
1

PILOT: ProbabIlistic Lightweight grOup

communication sysTem for Mobile Ad Hoc

Networks†

Jun Luo Patrick Th. Eugster Jean-Pierre Hubaux

School of Computer and Communication Sciences

Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

Email: {jun.luo, patrick.eugster, jean-pierre.hubaux}@epfl.ch

Abstract

Providing reliable group communication is an ever recurring issue in distributed settings. In mobile

ad hoc networks, this issue becomes more significant since all nodes act as peers, while the issue

gets even more challenging due to highly dynamic and unpredictable topology changes. In order to

overcome these difficulties, we deviate from the conventional point of view, i.e., we “fight fire with

fire”1, by exploiting the nondeterministic nature of ad hoc networks. Inspired by the principles of gossip

mechanisms and probabilistic quorum systems, we present in this paper a ProbabIlistic Lightweight

grOup communication sysTem (PILOT) for ad hoc networks, a two layer system consisting of a set of

†The work presented in this paper was supported (in part) by the National Competence Center in Research on Mobile

Information and Communication Systems (NCCR-MICS), a center supported by the Swiss National Science Foundation under

grant number 5005-67322. (http://www.terminodes.org)

1This expression was recently used for another gossip-based protocol [1], albeit one with a different goal from this paper.

September 30, 2003 DRAFT

ascetic
Technical Report No. IC/2003/35; May 26, 2003

2

protocols for reliable multicasting and data sharing in mobile ad hoc networks. The system performance,

in terms of both reliability (fault tolerance) and efficiency (overhead), is predictable and controllable.

We present an analysis of PILOT performance, which is used to fine tune protocol parameters to obtain

the desired tradeoff between reliability and efficiency. We confirm the predictability and tunability of

PILOT through simulations with ns-2.

Index Terms—Mobile ad hoc networks, group communication systems, quorum systems, reliable multicast,

gossiping, data sharing, replication

NOMENCLATURE

Rds Reliability degree of single packet dissemination (Sections 3.2, 5 and 6).

Rdc Reliability degree of continuous packet dissemination (Sections 3.2, 5 and 6).

Rda Reliability degree of access (Sections 3.2, 5 and 6).

Nl Network load (Sections 3.2, 5 and 6).

F Cumulative distribution function of the reliability degree (Sections 3.2 and 5).

λo Overall access rate to PILOT (Sections 3.2, 5 and 6).

λu Update rate to PILOT (Sections 3.2, 5 and 6).

λq Query rate to PILOT (Sections 3.2, 5 and 6).

F Gossip fanout (Sections 4.2.1, 5, and 6).

τq Gossip quiescence threshold (Sections 4.2.1, 5, and 6).

τa Gossip age threshold (Sections 4.2.1, 5, and 6).

ξW , ξ̂W Write quorum nominal size and real size, respectively (Sections 4.4, 5 and 6).

ξR, ξ̂R Read quorum nominal size and real size, respectively (Sections 4.4, 5 and 6).

n Group (or, in particular, STS) size (Sections 5 and 6).

H Random variable representing the length of an arbitrary routing path (Section 5).

pf Failure probability for each hop (Section 5).

p, q Probability of infection and non-infection, respectively (Section 5).

Sr Number of infected nodes after round r (Section 5).

νr, ν Distribution of Sr (also ξ̂r
W) and its eventual value, respectively (Section 5).

µ Distribution of ξ̂R (Section 5).

pr Probability of a query occurring within rounds r + 1 after an update (Section 5).

pe Server unavailability in the case of query (Sections 5 and 6).

r, r̃ A certain gossip round and the final round, respectively (Section 5).

September 30, 2003 DRAFT

3

1 INTRODUCTION

Group Communication Systems (GCSs) [2] are useful infrastructures on which various reliable

distributed computing functions can be built. The need for such systems arises not only in wired

networks but also in mobile ad hoc networks. Even some computing functions, which traditionally

rely on a centralized service, have to be implemented in a distributed way for ad hoc networks,

since the service provided by a single node can hardly be dependable. Mobility management

[3, 4], for instance, relies on a special group of nodes to continuously track locations of mobile

nodes and serve requests to these location data. The distributed management of cryptographic

keys or certificates [5, 6] and group security functions like access control or key agreement [7, 8]

represent another class of applications. Last but not least, distributed dynamic host configuration

protocols such as naming or addressing services [9, 10], which are essential to build a functional

network, need to make agreements within the whole network.

Unfortunately, the complexity of building reliable GCSs, which is prohibitively high already in

wired networks, is further amplified in ad hoc networks due to highly dynamic and unpredictable

topology changes. In fact, even guaranteeing reliability of multicast, a key building block of

GCSs, becomes extremely hard. As a result, many distributed computing functions that would

depend on reliable GCSs have to either rely on the fragile “reliability” provided by flooding

[10] or make assumptions about such a service while waiting for it to appear [5].

In this paper, we identify two fundamental problems in the context of group communication,

namely (i) multicast and (ii) data sharing, and we define notions of probabilistic reliability for

these problems, aimed at ad hoc networks. We then present our protocol suite, called ProbabIlistic

Lightweight grOup communication sysTem (PILOT) for ad hoc networks, as a solution. Innovating

on the principles of gossip mechanisms and probabilistic quorum systems, PILOT provides

probabilistic reliability for multicasting and data sharing, based only on a unicast primitive

(rather than a multicast primitive like MAODV [11]) in order to improve the adaptability to

September 30, 2003 DRAFT

4

future technology developments. We present analytical results predicting the performance of

PILOT in terms of message overhead and reliability degree. We then compare these results with

simulation results obtained with the ns-2 simulator to show that we can have useful predictions

on the performance of PILOT. To the best of our knowledge, the work presented in this paper, as

part of the Terminodes project [12], is the first to provide a complete solution to the problems of

reliable multicast and data sharing in ad hoc networks, along with both analytical and simulation

results. It smoothly integrates, expands and completes our previous individual results [13, 14]

into a compound group communication system.

The remainder of this paper is structured as follows. Section 2 overviews related work.

Section 3 details the network model and the problem to be solved. Section 4 presents our PILOT

system. Section 5 analyzes PILOT in terms of reliability and efficiency. Section 6 compares

those values with simulation results, and also investigates other aspects of PILOT, such as its

sensitivity to node failures. Finally, Section 7 concludes the paper.

2 RELATED WORK

The prosperous research on group communication toolkits have led to a multitude of results

in wired networks, such as Ensemble [15] and Spread [16]. However, similar systems have not

yet appeared in ad hoc networks, although certain supporting mechanisms like token circulation

[17], random walk agent [18], reliable broadcast [19], and membership management [20] have

been proposed. Our PILOT system is a first step towards building a prototype for a group

communication toolkit. Rather than emphasize the discussion in the framework of GCSs, we

will hence focus on the relevant underlying building blocks instead.

2.1 Gossip-based Probabilistic Reliable Multicast

As opposed to the “perfect” reliability guarantee for mutlicast, (cf reliable broadcast [21]),

approaches to a form of probabilistic reliable multicast (e.g., probabilistic broadcast (pbcast) [22]

and lightweight probabilistic broadcast (lpbcast) [23]) reduce the protocol overhead by sacrificing

September 30, 2003 DRAFT

5

safety guarantees such as atomicity through the use of a gossip-based dissemination scheme.

These protocols also equally distribute the load over nodes and thus outperform the so-called

“best effort [22]” reliable multicast (e.g. [24, 25]) by improving the resilience to arbitrary node

failures and providing prediction on protocol reliability.

The Anonymous Gossip (AG) protocol [26], a descendant of the pbcast protocol, pioneered

the recent research efforts on gossip-based multicast for ad hoc networks. Through the concept

of anonymous gossip, any agreement on membership is avoided during the gossip-based repair

phase. This however shifts the responsibility for the membership management to the MAODV

layer [11], which the AG protocol also relies upon for a preliminary, rough packet dissemination.

These prerequisites make the AG protocol more difficult to apply in a broader context than the

one offered by MAODV. Furthermore, the property of predictable behavior, an important merit

of gossip-based protocols, is lost due to the dependence on MAODV to guide the gossips.

2.2 Probabilistic Quorum Systems

Quorum systems [27] have been proposed as an alternative to the state-machine approach [28]

for reliable data sharing. They improve the efficiency of the replication of the stored data by

better balancing the overhead between updates and queries. Unfortunately, “original” quorum

systems, also termed strict quorum systems, do not apply well to highly dynamic environments.

This is because the very construction of these quorums is not a trivial task, the outcome of

this task being strongly subject to membership changes. By introducing probabilities for the

intersection of individual quorums, probabilistic quorum systems [29] relax the construction

rules for quorums and leave more freedom for trading protocol overhead for reliability. While

this smoother tradeoff has constituted the driving force behind probabilistic quorum systems, it

turns out that the resulting reduced determinism makes such an approach also more viable for ad

hoc networks than a strict approach. The overhead considered in [29] is the charge of computation

for an individual server. Our definition, however, has to focus on the charge of network resources,

September 30, 2003 DRAFT

6

because computation is much cheaper than communication in wireless networks.

Haas and Liang [30] first introduced probabilistic quorum systems into ad hoc networks for

mobility management, under the name of randomized database groups. They propose a very

interesting way to express both fault tolerance and load as costs of their system, and optimize

those costs numerically. Considering the similarity between their system and PILOT, we provide

some comparisons between the two solutions in Section 4.6.

2.3 Data Management in Ad Hoc Networks

The 7DS system presented in [31] shares certain features of our PILOT system, with respect to

the diffusion scheme used for data dissemination. However, since the two systems are designed

for different network environments (7DS assumes a rarely connected network, whereas PILOT

considers networks of relatively high density), the underlying diffusion mechanisms are quite

different. Whereas 7DS passively exploits node mobility to relay data from one node to the other,

which can result in a considerable delay for data spreading but has the potential to improve power

and bandwidth usages, PILOT more actively “pushes” data to other nodes with a gossip-based

protocol. As a result, the analytical models for the two diffusion processes are also different

(diffusion controlled process for 7DS and epidemic model for PILOT).

Both [32] and [33] try to guarantee data accessibility upon network partitioning in a replication

system by investigating the problem of dynamic replica allocation. While [32] makes assumptions

(e.g., data items are not updated) that seem to be too strong to capture the reality of mobile

networks and hence has limited application scope, the approach in [33] is more practical in

the sense that it takes into consideration topology information (e.g., connection stability) when

replicating data; and data replication only happens when necessary, according to certain partition

detection schemes. As far as system models are concerned, the problem we solve is somewhat

orthogonal to the one of [33]. The mobility model they propose assumes strong correlations

between different nodes (e.g., nodes are organized into mobility groups), which might lead to

September 30, 2003 DRAFT

7

frequent network partitions. We, however, consider a purely random mobility pattern, in which

network partitions seldom happen and mobility prediction does not make much sense.

3 GOALS AND ASSUMPTIONS

This section models the considered environment and states the problem to be solved.

3.1 Model

We consider an ad hoc network consisting of a set N of nodes and assume that every node

i ∈ N has a unique id. Nodes may fail only by crashing, i.e., stopping to function. Failures are

not permanent and can be recovered from.2 All communications between different nodes are

assumed to rely on the underlying unicast protocol. We use DSR [34] as an example in this

paper but, in practice, our solution can be made to work with any on-demand routing protocol.

3.2 Problem Statement

We consider an ad hoc network where reliable group communication primitives are required

by mobile nodes. Within the broad scope of group communication, we address two fundamental

problems, namely multicast and data sharing, and associate each of them with a notion of

probabilistic reliability.

1) Reliable Multicast Protocol: The multicast protocol disseminates packets within a multicast

group G ⊂ N, which, for brevity, will be referred to as group hereafter. We define two metrics

to measure the probabilistic reliability achieved by this protocol as follows:

• Reliability Degree of Single Packet DisseminationRds: The fraction of group members that

receive the packet sent by a certain member.

• Reliability Degree of Continuous Packet DisseminationRdc: The fraction of all packets that

are received by a certain member, assuming that packets are continuously sent from the

same member with rate λo.

2This failure model also captures the case where nodes are deliberately switched off (e.g., for the purpose of battery replacement

or operating system rebooting, or because the users do not intend to make use of their devices for a while).

September 30, 2003 DRAFT

8

Both metrics are described by their cumulative distribution function (cdf) F(x) : [0, 1] → [0, 1];

it means that F(x) is the probability that Rds (or Rdc) is at most x.

2) Reliable Data Sharing Service: Let STS3 ⊂ N be a storage entity and ρ be a set of access

protocols for STS. The STS holds shared data in a replicated fashion, and the consistency model

for data replication is considered to be shared-private [37], i.e., the service does not commit

itself to any access ordering except FIFO order.4 Given access rates λu and λq for updates

and queries, respectively, the data sharing service is probabilistically reliable in nature if a query

access ρq(STS, λq) obtains, with a certain probability, the latest version of a data object resulting

from an update access ρu(STS, λu). The metric for the service is:

• Reliability Degree of Access Rda: The probability that a query operation acquires the most

recent update of the corresponding data object, considering both node and channel failures.

The overhead is measured by the Network Load Nl, which is the average number of uni-

cast packet×hop per multicast packet to achieve a certain Rds or per unit time to achieve a certain

Rdc or Rda. This definition is adapted to ad hoc networks by taking into account the number of

hops to route a particular packet. Nl considers only the load generated by our protocols, which

is independent of the various possible implementations of the underlying networking functions.

Our goal is to design a set of protocols that achieve a high reliability degree Rd (representing

Rds, Rdc, and Rda hereafter) even under large arrival rates λo (a function of λu and λq for data

sharing), while incurring reasonable overhead Nl. We target relatively large scale networks, i.e.,

networks with tens or even hundreds of nodes, with a random mobility pattern. Under a certain

λo, the optimal performance with respect to both Rd and Nl does not exist, since one can always

be sacrificed to improve the other. Hence, we will study the trade-off between the two metrics

and show how to fine tune parameters to trade Rd with Nl, or the other way around.

3STS is an abbreviation for Storage Set, a special group in the network. The algorithm used to initialize the STS will not be

discussed here since it is out of the scope of this paper. Refer to [35, 36] for examples of initialization algorithms.

4All the applications we have mentioned in the introduction comply with this model.

September 30, 2003 DRAFT

9

4 PILOT: PROBABILISTIC GROUP COMMUNICATION SYSTEM

In this section, we first present the structure of our PILOT system, then we detail each

component of PILOT separately.

4.1 Overview: Layered Architecture of PILOT

PILOT is a two layer system, illustrated by the dark grey part in Fig. 1(a). It has a probabilistic

multicast protocol, Route Drive Gossip (RDG), as its basis. The protocol is gossip-based [22]

RDG

R DG
2

PAN

On-demand Routing Protocol S ST

client

client

client

server

server

update

query

update

query

client

S ST

client

agent

agent

agent

agent

reply

server

reply

(a) (b)

P ApplicationsILOT

Round 1 Round 2 Round 3

(c)

Fig. 1. Principles of PILOT. (a) Architecture of PILOT: the basic probabilistic multicast protocol (RDG) is at the bottom; R2DG

and PAN are built upon the basic protocol. (b) Message exchanges for updating and querying the STS in PAN. (c) Gossip-based

multicasting in RDG.

in nature: it proceeds round by round while the receivers in each round are randomly chosen

and they relay packets to the receivers of the later round(s), as shown in Fig. 1(c). Upon this

layer, two dedicated services are built. R2DG (Reliable RDG) is devised for continuous packet

dissemination. It exploits the fact that packet losses can be detected by observing gaps in the pid

(see Section 4.2.1) sequence and thus piggybacks a negative acknowledgement with each packet

sent (or relayed) to pull the lost packet back. The other service, Probabilistic quorum system for

Ad hoc Networks (PAN), provides reliable data sharing. It assumes a special group STS to store

September 30, 2003 DRAFT

10

the shared data in a replicated manner. Any node i ∈ STS is termed server, whereas the rest of

the nodes are termed clients of the STS. Data queries and updates are directed to an arbitrary

server in the STS while the message dissemination within the STS is performed by RDG, as

shown in Fig. 1(b). According to their requirements, applications can either use the upper layer

services or directly call RDG if only single packet dissemination service is required.

4.2 RDG: Basic PILOT Multicast Protocol

Our RDG protocol uses a pure gossip scheme, as it is not built upon any underlying multicast

protocol, in contrast to [26] (the only related approach we are aware of). As opposed to

“traditional” gossip protocols that only consider the membership information of a group, RDG

adapts to the peculiarity of ad hoc networks by also taking the availability of routing information

into account. Although the resulting membership view for each member is just a random subview

due to the randomness of routing information that nodes can have, the protocol still works very

well in the sense that the reliability is in practice very high and also predictable.

4.2.1 Protocol Overview

Each packet multicast by RDG is uniquely identified by its identifier pid , defined as a tuple

[group ID (gid), source ID (sid), pkt seq. no. (seq)]. The protocol has four data structures. In the

data management part, pidList stores the pids of the received packets, and Buffer temporarily

stores these packets. The other two are for the membership management of the protocol. gidList

stores the identifiers of all groups that a node belongs to. View is composed of three fields: (i)

AView stores the ids of known members, whose corresponding routing or location information

is known; (ii) PView stores the ids of known members, whose corresponding routing or location

information is currently unavailable; and (iii) RView stores the ids of members having indicated

their willingness to leave.5 All these records are divided into several subsets with each subset

5AView , PView , and RView stand for active view, passive view, and remove view, repectively.

September 30, 2003 DRAFT

11

being dedicated to a certain group, i.e., each node i has four subrecords (pidListgid
i , Buffer gid

i ,

gidListgid
i , and View gid

i) for a certain group G (with identifier gid) that it belongs to. In addition,

each record is of limited size, noted |R|M , for a given record R.

RDG offers seven operations, which are grouped into three sessions corresponding to their

functionality. The join session defines the behavior of the node interested in joining a group

and the reactions of other group members. The leave session defines the behavior of the node

intending to leave the group and the reactions. The GOSSIP task is periodically executed by a

node to propagate newly received packets. Furthermore, nodes respond to the gossip messages

received. In relation to the GOSSIP task, three protocol parameters are defined here: (i) the

fanout (F) is the number of gossip destinations randomly selected from the AView for each

gossip emission, (ii) the quiescence threshold (τq) is related to each data packet: a packet will

be removed from Buffer after having been gossiped for τq rounds by individual nodes, and (iii)

the age threshold (τa) limits the propagation range of each packet. These parameters are set by

the upper layer to control the behavior of the protocol (see Section 4.2.3).

4.2.2 Join Session

A node intending to join a group floods the network with a GROUPREQUEST message to

search for other group members while announcing its existence. Upon receiving such a message

from a certain member, all members update their AView with the new id . They also return a

GROUPREPLY to the request initiator with probability Preply . The probability is set by each node,

according to its own estimation of the group size, in order to avoid GROUPREPLY storms. The

initiator of the GROUPREQUEST also updates its AView after receiving the GROUPREPLY. The

detailed description can be found in [13].

By recording the route of each incoming packet, DSR ensures that a new element in AView

has a corresponding route entry in the DSR routing table. The validity of this relationship is

periodically checked and the AView and PView are updated accordingly. When the size of

September 30, 2003 DRAFT

12

AView drops below some threshold τv, the node has to reinitiate a join session.

4.2.3 Gossip/Leave Session

When a node wants to multicast a packet p, it inserts the packet in its Buffer as shown

in Fig. 2 (a). A node intending to leave a group sets a leaveFlag for that group as shown in

Fig. 2 (b). Each member of the group periodically (every T ms)6 gossips packets stored in

Buffer to F other nodes randomly chosen from AView . It also piggybacks part of its view of

the membership. A data packet is removed from Buffer after having been gossiped for τq times.

The SEND primitive is a direct call to the underlying unicast protocol, which will also be used

by other parts of PILOT for the same purpose. (see Fig. 2 (c) lines 8∼16). If the node intends to

leave, only the field of rmb is used (see Fig. 2 (c) lines 3∼6). As illustrated in Fig. 2 (d), a group

member receiving a gossip packet will (i) update the Buffer with new packets (lines 3∼8), (ii)

remove the obsolete member from its View (lines 10∼14), and (iii) add the new member to the

View (lines 16∼20). Note that a packet relayed τa times will not be gossiped again.

RDG performs the message dissemination and membership tracking at the same time. Due to

the node mobility and frequent membership changes, it is not practical to have a full membership

view for each member. In fact, even if it is possible to have the ids of all members, there is no

guarantee that the corresponding routing or location information is available. Our routing/location

oriented membership management scheme tries to provide each member with a partial view,

approximately random in nature, by exchanging membership information between members.

The underlying scheme, together with sporadic losses and discoveries of the routing or location

information7, has a similar effect as the reshuffling of the partial view.

6In order to save bandwidth, we apply the binary exponential backoff algorithm to adjust the period when there is no new

packet to be sent.

7The information could be lost due to the node mobility or the timeout of route cache timer. On the other hand, a node can

also obtain new information by requesting it or tapping it from packets under transmission.

September 30, 2003 DRAFT

13

1: procedure RDG-CAST(gid , p)

2: p.gid ← gid

3: Buffergid
i ← Buffergid

i ∪ {p}

(a) Multicast

1: procedure LEAVE(gid)

2: leaveFlaggid
i ← true

(b) Node leave

1: task GOSSIP(gid) /* Executed every T ms */

2: if leaveFlaggid
i = true then

3: p.rmb ← idi

4: DS (1) ← set ⊂< AViewgid
i such that |set | = F (2)

5: for all id ∈ DS do

6: SEND(idi, id , p)

7: else

8: while Buffer 6= ∅ do

9: p ← pkt ∈ Buffergid
i

10: if pkt has been gossiped τq times then

11: Buffergid
i ← Buffergid

i \{pkt}

12: p.rmb ← rmb ∈< RViewgid
i

13: p.mb(3) ← mb ∈< AViewgid
i ∪ PViewgid

i

14: DS ← set ⊂< AViewgid
i such that |set | = F

15: for all id ∈ DS do

16: SEND(idi, id , p)

(1) DS stands for destination set.

(2) A subscript < stands for random selection.

(3) mb and rmb stands for member and removed member.

(c) Packet emission

1: upon RECEIVEGOSSIP(ids, idi, p) do

2: /* Step 1: Update Buffer with new packets */

3: if p.pid 6∈ pidListp.gid
i then

4: pidListp.gid
i ← pidListp.gid

i ∪ {p.pid}

5: p.age ← p.age + 1

6: if p.age < τa then

7: Bufferp.gid
i ← Bufferp.gid

i ∪ {p}

8: DELIVER(p) /* to the upper layer */

9: /* Step 2: Remove obsolete member from View */

10: AViewp.gid
i ← AViewp.gid

i \{p.rmb}

11: PViewp.gid
i ← PViewp.gid

i \{p.rmb}

12: RViewp.gid
i ← RViewp.gid

i ∪ {p.rmb}

13: while |RViewp.gid
i | > |RViewp.gid

i |M do

14: RViewp.gid
i ← RViewp.gid

i \{rmb ∈< RViewp.gid
i }

15: /* Step 3: Add new member to View */

16: if p.mb 6∈ (AViewp.gid
i ∪ PViewp.gid

i) then

17: if there exists a route to that node then

18: AViewp.gid
i ← AViewp.gid

i ∪ {p.mb}

19: else

20: PViewp.gid
i ← PViewp.gid

i ∪ {p.mb}

(d) Packet reception

Fig. 2. Gossip/leave session at node i

Considering that the locality of network traffic can reduce the network load, we apply a

general optimization by raising the awareness of the topology. This optimization is based on

the assumption that the underlying routing protocol can provide partial topological information.

Our heuristics in the case of DSR works like this: for a given group member, different weights

are assigned to the members in AView according to the length of the routing paths to them,

i.e., the longer the path the lower the weight, such that it chooses a “near” member with higher

probability to relay a packet. A more detailed protocol description can be found in [13].

September 30, 2003 DRAFT

14

4.3 R2DG: Continuous Packet Multicasting Service

If a stream of packets is multicast from a source, the pid sequence of received packets, at a

certain group member, provides important information about packet loss. Based on RDG, our

R2DG protocol exploits this feature to enhance the reliability of multicasting.

R2DG has its own data structures that are the same as for the data management part of RDG,

except that the Buffer is much larger than that of RDG in order to have enough packets to

respond to a negative acknowledgement (or pull). Before invoking the RDG primitive, R2DG

1: procedure P-RDG-CAST(gid , p)

2: p.pull ← pid of the most recent missing packet

3: RDG-CAST(gid , p)

4: task PULL(gid) /* Executed periodically */

5: p.pull ← pid of the most recent missing packet

6: RDG-CAST(gid , p)

(a) Multicast and pull task

1: upon RECV(p) do

2: pidListp.gid
i ← pidListp.gid

i ∪ {p.pid}

3: Bufferp.gid
i ← Bufferp.gid

i ∪ {p}

4: if p.pull ∈ pidList then

5: SEND(idi, p.sid , pktp.pull)

6: DELIVER(p) /* to the upper layer */

(b) Packet reception and the response to pull

Fig. 3. Multicast and pull session at node i

(as shown in Fig. 3 (a) lines 1∼3) inserts the information about a missing packet into the packet

header. In addition (task PULL in Fig. 3 (a) lines 4∼6), a packet with an empty payload (pull-

packet) is periodically sent to the lower layer with similar information attached to it. The period

is dynamically adjusted according to the number of missing packets. A group member receiving

such a packet will try to respond to the pull with the packets it has, see Fig. 3 (b).

Considering that R2DG passes pull-packets to RDG irregularly, RDG should behave more

intelligently when gossiping, in the sense that it should try to piggyback the pull information

along with a data packet instead of sending the pull-packet directly.

4.4 PAN: Reliable Data Sharing Service

Our PAN system relies on the underlying RDG to provide reliable data sharing services. It

includes two protocols: a client protocol and a server protocol, as shown in Fig. 1(b). In both

September 30, 2003 DRAFT

15

cases of update and query, a client sends a request to an arbitrary server in the STS.8 This server,

termed agent for that client, then performs a corresponding operation of the server protocol. We

assume that all messages (updates and queries) for our protocols have relatively small sizes such

that they can be fit into single network packets. This requirement is justified by considering the

applications we aim at. For example, a public key is only hundreds of bits long and location

information might be just a three-dimension coordinate. We further require that each message

be uniquely identified by its identifier mid, which is a tuple [source ID (sid), object ID (oid),

version no. (ver)]9, and that there is a way to establish a FIFO order among mids.10 Since the

client protocol, a one-to-one connection, can always implement certain mechanisms (e.g., ARQ

[38]) to ensure reliability, we will not consider this protocol in our analysis and simulations. In

the rest of this section we focus on the server protocol.

The server protocol maintains a quorum system building upon the STS with the support from

the underlying RDG protocol. We distinguish two types of quorums within the quorum system.

A quorum can be a write quorum, accessed by an update, or a read quorum in the case of an

access by query. Throughout the presentation, as well as in the analysis and simulations of the

server protocol, we will use two symbols ξ? and ξ̂? to represent the nominal quorum size and

the real quorum size, where “?” can be “W” for a write quorum or “R” for a read quorum. The

nominal size is the number of servers that a certain update or query attempts to access, while

the real size is the number of servers effectively accessed.

4.4.1 Server Update Protocol

The agent diffuses an update message mu within the STS by invoking the RDG protocol,

as shown in Fig. 4 (a). Two extra parameters F and τa (see Section 4.2.1 for the definition of

8A client may have several ways to acquire information (e.g., identity and routing) about servers, depending on certain

implementations of the STS initialization algorithm.

9The elements oid and sid stand for the ID of the data object to be queried or updated and of the object owner, respectively.

10mid1 > mid2 implies that mid1.sid = mid2.sid ∧mid1.oid = mid2.oid ∧mid1.ver > mid2.ver .

September 30, 2003 DRAFT

16

these parameters) are provided in order to control the size of the resulting quorum. In this paper,

the value of τa is always set to ∞ for the server update protocol to simplify the analysis and

simulations.

In order to keep track of the data access, each server keeps a record midList . It stores the mids

of the most recent updates. Each server receiving a new update, including the agent, substitutes

the old mid with the mid of the new update message in its midList before delivering the message

to the upper layer, as shown in Fig. 4 (b). At last, all servers that effectively receive the update

form a write quorum. The size of the quorum, ξ̂W , is predictable thanks to the epidemic nature

of the underlying gossip-based protocol, as we will see in Section 5.3.

1: upon UPDATE(mu) /* mu infused by client update */ do

2: p.data ← mu

3: RDG-CAST(gidsts , p, F , τa =∞)

(a) UPDATE emission

1: upon RECEIVEUPDATE(mu) do

2: if 6 ∃ mid ∈ midList such that mid ≥ m.mid then

3: for all mid ∈ midList such that mid < m.mid do

4: midList ← midList \ {mid}

5: midList ← midList ∪ {m.mid}

6: DELIVER(mu)

(b) UPDATE reception

1: upon QUERY(mq) /* mq infused by client query */ do

2: if ∃ mid ∈ midList such that mid > mq .mid then

3: mq .ver ← mid .ver

4: Countermq ← 0

5: p.data ← mq

6: RDG-CAST(gidsts , p, F = ξR − 1, τa = 1)

7: timermq ← 0 /* set a timer for the query */

8: upon RECEIVEQUERY(mq) do

9: if ∃ mid ∈ midList such that mid > mq .mid then

10: mq .mid ← mid

11: mq .data ← queried data object(1)

12: SEND(idi, idagent , mq)

(1) The data object is retrieved from the upper layer with

certain callback procedures.

(c) QUERY emission and reception

1: upon RECEIVEQUERYREPLY(mq) do

2: Countermq ← Countermq + 1

3: if 6 ∃ mid ∈ midList such that mid ≥ mq .mid then

4: for all mid ∈ midList such that mid < mq .mid

do

5: midList ← midList \ {mid}

6: midList ← midList ∪ {mq .mid}

7: DELIVER(mq)

8: if Countermq = ξR − 1 then

9: Invoke the client query protocol

10: upon timermq = timeout do

11: Invoke the client query protocol

(d) REPLY reception at an agent

Fig. 4. UPDATE/QUERY operation at node i

September 30, 2003 DRAFT

17

4.4.2 Server Query Protocol

In the case of a query, the agent again uses RDG to disseminate the query message to other

servers. The value of τa is set to 1 to simplify the protocol evaluation later on. Also, since

we consider that the arrival rate of queries is higher than that of updates in most cases, it is

justifiable to have a relatively small read quorum.11

After receiving a query message from a client, the agent sends it to other servers immediately,

along with the version number of the corresponding local data object. The agent also sets a

counter and a timer in order to guarantee proper termination of the query session (Fig. 4 (c)

lines 1∼7). Each server belonging to the read quorum, upon receiving the message, responds

with its own copy of the data object, if its version is more recent than the one of the agent

(Fig. 4 (c) lines 8∼12). The agent always delivers a new update returned from other servers. It

invokes the corresponding client protocol, after every request either yields a reply or times out,

as illustrated in Fig. 4 (d).

4.5 Examples of Protocol Operations

Fig. 5(a) gives a visual illustration of the behaviour of our RDG protocol with respect to the

dissemination of one packet, assuming a single group G of size |G| = 10 within a 20 nodes

network. Another example in Fig. 5(b) illustrates a simple execution of our PAN system in a

network of 50 nodes, assuming an STS consisting of 25 nodes.

4.6 Comparing PILOT with Randomized Database Group

Making comparisons between the work of Haas and Liang [30] and PAN, the data sharing

service of PILOT, is inevitable, because of the apparent similarity between them. However,

11By setting τa = 1, the nominal read quorum size ξR is directly determined by F (Fig. 4 (c) line 6), since a server receiving

the query will not relay it further.

September 30, 2003 DRAFT

18

49

48

47

46

43

42

41

40

39

38

36

34

33

30

32

31

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

5

3

2

1

0

44

35

45

37

6 4

server server queryserver update diffusion37 0 client request

Round 0

Round 2

Round 1

Round 3

15

9
3

12

20
6

18

1316
11

5

7 1

14

410

8

17

2

19

15

9

3

12

20
6

18

1316
11

5

7 1

14

410

8

17

2

19

15

9

3

12

20
6

18

1316
11

5

7 1

14

410

8

17

2

19

15

9

3

12

20
6

18

1316
11

5

7 1

14

410

8

17

2

19

clientinfected susceptible crashed member non-member nodes

(a) (b)

Fig. 5. Illustrations of PILOT. (a) An example of one “run” of RDG with F = 2 and τq = 2 within a group of size 10. The

packet initiated by member 15 infects the whole group in only 3 rounds in spite of the fact that nodes move and even fail. A

member may receive duplicates of the same packet (e.g., member 1 at round 2). On the other hand, the packet can get lost at a

certain round due to nodes crashing or moving (e.g., members 8 and 3 in round 1), but these losses will be compensated with

high probability at a later round. (b) An illustration of an operation pair in PAN within a network of 50 nodes located in a square

area of 1km2. When node 25 wants to perform an update, it sends a request to its agent, node 1. The request of this update

is diffused to other servers by node 1, using gossip-based scheme (Only the valid transmissions are shown here. Duplicated

transmissions are omitted to simplify the visualization.). If node 27 wants to access the data, it also requests its agent, node 0.

Node 0 in turn requests other servers, node 8, 10, and 12. In this case, node 12 is the intersection of the read and write quorum.

It is able to reply the requested data of node 25 to node 27. The query reply is omitted here for simplicity.

we can only make certain qualitative comparisons, since quantitative comparisons between the

two systems are hard due to the lack of simulation results to evaluate the system performance

and to confirm the precision of the numerical analysis in [30]. In a nutshell, PAN outperforms

randomized database group in two aspects. On one hand, the protocol used to access the

database group in [30] consists in multiple unicasts, based on the assumption of perfect routing

information. Obviously such an approach fails under the more realistic assumption of incomplete

routing information, while our PAN can cope with such incompleteness. On the other hand, the

symmetric construction of quorum systems in [30], i.e., the same size for all quorums, is not

September 30, 2003 DRAFT

19

suitable for all replication systems (for instance when the arrival rates of queries and updates,

respectively, diverge strongly), whereas PAN behaves more flexibly in the sense that it can adapt

to a given situation by appropriately adjusting parameters.

5 ANALYSIS

In this section, we show that the two metrics, Rd and Nl (defined in Section 3.2), are

predictable given certain protocol parameters and information about the network. These analytical

results are confirmed by simulations in the next section. Since the behavior of R2DG pull depends

on far more factors than that of RDG gossip, we will not consider this part of the protocol in

the analysis. However, we will show the enhanced reliability by simulations.

5.1 Model

For the multicast protocol, we consider a single group G composed of |G| = n members

and observe its behavior in terms of the dissemination of a single packet (“one run”), but also a

continuous stream of packets (which is more realistic than related research proposals considering

only the “one run” part). According to the terminology of epidemiology [39], a member that

has received a certain packet is termed infected, otherwise susceptible. An infected member

attempting to share the packet with others (i.e., a member who keeps gossiping the packet) is

called infectious. We analyze our protocol in a network composed of a static set of nodes running

closely “synchronized”. More precisely, nodes gossip in synchronous rounds (T ms, identical

for all nodes), and there is an upper bound on the network latency which is smaller than T .

The probability of packet loss is closely related to the movement and traffic pattern, as well as

to the length of the considered routing path. By assuming an identical and independent probability

of failure pf for each hop along a routing path in a certain network environment, the probability

of losing a certain gossip message can be expressed as a function of the number of hops, H , of

that routing path. We further assume that the lengths H of all routing paths between any two

September 30, 2003 DRAFT

20

members follow the same distribution f(h). On the other hand, pf can be split into two parts:

(i) pfc represents the probability of packet loss due to node crash; (ii) pfmo reflects the effects of

node mobility and buffer overflow. Since pfc � pfmo in general for mobile wireless networks,

we directly use pfmo to approximate pf .

As for the data sharing service, we consider only the server protocol (including both update

and query protocols) for analysis. The STS is assumed to consist of n servers. Query and update

accesses arrive randomly at an arbitrary server, following Poisson processes with the intensity

of λq and λu, respectively. By further assuming that these two processes are independent, the

overall access rate is given by λo = λq + λu.

time axis

update � update �

query �1 query �2 query �1 query �2

update �

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

t

p

2 4 6 8 10 12 14

0.05

0.1

0.15

0.2

t

p

(1) (2)

(a) (b)

Fig. 6. Time intervals between events and their distributions. (a) The occurrence of events in terms of absolute time. (b) The

distributions of time interval between two events: (1) exponential distribution for consecutive events, (2) Erlang distribution for

non-consecutive events.

The dissemination process of the server update is performed by RDG. As this process finishes,

all infected servers form a write quorum with real size ξ̂W following a certain probability

distribution. We consider only the second query to a data object that was modified by the most

recent update, while considering the first query as happening before the update.12 For example,

as shown in Fig. 6(a), only the pairs of (update β, query β2) and (update γ, query γ2) are

considered, whereas queries β1 or γ1 are supposed to request previous updates (i.e., updates α

and β, respectively). This assumption makes sense when we consider the time with respect to

a server where updates and queries arrive, and also the property of a Poisson process shown

12The time of an event is when it happens at an agent.

September 30, 2003 DRAFT

21

in Fig. 6(b). Since there is always some delay for the message dissemination, the probability

that the actual occurrence of events will follow the order of our assumption at that server is

very high, according to different distributions of the time interval between two events within a

Poisson process (see Fig. 6 (b)). This makes the present analysis a “viable” lower bound.

We continue using pf to represent the network condition, but an empirical value pe is also used

in the case of queries to represent the server unavailability due to failure, at any time instant.

One might argue that the server failure should be treated as a Poison process [30], but this is

not justifiable with a failure recovery model, which is usually the case in ad hoc networks (e.g.,

nodes switching off for the purpose of battery replacement or operating system rebooting).

5.2 Stochastic Behavior of RDG

Considering a packet multicast by a member, we use Sr ∈ {0, · · · , n} to denote the number

of members infected with the packet after round r. With the convention that Pr{Sr = 0} = 1

for r < 0, it is easy to show that the sequence of random vectors Sr = [Sr, Sr−1, · · · , Sr−τq]
T
r≥0

forms a Markov chain with values taken from the state space E = {0, · · · , n} × {0, · · · , n} ×

· · · × {0, · · · , n}.

1) Recurrence Relation: Given the probability p that a certain member is infected by a specific

gossip message, q = 1 − p represents the probability of non-infection. Let Sr = i (the number

of infected members) and Sr − Sr−τq = k (the number of infectious members) in the current

round; we introduce a binary random variable, Xl, for each of the remaining n− i susceptible

members, where Pr{Xl = 0} = qk, i.e., the probability that a certain susceptible member is not

infected in the next round is the probability that it is not infected by any of the k infectious

members. It is clear that Sr+1 − Sr =
∑n−i

l=1 Xl follows a binomial distribution. Let j be the

September 30, 2003 DRAFT

22

number of infected members in the next round; the transition probability is expressed as:

Pr{Sr+1 = j | Sr = i, Sr − Sr−τq = k}

= Pr{
n−i∑
l=1

Xl = j − i}

=


(

n−i
j−i

)
(1− qk)j−iqk(n−j) j ≥ i

0 j < i
(1)

which leads to the following global balance equation of the chain:

Pr{Sr+1 = sr+1} =

iτq−1∑
iτq =1

(
n− i

j − i

)
(1− qi−iτq)j−iq(i−iτq)(n−j)Pr{Sr = sr} (2)

where sr = [i, i1, · · · , iτq]
T , sr+1 = [j, i, i1, · · · , iτq−1]

T , and i = i0. Let the column vector νr,

with νr(i) = Pr{Sr = i} as its ith element, be the marginal distribution of Sr. Given the initial

distribution ν0 = [0, 1, 0, · · · , 0]T and (2), νr is then computed as:

νr(i) =
i∑

i1=0

i1∑
i2=0

· · ·
iτq−1∑
iτq =0

Pr{Sr = sr} (3)

2) Determining Parameters: According to our assumptions, the probability of infection p can be

estimated by taking two conditions into account: (i) the considered node is chosen as the gossip

destination and (ii) the gossip message is successfully received. This results in the following

expression (remember that F is the protocol parameter fanout):

p =

(i)︷ ︸︸ ︷
Pgossip

(ii)︷︸︸︷
Psucc =

(
F

n− 1

)
Psucc (4)

Given a certain length (in hops) h of a routing path, the probability of a successful delivery is

expressed as Psucc = (1− pf)
h, i.e., there is no failure in each of the h hops. So we have:

Psucc =
∑

h

(1− pf)
hPr{H = h} = EH [(1− pf)

H] (5)

Therefore, p is expressed as:

p =

(
F

n− 1

)
EH [(1− pf)

H] (6)

The distribution of H and the value of pf are the network information we need. We refer to

[13] for discussions about their estimations.

September 30, 2003 DRAFT

23

3) Reliability Degree Rds and Rdc: With the recurrence relation (3) of the single packet

dissemination, the reliability degree can be expressed13 in terms of ν(i) as follows. Note that

the distribution of Rds is always related to the group size n, while the distribution of Rdc is

related to the number of packets in a stream, denoted by M in the formula.

cdf of Rds : Fn(x) =

bnxc∑
i=1

ν(i) (7)

cdf of Rdc : FM(x) =

bMxc∑
i=0

(
M

i

)
pi

1(1− p1)
M−i (8)

where p1 =
∑

i · ν(i)/n is the probability that a certain group member receives a single packet

in a stream. Here we assume that the receptions of two distinct packets are independent events.

4) Network Load Nl: The Nl for single packet dissemination is estimated straightforwardly by

counting the number of unicast packets sent and the number of hops traveled by each of them:

Nl = E[Sτa] · F · τq · E[H] (9)

Recall that τa limits the number of gossip rounds and τq defines how many times a packet is

repeatedly relayed by a certain group member. The expression for Nl in the case of continuous

packet dissemination is omitted as it becomes trivial with (9) and a given λo. This prediction is

relatively rough because it is hard to find a way to precisely estimate the distribution of H as it

depends on several factors.

5.3 Stochastic Behavior of PAN

Since PAN directly uses RDG to diffuse an update, the distribution of ξ̂r
W can be estimated

with (3). The distribution of ξ̂R can be expressed in a similar but more precise way, since τa is

set to 1 (see Section 4.4.2). Nl is computable given the two distributions, but information about

the time interval between a query and an update is necessary to compute Rda.

13The subscript r is omitted hereafter, because we always consider the final distribution (i.e., after the last round).

September 30, 2003 DRAFT

24

5) Reliability Degree Rda: According to the definition and the protocol description, this value is

in fact the probability that a read quorum intersects the most recent corresponding write quorum.

More precisely, we are looking for the probability that two subsets with sizes ξ̂W and ξ̂R, taken

from a set of n servers, intersect. Note that ξ̂R is defined as the number of servers that effectively

reply to the query back to its forwarding agent.

There exists an r̃ for which the dissemination process is finished, i.e., no new server is infected

when r ≥ r̃. Based on the assumption of synchronization, we divide the time axis after a given

update event β into r̃ + 1 intervals, as shown in Fig. 7. A read quorum, resulting from a query

time axis

update �

query �2

r=1 r=2 r=3 r=r
r=0

�
W

^

�
W

�^

�
W

�^

�
W

�^

�
R

s-1

s

� �
R

�
R
=s

^

� �
R

�
R
=s-1

^

� �
R

�
R
=s-1

^

^

� �
R

�
R
=1

^

... ...

..
.

1

write quorum

read quorum

Fig. 7. Incremental processes of read and write quorum size: ξ̂W increases round by round, while ξ̂R increases with the amount

of queries sent by an agent.

happening in-between two consecutive gossip rounds r and r + 1, would have to intersect a

write quorum of size ξ̂r
W with a distribution νr. In order to find the probability of intersection,

we need to calculate the read quorum size ξ̂R (with a distribution µ) and pr, the probability that

the query event occurs in-between rounds r and r + 1.

The distribution of ξ̂R, conditioned on ξR = s, is calculated as follows, with an initial value14

Pr{ξ̂R = 1|ξR = 1} = 1 and the convention Pr{ξ̂R = k|ξR = s} = 0 if s < 1, k < 1 or k > s:

µs(k) = Pr{ξ̂R = k|ξR = s} = µs−1(k − 1)p + µs−1(k)(1− p)

= Pr{ξ̂R = k − 1|ξR = s− 1} · p

+ Pr{ξ̂R = k|ξR = s− 1} · (1− p) k = 1, · · · , s and s ≥ 2 (10)

14Because the agent, one of the servers, has already received the query, it is sure that ξ̂R = 1, if ξR is decided to be 1.

September 30, 2003 DRAFT

25

where p = EH [(1− pf)
2H](1− pe) is the probability that the agent forwarding a query receives

the reply from a server belonging to the corresponding read quorum. The estimation of µ is

somewhat conservative because servers with a relatively old data version do not reply to a

query.

The time interval between an update and the second query to it is characterized by an Erlang

distribution λ2
qte
−λqt, with the assumption of a Poisson arrival process. Therefore, we have

pr =


∫ tr+1

tr
λ2

qte
−λqtdt r < r̃∫∞

tr
λ2

qte
−λqtdt r = r̃

(11)

Now, the probability of intersection, i.e., Rda, is expressed by taking an average over all

possible cases:

Rda =
r̃∑

r=0

n∑
i=1

s∑
j=1

1−

(n−ξ̂r
W

ξ̂R

)(
n
ξ̂R

)
 µs(j)νr(i)pr (12)

6) Network Load Nl: For a certain Rda with its parameter pair F and ξR, we evaluate the

corresponding Nl by averaging the load over a certain time unit (e.g., 1s), taking into account

the arrival rate of updates and queries. Therefore, the loads generated by a single update and

query are calculated separately, and then Nl is obtained by summing the products of the loads

of the individual operations and their corresponding arrival rates.

LW = E[ξ̂W] · F · τq · E[H] (13)

LR = 2 · ξR · E[H] (14)

Nl = λuLW + λqLR (15)

This estimation is conservative in the same sense as we mentioned before. Again, it is relatively

rough compared with the one for Rda, because we do not take into account the following two

facts: (i) many packets get dropped before reaching their destinations, and (ii) packets, especially

those eventually dropped, may travel quite a long way due to stale routing information. We will

show with simulations that the former fact has a dominating effect in most cases, but these facts

tend to offset each other in some cases.

September 30, 2003 DRAFT

26

6 SIMULATIONS

This section presents the simulation results of our PILOT system in five parts. Two subsections,

6.2 and 6.3, are dedicated to RDG/R2DG and the other three, 6.4 ∼ 6.6, are devoted to PAN. The

main point is to confirm our claim that both the reliability degree Rd and the network load Nl of

PILOT are predictable. The impacts of the message arrival rate λo and the server failures pe on

PAN are also investigated by simulations in different settings. We refer to [13] for comparisons

of simulation results between RDG/R2DG and AG [26].

6.1 Model and Parameters

The simulator we use is ns-2 [40] with the Monarch Project wireless and mobile extensions.

It provides both implementations of DSR and wireless MAC, based on the Lucent WaveLAN

IEEE 802.11 product, with a 2Mbps transmission rate and a nominal range of 250m. We adopt

the two-ray ground reflection model [41] as the radio propagation model.

We simulate ad hoc networks in a square area of 1km2. The movement pattern is defined

by the “random waypoint” model [42]. The simulation parameters such as network size and

maximum node speed are specified for each simulation. The STS always contains half of the

network nodes. We do not justify this number15, but only use it as an example. The servers in

the STS are assumed to be predefined in order to simplify the simulation16. The client protocol

is omitted to reduce side effects.

The gossip period is set to 200ms. For RDG/R2DG, a CBR traffic generator produces 64 byte

packets at regular intervals of 200ms, which gives a λo = 5pkt/s. The effect of the sending rate

will be investigated in our future work. The arrival of queries or updates in PAN is emulated by

15It is not the goal of this paper to find the optimal size for an STS, but we note that generally, the larger the size, the heavier

the network is loaded, whereas the load on individual servers becomes smaller.

16Although the clustering algorithm is a popular way to elect some representatives of the network, introducing such an

algorithm into our simulation may only bring more overhead to this task, without any help to show the essence of our system.

September 30, 2003 DRAFT

27

a Poisson traffic source attached to each server, generating packets of 128 bytes with rate λo.

We first investigate the impact of the overall access rate λo on the performance of PAN, then we

take an appropriate value for all simulations. Due to space limitations, we use λo = 8λu for all

simulations. With certain simulation parameters (network size, maximum speed, pause time, and

arrival rate), we vary the protocol parameters F and ξR in order to show the trade-off between

the two metrics Rda and Nl. As the last simulation parameter, pe is first set to 1%, and then

varied to show the sensitivity of PAN to server failures.

Both RDG/R2DG and PAN are operated over 400 seconds of simulated time. The first 50

seconds of the simulation are used for system initialization. Then each traffic source continues

generating traffic according to the predefined intensity until the end. Each simulation is carried

out 10 times with different scenario files created by ns-2.

6.2 Single Packet Dissemination Reliability Rds

Fig. 8 shows comparisons between the analytical and simulation results of the basic RDG

protocol, which is carried out by contrasting the evolution of the infection processes instead

of providing the value of Rds explicitly. These comparisons basically prove that the theoretical

prediction of the relationship between the reliability and the latency is valid.

(a) with different values for�q=1 F (b) with different values forF=3 �q

#
o
f

in
fe

ct
ed

m
em

b
er

s

of rounds

#
o
f

in
fe

ct
ed

m
em

b
er

s

of rounds

�q=1 Analysis

�q=2 Analysis

�q=1 Simulation

�q=2 Simulation

0 1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

45

50

F=2Analysis

F=3Analysis

F=4Analysis

F=2Simulation

F=3Simulation

F=4Simulation

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

40

45

50

Fig. 8. Average number of infected members (simulation) and expected number of infected members (analysis) in time

(expressed in rounds) with n = 50 in a network of 100 nodes. Each node has a maximum speed of 2m/s of an average pause

time of 40s.

September 30, 2003 DRAFT

28

It is easy to observe that the reliability of the protocol with F = 3 is better than the one with

F = 2, because the fanout has a significant effect on the reliability. However, when we further

increase the fanout, the reliability decreases instead of increasing (analysis) or only marginally

increases (simulation). The reason is that increasing the fanout has the same effect as increasing

the number of connections, and pf increases dramatically because of the network congestion. A

similar reason accounts for what happens when τq changes from 1 to 2.

In fact, there is always a trade-off between certain requirements on reliability and the in-

troduced overhead, characterized by the values of F and τq. Considering the network capacity

imposes a further limitation not considered in other research proposals (considerably large F

[43] or unbounded τq [23]). Therefore, for all simulations later in this paper, we always take

F ≤ 3 and τq = 1 for RDG.

6.3 Continuous Packet Dissemination Reliability Rdc and Network Load Nl

Fig. 9 shows Rdc and Nl of both RDG and R2DG with different mobility patterns and group

sizes. We provide here the mean value of Rdc and its standard deviation, which characterize

(a) 50 nodes in a group (b) m/s; sSpeed =2 Time =10max pause

R
el

ia
b
il

it
y

D
eg

re
e

�
�

Speed (m/s)

R
el

ia
b
il

it
y

D
eg

re
e

�
�

of nodes in a group # of nodes in a group

(c) m/s; sSpeed =2 Time =10max pause

0 5 10 15 20
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Analysis

RDG simulations

R
2
DG simulations

N
et

w
o
rk

L
o
ad

�
�

(m
sg

h
o
p
/s

)
�

20 30 40 50 60 70
50

100

150

200

250

300

350

400

450

500 Analysis

RDG simulations

R
2
DG simulations

20 30 40 50 60 70
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Analysis

RDG Simulation

R
2
DG Simulation

Fig. 9. Reliability degree Rdc and network load Nl vs. mobility and group size in a 100 nodes networks

the distribution function F . The figures again exhibit the similarity between the simulation and

analytical results with respect to RDG (see Section 5.2 for the explanation of the rough prediction

September 30, 2003 DRAFT

29

on Nl). As expected, R2DG always performs better than RDG in terms of reliability, while the

improvement is significant in high mobility and large group scenarios, thanks to the gossiper-pull

mechanism. We also note that only a slight reliability degradation is observed when the mobility

or group size is increased (with a sub-linear increment of Nl in the case of increasing group

size), illustrating the scalability of our protocols.

Note that two simulation parameters are paired to represent the mobility pattern such that

each node has a maximum speed of 2m/s, 5m/s, 10m/s, and 20m/s, and a corresponding average

pause time of 10s, 20s, 40s, and 80s, respectively (Maximum speed is used as a symbol of the

mobility pair in this case.). This concept of mobility pattern will be used throughout the rest of

this section.

6.4 Impact of λo on PAN Performance

Fig. 10 shows the performance of PAN (assuming F = 2 and ξR = 4) with respect to λo,

the overall access rate. We observe that PAN performs in a relatively stable way for 1.5s−1 ≤

λo < 3s−1, and Rda begins to degrade if we further increase λo, since the request arrival rate

becomes larger than the service rate that PAN can provide. It is also natural to see that Nl

R
el

ia
b

il
it

y
D

eg
re

e
(P

es
si

m
is

ti
c)

�
�

�o (s
-1

)

R
el

ia
b

il
it

y
D

eg
re

e
�

�
(O

p
ti

m
is

ti
c)

(a) Pessimistic reliability degree (b) Optimistic reliability degree (c) Network Load

N
et

w
o

rk
L

o
ad

�
�
(m

sg
h

o
p

/s
)

�

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Speed =2 Timemax pausem/s; =10s

Speed =5 Time =20max pausem/s; s

Speed =10 Time =40max pausem/s; s

Speed =20 Time =80max pausem/s; s

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.88

0.90

0.92

0.94

0.96

0.98

1.00

�o (s
-1

)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

10

20

30

40

50

60

70

80

90

�o (s
-1

)

Speed =2 Timemax pausem/s; =10s

Speed =5 Time =20max pausem/s; s

Speed =10 Time =40max pausem/s; s

Speed =20 Time =80max pausem/s; s
Speed =2 Timemax pausem/s; =10s

Speed =5 Time =20max pausem/s; s

Speed =10 Time =40max pausem/s; s

Speed =20 Time =80max pausem/s; s

Fig. 10. Reliability degree Rda and network load Nl vs. overall access rate λo for 50 nodes networks.

increases linearly with λo by (15). However, it may seem somewhat odd to observe that Rda is

very low in high mobility scenarios, when λo < 1.5s−1. The main reason for this is the increased

September 30, 2003 DRAFT

30

amount of stale routing information. In practice, this effect does not appear in the presence of

background traffic. This problem can also be solved actively by requiring each STS server to

send control packets during idle time in order to keep routing information fresh. Based on these

observations, we apply λo = 2s−1 for all other simulations.

The evaluations of Rda are presented in two ways. The “pessimistic” Rda refers to the prob-

ability that a query reaches the most recent update (with the same assumption as in Section 5.1

about the event order), whereas for the “optimistic” one, we consider a query to be successful

even if it only retrieves the result of an update that occurred right before the most recent update.

This second evaluation makes sense because, in practice, there are different data objects stored

in an STS, and the probability that a queried data object has been modified by the most recent

update is quite low. We will use these notations for all graph illustrations in the rest of this

section.

6.5 Access Reliability Rda and Network Load Nl

Fig. 11 shows comparisons between simulation and analytical results for networks of “normal”

density, i.e., 50 nodes in an area of 1km2, and “high” density, i.e., 100 nodes in an area of 1km2.

The maximum speed and pause time are varied to test the impact of mobility on the performance

of PAN. The protocol parameters F and ξR are adjusted to cope with the increased network size.

We note that a real number x.y for the value of F means that each server, when gossiping the

update, takes F = x with probability 1− y/10 and F = x + 1 with probability y/10.

We make the following observations: (i) The simulation and analytical results of Rda match

very well; this confirms the predictability on Rda. (ii) The analytical results of Nl provide certain

information about the system overhead, such as the trend of its changes in different situations.

(iii) The optimistic Rda is always much higher than the pessimistic one; this basically means

that the potential of PAN is much higher than what could be expected from the analytical results.

(iv) As the network size and the maximum node speed grow, protocol parameters have to be

September 30, 2003 DRAFT

31

R
el

ia
b

il
it

y
D

eg
re

e
�

�

maximum speed (m/s)

R
el

ia
b

il
it

y
D

eg
re

e
�

�

maximum speed (m/s)

R
el

ia
b

il
it

y
D

eg
re

e
�

�

maximum speed (m/s)

(a) Normal density network, andF=2 =4�
R

(b) High density network, andF=2 =4�
R

(c) High density network, andF=2.2 =5�
R

N
et

w
o

rk
L

o
ad

�
�

(m
sg

h
o

p
/s

)
�

maximum speed (m/s) maximum speed (m/s)

N
et

w
o

rk
L

o
ad

�
�

(m
sg

h
o

p
/s

)
�

maximum speed (m/s)

N
et

w
o

rk
L

o
ad

�
�

(m
sg

h
o

p
/s

)
�

2 4 6 8 10 12 14 16 18 20

0.90

0.92

0.94

0.96

0.98

1.00

Analysis

Simulation (Pessimistic)

Simulation (Optimistic)

2 4 6 8 10 12 14 16 18 20

30

32

34

36

38

40 Analysis

Simulation

2 4 6 8 10 12 14 16 18 20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Analysis

Simulation (Pessimistic)

Simulation (Optimistic)

2 4 6 8 10 12 14 16 18 20

30

35

40

45

50

55

60
Analysis

Simulation

2 4 6 8 10 12 14 16 18 20
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Analysis

Simulation (Pessimistic)

Simulation (Optimistic)

2 4 6 8 10 12 14 16 18 20
35

40

45

50

55

60

65

70

75
Analysis

Simulation

Fig. 11. Analytical and simulation results for reliability degree Rd and network load Nl vs. mobility pattern.

adjusted to maintain a good performance of Rda, at the cost of an increased system overhead.

6.6 Sensitivity to Server Unavailability pe

According to the simulation results shown in Fig. 12, the sensitivity of PAN (assuming F = 2

and ξR = 4) to pe increases as the node mobility grows. In addition, the sensitivity of PAN

considering optimistic Rda is lower than the sensitivity considering pessimistic Rda.

We also observe that the increase of pe leads to an improvement of Rda in some cases. This

paradox indeed suggests a way to optimize our system, i.e., a server belonging to a certain read

quorum would not always try to reply to a query back to its agent, even if the server is “alive”

and has a new version of the queried data object. With such a behavior, PAN could avoid the case

where more than one server replies to an agent with the same data object, thereby reducing the

probability of packet collisions and, in turn, improving Rda. However, we do not actually apply

this optimization to PAN, because it is not as stable as the topology-awareness optimization in

September 30, 2003 DRAFT

32

R
el

ia
b
il

it
y

D
eg

re
e

(P
es

si
m

is
ti

c)
�

�

pe

R
el

ia
b
il

it
y

D
eg

re
e

�
�

(O
p
ti

m
is

ti
c)

(a) Pessimistic reliability degree (b) Optimistic reliability degree (c) Network Load

N
et

w
o
rk

L
o
ad

�
�

(m
sg

h
o
p
/s

)
�

0.01 0.1 1

0.86

0.88

0.90

0.92

0.94

0.96

0.98

0.01 0.1 1
0.94

0.95

0.96

0.97

0.98

0.99

1.00

pe

0.01 0.1 1

27

28

29

30

31

32

33

34

35

pe

Speed =2 Timemax pausem/s; =10s

Speed =5 Time =20max pausem/s; s

Speed =10 Time =40max pausem/s; s

Speed =20 Time =80max pausem/s; s

Speed =2 Timemax pausem/s; =10s

Speed =5 Time =20max pausem/s; s

Speed =10 Time =40max pausem/s; s

Speed =20 Time =80max pausem/s; s

Speed =2 Timemax pausem/s; =10s

Speed =5 Time =20max pausem/s; s

Speed =10 Time =40max pausem/s; s

Speed =20 Time =80max pausem/s; s

Fig. 12. Reliability degree Rda and network load Nl vs. server unavailability pe for 50 nodes networks.

dynamic environments.

7 CONCLUSION

In this paper, we are concerned with probabilistic reliable group communication in mobile

ad hoc networks. We have studied two fundamental aspects of multicast and data sharing

within this framework and specified performance metrics that take the peculiarities of mobile

ad hoc networks into account. We have proposed our PILOT system as a solution, based on

the principle of gossip mechanisms and probabilistic quorum systems, to address the problems.

The performance of PILOT has been analyzed by making use of, notably, epidemic theory. The

evaluation and investigation of PILOT have also been carried out by simulations in ns-2.

As the first step toward building a probabilistic group communication toolkit, our PILOT system

consists of two layers: RDG, at the bottom layer, is a gossip-based probabilistic reliable multicast

protocol. At the upper layer, two dedicated services, R2DG and PAN, provide continuous reliable

packet dissemination and reliable data sharing, respectively. Our main contributions are: (i) an

ad hoc adapted gossip mechanism, (ii) a hybrid gossip including both push and pull, (iii) gossip-

based quorum access protocols, and (iv) an asymmetric quorum construction.

We have proposed an analytical model to predict the performance of both RDG and PAN.

The validity of the predictions is evaluated by simulations. The results show that our analytical

September 30, 2003 DRAFT

33

model provides predictions that are adequate for tuning the tradeoff between reliability degree

Rd and network load Nl. Our simulation results also show that, even under frequent topology

changes, the reliability degrees of RDG/R2DG and PAN are fairly high in practice. Finally,

we have investigated also other aspects of PAN with intensive simulations, which confirm its

robustness, in the sense that it can sustain a large access rate λo, different network sizes, and

up to 50% server failures.

We are in the process of determining a probabilistic notion of membership accuracy and

improving the analytical model by taking this notion into account. In addition, we are considering

other models [43, 30] in order to further understand the benefits of gossip-based protocols and to

provide numerical comparisons between PILOT and similar systems for ad hoc networks, which

would better justify the deployment of PILOT. Finally, we intend to take into consideration, in

our simulations, the recently recommended modifications to the “random waypoint” model [44].

REFERENCES

[1] I. Gupta, K.P. Birman, and R. van Renesse, “Fighting fire with fire: Using randomized gossip to combat stochastic

scalability limits,” Journal of Quality and Reliability Engineering International, vol. 18, no. 3, pp. 165–184, 2002.

[2] D. Powell et al, “Group communication (special issue),” Communications of the ACM, vol. 39, no. 4, pp. 50–97, 1996.

[3] Z.J. Haas and B. Liang, “Ad hoc mobility management with uniform quorum systems,” IEEE/ACM Trans. on Networking,

vol. 7, no. 2, pp. 228–240, 1999.

[4] G. Pei and Mario Gerla, “Mobility management for hierarchical wireless networks,” ACM/Kluwer Mobile Networks and

Applications (MONET), vol. 6, no. 4, pp. 331–337, 2001.

[5] L. Zhou and Z. Haas, “Securing ad hoc networks,” IEEE Network, vol. 13, no. 6, pp. 24–30, 1999.

[6] S. Čapkun, L. Buttyán, and J.-P. Hubaux, “Self-organized public-key management for mobile ad hoc networks,” IEEE

Transactions on Mobile Computing, vol. 2, no. 1, pp. 52–64, 2003.

[7] L. Buttyán and J.-P. Hubaux, “Report on a working session on security in wireless ad hoc networks,” ACM SIGMOBILE

Mobile Computing and Communications Review, vol. 6, no. 4, 2002.

[8] N. Asokan and Philip Ginzboorg, “Key-agreement in ad-hoc networks,” Computer Communications, vol. 23, no. 17, pp.

1627–1637, 2000.

[9] C.E. Perkins, J.T. Malinen, R. Wakikawa, E.M. Royer, and Y. Sun, IP address autoconfiguration for ad hoc networks,

July 2002, Internet-Draft, draft-ietf-manet-autoconf-01.txt. Work in progress.

September 30, 2003 DRAFT

34

[10] S. Nesargi and R. Prakash, “MANETconf: configuration of hosts in a mobile ad hoc network,” in Proc. of INFOCOM

2002, 2002, pp. 1059–1068.

[11] E.M. Royer and C.E. Perkins, “Multicast operation of the ad-hoc on-demand distance vector routing protocol,” in Proc.

of the 5th ACM/IEEE international conference on Mobile Computing and Networking (MobiCom’99), 1999, pp. 207–218.

[12] J.-P. Hubaux, T. Gross, J.-Y. Le Boudec, and M. Vetterli, “Toward self-organized mobile ad hoc networks: the terminodes

project,” IEEE Communications Magazine, vol. 39, no. 1, pp. 118–124, 2001.

[13] J. Luo, P.Th. Eugster, and J.-P. Hubaux, “Route driven gossip: Probabilistic reliable multicast in ad hoc networks,” in

Proc. of INFOCOM 2003, 2003.

[14] J. Luo, J.-P. Hubaux, and P.Th. Eugster, “PAN: Providing reliable storage in mobile ad hoc networks with probabilistic

quorum systems,” in Proc. of the 4nd ACM/SIGMOBILE Symposium on Mobile Ad Hoc Networking & Computing

(MobiHoc’03), 2003.

[15] M.G. Hayden, The Ensemble System, Ph.D. thesis, Department of Computer Science, Cornell University, 1997.

[16] Y. Amir, C. Danilov, and J. Stanton, “A low latency, loss tolerant architecture and protocol for wide area group

communication,” in Proc. of IEEE International Conference on Dependable Systems and Networks (DSN’00), 2000.

[17] N. Malpani, N.H. Vaidya, and J.L. Welch, “Distributed token circulation in mobile ad hoc networks,” in Proc. of the 9th

International Conference on Network Protocols (ICNP’01), 2002, pp. 4–13.

[18] S. Dolev, E. Schiller, and J.L. Welch, “Random walk for self-stabilizing group communication in ad hoc networks,” in

Proc. of the 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), 2002, pp. 70–79.

[19] E. Vollset, “The autograph protocol - a preliminary report on a reliable broadcast protocol for mobile ad-hoc networks,”

in Proc. of IEEE International Conference on Dependable Systems and Networks (DSN’03) - Student Forum, 2003.

[20] G.-C. Roman, Q. Huang, and A. Hazemi, “Consistent group membership in ad hoc networks,” in Proc. of the 23rd

International Conference in Software Engineering (ISCE’01), 2001.

[21] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related problems,” in Distributed Systems, chapter 5, pp.

97–145. Addison-Wesley, 2 edition, 1993.

[22] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky, “Bimodal multicast,” ACM Trans. on Computer

Systems, vol. 17, no. 2, pp. 41–88, 1999.

[23] P. Eugster, R. Guerraoui, S. Handurukande, A.M. Kermarrec, and P. Kouznetsov, “Lightweight probabilistic broadcast,”

ACM Transactions on Computer Systems (to appear), 2003.

[24] S. Floyd, V. Jacobson, C-G. Liu, S. McCanne, and L. Zhang, “A reliable multicast framework for light-weight sessions

and application level framing,” IEEE/ACM Trans. on Networking, vol. 5, no. 6, pp. 784–893, 1997.

[25] S. Paul, K.K. Sabnani, J.C. Lin, and S. Bhattacharyya, “Reliable multicast transport protocol,” IEEE J. Sel. Areas Commun.,

vol. 15, no. 3, pp. 784–893, 1997.

[26] R. Chandra, V. Ramasubramanian, and K. Birman, “Anonymous gossip: Improving multicast reliability in mobile ad-hoc

networks,” in Proc. 21st International Conference on Distributed Computing Systems (ICDCS’01), 2001, pp. 275–283.

September 30, 2003 DRAFT

35

[27] D. Barbara and H. Garcia-Molina, “The reliability of vote mechanisms,” IEEE Trans. on Computers, vol. 36, no. 10, pp.

1197–1208, 1987.

[28] F.B. Schneider, “Replication management using the state-machine approach,” in Distributed Systems, chapter 6, pp.

169–197. Addison-Wesley, 2 edition, 1993.

[29] D. Malkhi, M.K. Reiter, and A. Wool, “Probabilistic quorum systems,” Information and Computation, vol. 170, no. 2, pp.

184–206, 2001.

[30] Z.J. Haas and B. Liang, “Ad hoc mobility management with randomized database groups,” in Proc. of IEEE International

Conference on Communications (ICC’99), 1999, vol. 3, pp. 1756–1762.

[31] M. Papadopouli and H. Schulzrinne, “Effects of power conservation, wireless coverage and cooperation on data

dissemination among mobile devices,” in Proc. of the 2nd ACM/SIGMOBILE Symposium on Mobile Ad Hoc Networking

& Computing (MobiHoc’01), 2001, pp. 117–127.

[32] T. Hara, “Effective replica allocation in ad hoc networks for improving data accessibility,” in Proc. of INFOCOM 2001,

2001, pp. 1568–1576.

[33] K.H. Wang and B. Li, “Efficient and guaranteed service coverage in partitionable mobile ad-hoc networks,” in Proc. of

INFOCOM 2002, 2002, pp. 1089–1098.

[34] D.B. Johnson, D.A. Maltz, and Y-C. Hu, The dynamic source routing protocol for mobile ad hoc networks (DSR), February

2003, Internet-Draft, draft-ietf-manet-dsr-08.txt. Work in progress.

[35] K. Xu, X. Hong, and M. Gerla, “An ad hoc network with mobile backbones,” in Proc. of IEEE International Conference

on Communications (ICC’02), 2002, vol. 5, pp. 3138–3143.

[36] R. Sivakumar, P. Sinha, and V. Bharghavan, “CEDAR: a core-extraction distributed ad hoc routing algorithm,” IEEE

Journal on Selected Areas in Communications (Special Issue on Ad-hoc Routing), vol. 17, no. 8, pp. 1454–1465, 1999.

[37] A.W. Fu and D.W. Cheung, “A transaction replication scheme for a replicated database with node autonomy,” in Proc. of

the 20th International Conference on Very Large Data Bases (VLDB’94), 1994, pp. 214–225.

[38] L.-G. Alberto and I. Widjaja, Communications Networks, McGraw Hill Higher Education, 2000.

[39] J.D. Murray, Mathematical Biology, Springer, Berlin, 2nd edition, 1993.

[40] K. Fall and K. Varadhan, Eds., The ns Manual, The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC, Apr.

2002, Availiable from http://www.isi.edu/nsnam/ns/.

[41] T.S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall, Upper Saddle River, New Jersey, 2nd

edition, 2002.

[42] D.B. Johnson and D.A. Maltz, “Dynamic source routing in ad hoc wireless networks,” in Mobile Computing, Tomasz

Imielinski and Hank korth, Eds., chapter 5, pp. 153–181. Kluwer Academic Publishers, 1996.

[43] A.-M. Kermarrec, L. Massoulie, and A. Ganesh, “Probabilistic reliable dissmination in large-scale systems,” IEEE Trans.

on Parallel and Distributed Systems, vol. 14, no. 3, pp. 248–258, 2003.

[44] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered harmful,” in Proc. of INFOCOM 2003, 2003.

September 30, 2003 DRAFT

