used only by a single session, the total bandwidth consumed by
the sessions F (u) sharing node u must obey the local feasibility
conditions:∑

i∈F (u)

δ
(u)
i · τi ≤ TR

u , ∀u ∈ N (8)

where TR
u is given by eq. (5) and

δ
(u)
i =

{
1 if u is source or destination of session i
2 otherwise

(9)

The term δ
(u)
i indicates that, in order to support allocation τi for

session i, an intermediate node u must be able to communicate for
τi slots on both upstream and downstream links of the session.

The integrated framework provides end-to-end bandwidth guar-
antees using three components:

Session rate allocation: Sessions are allocated feasible rates ac-
cording to eq. (8).

Link scheduling: The session rates are translated to (feasible)
link demands:

τl =
∑

i∈F (l)

τi, ∀l ∈ E (10)

where F (l) is the set of sessions crossing link l. The link demands
are realized by a distributed dynamic link scheduling algorithm.
STABLE TREE is such an algorithm for tree topologies.

Session rate enforcement: Once link scheduling converges, ev-
ery link has been allocated enough bandwidth (conflict-free slots)
to support the session demands. The slots of each link can be shared
to its sessions using Weighted Round Robin (WRR), Weighted Fair
Queuing (WFQ) [11] or other single-server queuing disciplines.
Another possibility is to combine FIFO queuing at intermediate
links with explicit control of the transmission rates at the sources.

Decoupling end-to-end bandwidth allocation from link schedul-
ing, allows realization of various end-to-end service models. For
example, in certain applications sessions arrive with specific rate
requirements that need to be satisfied by the network. In this case
it is possible to perform admission control using eq. (8). We con-
sider a service model where sessions request maximum rate and the
network bandwidth must be shared to the sessions in a fair manner.
We focus on the max-min fairness (MMF) objective and introduce
a distributed algorithm to compute the session MMF rates. This al-
gorithm integrates the access constraints (given by eq. (8)) with al-
gorithms for wireline networks. (A similar integration can be used
to realize other fairness objectives such as utility-based max-min
fairness [7] or proportional fairness [28]).

7.1 End-to-end max-min fairness
For convenience, we use normalized rates instead of slots to rep-

resent bandwidth allocations. Given slot allocation τ , the corre-
sponding normalized rate allocation is r = τ /Tsystem. Con-
versely, the slot allocation corresponding to rate allocation r is
τ = �r · Tsystem�.

A session rate allocation r = (r1, .., r|F |) is feasible, if for every
session i, each link in the path L(i) can support τi = �ri ·Tsystem�
slots, that is, the induced demand slot allocation on the network
links is feasible. A feasible rate allocation is MMF, if the rate of a
session cannot be increased without decreasing the rate of another
session of equal or lower rate. More formally, a feasible rate alloca-
tion r = (r1, .., r|F |) is MMF if it satisfies the following property

with respect to another feasible rate allocation r′ = (r
′
1, ..., r

′
|F |):

if there exists a session i such that ri < r′i, then there exists another
session j such that rj ≤ ri and r

′
j < rj .

Nodes use local feasibility conditions derived by dividing both
sides of eq. (8) with Tsystem:∑

i∈F (u)

δ
(u)
i · ri ≤ CR

u , ∀u ∈ N (11)

where CR
u = TR

u /Tsystem. Node u is defined to be a bottleneck
for session i if it is fully utilized (with respect to CR

u) and session
i has maximum rate over all sessions in F (u). The definition of
bottleneck node yields a criterion for determining whether a given
session allocation is MMF:

MMF criterion: A session rate allocation r = (r1, ..., ri, ..., r|F |)
is MMF if and only if every session has at least one bottleneck
node.

The session MMF rates can be computed using an iterative, off-
line centralized algorithm similar to the algorithm of Bertsekas and
Gallager in wireline networks [4]. The modification has to take into
account that, in our case, the resources are nodes instead of links
and that sessions in intermediate nodes need to consume twice the
bandwidth than their allocated rate due to the slots needed at both
incoming and outgoing links.

During each iteration of the centralized algorithm, each node
equally divides its available bandwidth over the total number of
sessions on its adjacent links. The bottlenecks of the current iter-
ation are the nodes for which this division is minimum; the min-
imum ratio is the MMF rate for this iteration and is allocated to
the sessions crossing the bottleneck nodes. We then remove the
bottleneck nodes and their sessions from the network and reduce
the available bandwidth of the remaining nodes by the amount con-
sumed by the removed sessions (for each intermediate node in the
path of each removed session, we must subtract twice the MMF
rate from the node available bandwidth). Any node and link whose
sessions have been removed is also removed. We then consider the
next level bottleneck nodes of the reduced network and repeat the
procedure. We continue until all sessions have been allocated their
MMF rates.

We have implemented a distributed version of the centralized
algorithm, similar in spirit with algorithms proposed for wireline
ATM networks [8, 26, 27]. This is a rate-based approach where
each source adjusts its transmission rate based on values seen in re-
turning control packets, previously injected and circulated over the
session path. The returning values are the most recent estimates of
the session MMF rate, as computed by all nodes over the session
path.

Each node u maintains 1) a subset FC(u) of its sessions F (u),
currently seen as ”constrained” by other nodes and 2) an estimate
φu for the MMF rate it provides to its currently unconstrained ses-
sions. When each session control packet is about to be forwarded,
FC(u), φu together with the link demands and the ”rate” and ”con-
strained” fields of the session control packet are updated by proce-
dure MMF UpdateState() (see Fig. 4).

151

Procedure MMF UpdateState

Update algorithm at node u for a control packet p of session i
to be forwarded on link l

1 ri = min(φu, p.rate) /*update the session rate*/;
τi = �ri · Tsystem� ;

2 τl =
∑

j∈F (l) τj /*update demand of link l*/;

if (δ(u)
i == 2) /*u is intermediate node of i*/ then
τk =

∑
j∈F (k) τj /*update demand of the other link k adjacent

to u where session i belongs*/;

end
3 if (φu ≤ p.rate) then

p.rate = φu; p.constrained = 1;

end
if (φu ≥ p.rate) then

FC(u) = FC(u)
⋃{i};

end
4 if (|FC(u)| == |F (u)|) then

φu = CR
u − ∑

j∈F (u) rj + maxj∈F (u) rj ;

else

φu =
CR

u −∑
j∈F C(u) δ

(u)
j ·rj∑

j∈F (u) δ
(u)
j −∑

j∈F C(u) δ
(u)
j

;

end
5 if exists j in FC(u) such that rj ≥ φu then

for all j in FC(u) such that rj ≥ φu do
FC(u)=FC(u)-{j};

end
repeat step 4;

end

Figure 4: Update algorithm for session rate, link demands and
MMF rate estimate φu.

Upon return of a control packet the source adjusts its transmis-
sion rate according to the value ri in the rate field. New session i
control packets are sent out with rate field set to the new rate and
the constrained bit field set to zero.

Using arguments similar to [8] we can prove that the distributed
algorithm converges in a finite number of iterations to the session
MMF rate values. This holds for any topology form given the ap-
propriate fractional capacities CR

u that ensure feasibility in each
case. The distributed MMF algorithm differs from its wireline
counterparts [8, 26, 27] in three aspects. First, the available rate
of each node must be divided over the session parts instead of the
sessions sharing it. Second, every node in a session path–including
source and destination–must update their session MMF rate esti-
mate. Third, the link demands must be updated and passed to the
link scheduling algorithm.

End-to-end rate computation and link scheduling occur in paral-
lel. Link scheduling is not aware of whether the end-to-end process
is complete; it simply reacts to the link demand updates. As soon as
the end-to-end bandwidth allocation converges to the MMF rates,
the link demands stabilize, allowing the link scheduling algorithm
to converge.

8. BLUETOOTH IMPLEMENTATION
Bluetooth [5] is a multi-channel asynchronous TDMA system

with a constraint that a node can be master to at most seven adjacent
links. Channels are implemented as frequency hopping sequences
and termed as piconets. Transmissions on each link occur in the
piconet defined by the unique Bluetooth address of the master node

endpoint. For example, if the asynchronous TDMA ad hoc network
in Figure 1 were to be realized by Bluetooth, links {1,2}, {3}, and
{4} would be using the time slot references and distinct piconets
defined by masters A, B and D, respectively. A Bluetooth ad hoc
network is termed as scatternet.

Figure 5 depicts the implementation of the end-to-end bandwidth
allocation algorithm, the link scheduling algorithm and the coordi-
nation mechanism over the Bluetooth protocol stack. The Blue-
tooth Baseband layer supports all lower-level functions related to
link establishment (discovery, master-slave assignment and com-
putation of the piconet frequency hopping sequence and time slot
reference) and link maintenance (maintaining slot synchronization
and full-duplex communication between master and slave, switch-
ing to low power modes, etc).

The Bluetooth Baseband Specification does not define how nodes
in a scatternet should divide their time among their adjacent links
and piconets. We have therefore implemented the periodic local
schedule structure (Section 2), coordination mechanism (Section 5)
and link scheduling algorithm (Section 6) at the application layer.
More specifically, we use the Bluetooth sniff mode to instruct the
Baseband to transmit according to the local schedule maintained
at the application layer. Sniff mode is a low power mode where a
slave can listen to a master for a window of Nsniff attempt slots
within a period of Tsniff slots. The Bluetooth Host Controller In-
terface (HCI) exports a function from Baseband to higher layers
where a node (either master or slave) can initiate sniff mode on a
link. We can thus directly map Tsystem to Tsniff . Each node will
impose different non-overlapping sniff windows to its neighbors.
When, during the execution of the coordination mechanism, the lo-
cal schedule of a node u is modified at the application layer, we
instruct the hardware to start sniff mode on link l on that offset by
setting Nsniff attempt = τl + J

(u)
l .

L2CAP

LMP

Baseband

Radio

Bluetooth Host

Link scheduler

User-level

Bbit

Tsystem

Coordination

Mechanism

Network Layer

Host controller Interface (HCI)

(NsniffAttempt, Tsniff)

Link

Demands

LOCK_VEC

E2E BW
Allocation

E2E Traffic
Generator

Slot Positions

E2E Traffic

Link Control Traffic

Local Schedule

…..

Figure 5: Implementation of the end-to-end bandwidth alloca-
tion framework over the Bluetooth protocol stack

The Bluetooth L2CAP layer supports both unidirectional and
bidirectional logical channels between two node endpoints. Each
session consists of multiple L2CAP bidirectional channels, one for
each link over the session path. Bluetooth supports half-duplex
slots of duration Dslot = 0.625ms, each carrying up to B = 216
payload bits. Each Bluetooth full-duplex slot may consist of (1, 1),
(1, 3) or (1, 5) half-duplex slots. Here, we use (1, 1) configuration,
yielding a maximum transmission rate of R = B/2Dslot = 172.8
Kbps per direction.

When a source receives an end-to-end control packet with rate
ri, it adjusts its transmission rate to ri · R bps. To enhance perfor-
mance, in addition to source rate control, each node uses a packet

152

scheduler on each link to decide the type of packet to be trans-
mitted on a conflict-free slot. To expedite convergence of the link
scheduling algorithm, link control packets are given highest prior-
ity. When the link control packet queue is empty, WRR is used to
schedule packets of outgoing sessions for this link.

9. EXPERIMENTS
We use BlueHoc [23], the IBM Bluetooth extensions to the ns

simulator [1]. We have further extended BlueHoc to support scat-
ternets and the sniff mode. The link scheduling algorithm, the end-
to-end algorithm and the coordination mechanism have been imple-
mented as separate ns modules. We have performed experiments
on various topology and session configurations. Due to space lim-
itations, here we present and analyze a representative scenario in
detail. Our aim is to investigate the effect of various factors on
the joint performance of end-to-end and link scheduling algorithms
during transience and at steady state.

We consider the 10-node configuration of Fig. 6. The node po-
sitions are kept fixed. Topology changes would appear to the link
scheduling algorithm as changes from zero to a positive number
(link establishment) or transitions to zero (link failure). While com-
puting the MMF rates, the end-to-end algorithm creates rich link
demand dynamics to be tracked by the link scheduling algorithm.

A

E

F

C

G

H

B

J

I D

1

2

3 4

8
5

7

6 9

S1

S3S2

S4

S5

S6

S7

50

49

49

47 50

49

4950

48 50

Figure 6: Arrows on links denote master-slave relationships.
Italicized numbers on each node u denote TR

u = Tsystem −∑
l∈L(u)

J
(u)
l , where Tsystem = 50 slots. The normalized ca-

pacities are CR
u = TR

u /Tsystem; Sessions S1, S2, S3 and S7

first receive the lowest MMF rate (0.125) due to the first-level
bottleneck node A. Then, the MMF rates of S5 (0.315) and
S4,S6 (0.208) will be allocated by the second-level bottleneck
nodes G and B, respectively. These MMF rates correspond
to a slot allocation (τS1 , .., τS7) = (6, 6, 6, 10, 15, 10, 6) within
Tsystem = 50 slots.

We run 10 experiments, each corresponding to the selection of a
different node as root. In all experiments a period of Tsystem = 50
slots is used. Nodes start with an arbitrary conflict-free TDMA
schedule; Initially, all sources transmit at maximum rate (172.8
Kbps) and adjust it based on the values of the returning session
control packets. Time is measured with respect to the time slot
reference of the root node. Each simulation lasts 20000 slots (or
20000 × 1.25ms = 25sec).

9.1 Transience
The quantities of interest during transience are convergence de-

lay and the control overhead required by both algorithms. The tran-
sient behavior of the algorithms is affected by the location of the
root. Table 1 contains a summary of the results.

Convergence delay is determined by DS , the time until the link
demands stabilize due to the end-to-end algorithm convergence,
and DL, the additional delay due to the link scheduling algorithm
convergence. The delay component DS depends on the root loca-
tion and the transient states of the TDMA schedule. Since slots are
shared by session control, session data and link control packets, the
circulation of some session control packets may be delayed. As
illustrated in Table 1, this phenomenon was observed for the maxi-
mumDS case (3145 slots), when the root was node B. Link 3 was
allocated 5 slots or less until slot 904. Since link 3 is in the control
path of first-level sessions S1 and S2, overall end-to-end algorithm
convergence was slowed down. Such behavior did not arise in other
runs. MinimumDS (1523 slots) occurred when the root wasA, the
first-level bottleneck node.

The delay component DL depends on the order link demands
stabilize, and the location of the root with respect to this order. Ac-
cording to Table 1 , maximum DL (733 slots) occurred when the
root was D. The last demand to stabilize was of link 9, adjacent to
the root. Although the demands at lower tree levels had already al-
ready been stabilized and satisfied, the entire tree was rescheduled
from the root downwards. This worst-case scenario did not always
occur: root I was also adjacent to the slowest converging demand
(link 6); however, in this case, the tree was partially re-scheduled in
DL = 361 slots. Incidentally, minimum DL (178 slots) occurred
for the root being B, the case of maximum DS . In all experiments
DL is less than 2Tsystem(N − 1) = 900 slots, the convergence
delay bound of STABLE TREE.

Convergence Delay (slots) and Overhead (%)
Root DS DL DS +DL OS(%) OL(%)

A 1523 469 1992 11.5 9.7
B 3145 178 3323 8.5 7.2
C 1995 282 2277 17.05 11.80
D 1718 733 2451 12.54 10.2
E 2529 196 2725 15.8 8.78
F 2765 327 3092 11.25 10.3
G 2836 392 3228 8.74 7.05
H 1943 436 2379 12.56 9.9
I 1982 361 2343 16.31 11.86
J 2225 543 2768 15.44 9.2

Table 1: Convergence delay and control overhead in the config-
uration of Fig. 6, for different choices of the root node.

Another quantity of interest during convergence is the control
overhead–the fraction of slots used for link coordination and ses-
sion control packet transmissions. According to Table 1 , the link
control overhead is greater during DS (maximum OS = 17.05%)
due to the continuous changes in link demands. After the link de-
mands stabilize, the link control overhead OL is about 10% on the
average. The end-to-end control overhead is regulated at the source
by sending 1 control for every P data packets. The parameter P
can be adjusted to trade-off increased speed of convergence for in-
creased overhead. In the experiments we use P = 19; this yields a
fixed overhead of 5%.

9.2 Steady state
We evaluate performance at steady state in terms of control over-

head and achieved session throughputs/inter-packet delays mea-
sured at the receivers. After convergence, only end-to-end con-
trol overhead exists–the circulation of session control packets is
needed to track the MMF rates in presence of network dynamics.

153

Rates (Kbps) and Delay (ms)
MMF T G Davg d95

S1 20.73 20.73 19.69 10.65 ± 1.25
S2 20.73 20.73 19.66 10.71 ± 1.22
S3 20.73 20.73 19.66 10.69 ± 1.20
S4 34.56 34.56 32.83 6.54 ± 0.73
S5 51.84 51.84 49.24 4.284 ± 0.78
S6 34.56 34.56 32.83 6.54 ± 0.73
S7 20.73 20.73 19.68 10.63 ± 1.21

Table 2: Steady state performance (root is node A): Session
throughput (T), goodput(G) and average delay (Davg) with
95% confidence intervals (d95) for the configuration in Fig. 6,
measured at each session destination after convergence.

All choices of root node result in similar steady state behavior,
as expected. Table 2 depicts the session throughput and goodput
as well as average delay between data packet arrivals measured at
the session destination after convergence (root was node A). The
throughput (goodput) of a session in bps is the number of bits due to
data+control packets (data packets) the destination receives for this
session from the time of convergence (DS + DL) until the end of
the simulation. The session throughputs exactly match the MMF
rates; as expected, the goodput of every session is approximately
5% less than the throughput on account of the end-to-end control
overhead. Sessions within the same MMF group experience sim-
ilar average delay (Davg) within a small 95% confidence interval
(d95); the short delay is due to the TDMA schedule periodicity and
the WRR link schedulers over each session path.

10. CONCLUSIONS
We presented a framework where end-to-end bandwidth alloca-

tion algorithms currently available for wireline networks can be
used with certain modifications for wireless ad hoc networks if we
can find a set of appropriate local feasibility conditions and an un-
derlying distributed, self-stabilizing link scheduling algorithm. The
link scheduling is based on an asynchronous TDMA protocol that
does not rely on global slot synchronization or knowledge of the
number of nodes in the network.

Using this framework, we proposed an asynchronous distributed
algorithm aiming at end-to-end max-min fairness. This algorithm
can operate for any topology form and compute the session MMF
rates with respect to a fraction of the network capacity provided by
the local feasibility conditions. We showed that tree topologies can
be maximally utilized and introduced a link scheduling algorithm
that can enforce the computed end-to-end rates for this case. We
presented an implementation of this framework over Bluetooth, an
existing asynchronous TDMA wireless technology.

A natural extension for the link scheduling component of the
framework is the design of converging algorithms that provide rate
enforcement in more general topologies than trees (at the inevitable
expense of reduced per/node utilization). Such algorithms are the
subject of our future research efforts.

11. ACKNOWLEDGMENTS
This work was supported by U.S. Army Research Office (ARO)

grant W911NF-04-1-0306 and by Greek General Secretariat for
Research and Technology (GSRT) grant ”Cooperation with coun-
tries outside Europe”.

12. REFERENCES
[1] NS notes and documentation. In

http://www.isi.edu/vint/nsnam.
[2] E. Arikan. Some complexity results about packet radio

networks. Proc. IEEE Transactions on Information Theory,
30:681–685, July 1984.

[3] D. Baker and A. Ephremides. The architectural organization
of a packet radio network via a distributed algorithm. Proc.
IEEE Transactions on Communications, 29:1694–1701,
1981.

[4] D. Bertsekas and R. Gallager. Data networks.
[5] BluetoothSIG. Specification of the Bluetooth system, version

1.2. In www.bluetooth.com.
[6] I. C. C. Cheng and P. Kumar. A protocol to maintain a

minimum spanning tree in a dynamic topology. In Proc.
ACM SIGCOMM, Stanford, CA, August 1988.

[7] Z. Cao and E. Zegura. Utility Max-Min: An
Application-Oriented Bandwidth Allocation Scheme. In
Proc. IEEE INFOCOM, New York, NY, March 1999.

[8] A. Charny. An algorithm for rate allocation in a packet
switching network with feedback, M.Sc. Thesis, May 1994.

[9] L. Chen, S. Low, and J. Doyle. Joint Congestion Control and
Media Access Control Design for Ad Hoc Wireless Networks
. In Proc. IEEE INFOCOM, Miami, FL, USA, 2005.

[10] S. Chen and C. Nahrstedt. Distributed Quality of Service
Routing in ad hoc networks. Proc. IEEE Journal on Selected
Areas in Communications, 17, August 1999.

[11] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In Proc. ACM
SIGCOMM, Austin, TX, USA, September 1989.

[12] R. Draves, J. Padhye, and B. Zill. Routing in Multi-radio,
Multi-hop Wireless Mesh Networks. In Proc. ACM
MOBICOM, Philadelphia, PA, USA, September 2004.

[13] J. Edmonds. Maximum matching and a polyhedron with 0,1
vertices. In Proc. Journal of Research National Bureau of
Standards, 69(B), 1965.

[14] Z. Fang and B. Bensaou. Fair Bandwidth Sharing Algorithms
based on Game Theory Frameworks for Wireless Ad-hoc
Networks. In Proc. IEEE INFOCOM, Hong Kong, March
2004.

[15] V. Gambiroza, B. Sadeghi, and E. Knightly. End-to-End
Performance and Fairness in Multihop Wireless Backhaul
Networks. In Proc. ACM MOBICOM, Philadelphia, PA,
USA, September 2004.

[16] J. Garcia-Luna-Aceves and J. Raju. Distributed Assignment
of Codes for multi-hop Packet Radio Networks. In Proc.
MILCOM, Monterey, CA, USA, October 1997.

[17] M. Gerla and T. Tsai. Multicluster, mobile multimedia radio
network. Proc. ACM Baltzer Journal of Wireless Networks,
1:255–65, August 1995.

[18] R. Guerin, J. Rank, S. Sarkar, and E. Vergetis. Forming
Connected Topologies in Bluetooth Adhoc Networks. In
Proc. International Teletraffic Congress (ITC), Berlin,
Germany, September 2003.

[19] S. L. H. Luo and V. Bharghavan. A new model for packet
scheduling in multihop wireless neworks. In Proc. ACM
MOBICOM, Boston, MA, USA, August 2000.

[20] B. Hajek and G. Sasaki. Link Scheduling in Polynomial
Time. Proc. IEEE Transactions on Information Theory,
34:910–917, September 1988.

[21] I. Holyer. The NP-completeness of edge coloring. Proc.

154

SIAM Journal of Computing, 10:169–197, 1981.
[22] X. Huang and B. Bensaou. On Max-min Fairness and

Scheduling in Wireless Ad-Hoc Networks: Analytical
Framework and Implementation. In Proc. ACM MOBIHOC,
Long Beach, CA, USA, October 2001.

[23] IBMResearch. BlueHoc: Bluetooth Performance Evaluation
Tool. In http://oss.software.ibm.com/bluehoc/.

[24] M. Inc. Fostering Disruptive Technologies. In
www.meshnetworks.com, Maitland, FL, USA, January 2002.

[25] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm for
sensor networks. In Proc. ACM MOBICOM, Boston, MA,
USA, 2000.

[26] L. Kalampoukas. Congestion Management in High Speed
Networks. PhD thesis, University of California Santa Cruz,
September 1997.

[27] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and
B. Vandalore. The ERICA switch algorithm for ABR traffic
management in ATM networks. TON, 8(1):87–98, 2000.

[28] F. Kelly, A. Maulloo, and D. Tan. Rate control in
communication networks: shadow prices, proportional
fairness and stability. Journal of the Operational Research
Society, 49:237–252, 1998.

[29] M. Kodialam and T. Nandagopal. Characterizing the
Achievable Rates in Multihop Wireless Networks. In Proc.
ACM MOBICOM, San Diego, CA, USA, September 2003.

[30] C. Lin. On-demand QoS routing in Multihop mobile
networks. In Proc. IEEE INFOCOM, Anchorage, AK, April
2001.

[31] U. K. N. Johansson and L. Tassiulas. A distributed
scheduling algorithm for a Bluetooth scatternet. In Proc.
International Teletraffic Congress (ITC), Salvador da Bahia,
Brazil, September 2001.

[32] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan.
Achieving MAC layer fairness in Wireless Packet Networks.
In Proc. ACM MOBICOM, Boston, MA, USA, October
2000.

[33] M. Post, A. Kershenbaum, and P. Sarachik. A Distributed
Evolutionary Algorithm for Reorganizing Network
Communications. In Proc. MILCOM, Boston, MA, October
1985.

[34] M. Post, P. Sarachik, and A. Kershenbaum. A Biased Greedy
Algorithm for Scheduling Multihop Radio Networks. In
Proc. Annual Conference on Information Sciences and
Systems (CISS), Johns Hopkins Univ., March 1985.

[35] V. B. R. Sivakumar, B. Das. Spine Routing in Ad hoc
Networks. ACM/Baltzer Publications Cluster Computing
Journal, Special Issue on Mobile Computing, 3, June 1998.

[36] T. Salonidis and L. Tassiulas. Asynchronous TDMA ad hoc
networks: Scheduling and Performance. Proc. European
Transactions In Telecommunications (ETT), 3, May-June
2004.

[37] T. Salonidis and L. Tassiulas. Distributed dynamic
scheduling for end-to-end rate guarantees in wireless ad hoc
networks. Technical report, TR 2004-7, Institute of Systems
Research (ISR), University of Maryland, College Park, MD,
USA, 2004.

[38] T. Salonidis and L. Tassiulas. Distributed on-line schedule
adaptation for balanced slot allocation in wireless ad hoc
networks. In Proc. IEEE International Workshop on Quality
of Service (IWQoS), Montreal,Canada, June 2004.

[39] S. Sarkar and L. Tassiulas. End-to-end bandwidth guarantees
through fair local spectrum share in wireless ad-hoc
networks. In Control and Decision Conference (CDC), Maui,
HI, USA, December 2003.

[40] C. Shannon. A theorem on colouring lines of a network. J.
Math. Phys., 39:148–151, 1948.

[41] J. Silvester. Perfect Scheduling in Multihop Broadcast
Networks. In Proc. International Conference on Computer
Communications (ICC), London, England, Sepmteber 1982.

[42] G. Tan, A. Miu, J. Guttag, and H. Balakrishnan. An Efficient
Scatternet Formation Algorithm for Dynamic Environments.
In Proc. IASTED Communications and Computer Networks
(CCN), Cambridge, MA, November 2002.

[43] L. Tassiulas and S. Sarkar. Maxmin Fair Scheduling in
Wireless Networks. In Proc. IEEE INFOCOM, New York,
NY, USA, June 2002.

[44] J. Wieselthier, G. Nguyen, and A. Ephremides. On the
Construction of Energy-Efficient Broadcast and Multicast
Trees in Wireless Networks. In Proc. IEEE INFOCOM, Tel
Aviv, Israel, April 2000.

[45] K. N. Y. Xue, B. Li. Price-based Resource Allocation in
Wireless Ad Hoc Networks. In Proc. 11th International
Workshop on Quality of Service (IWQoS), Monterey, CA,
USA, June 2003.

[46] Y. Yi and S. Shakkottai. Hop-by-hop Congestion Control
over a Wireless Multi-hop Network. In Proc. IEEE
INFOCOM, Hong Kong, March 2004.

[47] G. Záruba, S. Basagni, and I. Chlamtac. Bluetrees -
scatternet formation to enable Bluetooth-based ad hoc
networks. In Proc. International Conference on Computer
Communications (ICC), St. Petersburg, Russia, June 2001.

[48] W. Zhang and G. Cao. Optimizing Tree Reconfiguration for
Mobile Target Tracking in Sensor Networks. In Proc. IEEE
INFOCOM, Hong Kong, March 2004.

[49] C. Zhu and M. Corson. QoS routing for mobile ad hoc
networks. In Proc. IEEE INFOCOM, New York, NY, June
2002.

155

APPENDIX

A. ALGORITHM PSEUDOCODES

Procedure SampleReschedule
begin

SR-1 PrioritizeLinks();
SR-2 lc = GetMaxUnstableChildLink();

if (lc �= −1) then
if (busybit ==0 AND BusyBit(v)==0) then

SR-3 busybit=1;
SR-4 send SC INFO packet to v;

end
end

end

Procedure PrioritizeLinks
Assign priorities to children links in order of appearance after
slot e(u)

lp

local : CH = set of children links, LINKSET, p, slot
begin

p = |CH |; LINKSET = CH; slot = e(u)
lp

⊕ 1;
repeat

lc = local schedule[slot];
if (lc ∈ LINKSET) then

plc = p /*set the priority of lc to p*/;
p=p-1;
LINKSET = LINKSET - {lc} ;

end
slot = slot ⊕ 1;

until LINKSET is empty;

end

Function GetMaxUnstableChildLink
Return the maximum priority unstable child link or -1
otherwise
local : CH = set of my children links, Jk equals 1 if I am

slave on child link k and zero otherwise
begin

for p=|CH | down to 1 do
lc = the child link of priority p;
if (not satisfied(lc)) then

return lc;
else

lpsum =
∑

k∈CH:pk<pl
(τk + Jk);

if (lpsum > |[elc ⊕ 1, slp � 1]|)) then
return lc;

end
end

end
return -1;

end

Figure 7: Procedure SampleReschedule()

Algorithm 1: STABLETREE
Data : Asynchronous events at node u1 Parent node(link):

p(lp) (or none if root), Child node (link): c (lc)
Result : Corresponding actions

E1 Events: e1: Any adjacent link becomes non-satisfied;
OR e2: Scheduling of a link just completed;

begin
if (event e2 occured) then

E1-1 busybit =0;

end
if (busybit ==0) then

if (I am root) then
SampleReschedule();

else
if (wait parent ==0)) then

E1-2 wait parent =1;
E1-3 send STABLE REQ packet to parent p;

end
end

end
end

E2 Event: STABLE REQ packet received from child c;
begin

if (I am root OR satisfied(lp)) then
if (stable(lc)) then

E2-1 send STABLE ACK packet to child c;

else
if (busybit ==0 AND wait parent ==0) then

E2-2 SampleReschedule();

end
end

end
end

E3 Event: STABLE ACK packet received from parent p;
begin

E3-1 wait parent =0;
E3-2 SampleReschedule();

end
E4 Event: SC INFO packet received from node v;

begin
if (I am child of v) then

E4-1 busybit =1;
E4-2 wait parent =0;
E4-3 send SC INFO packet to v;

else
E4-4 AssignSlots(lv) /*Determine new slot positions for

lv*/ ;
E4-5 Initiate distributed coordination mechanism by

updating v and affected neighbors with SC UPD
packets.

end
end

Figure 8: The asynchronous distributed link scheduling algo-
rithm

156

