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An Asymptotically Nonadaptive Algorithm 
for Conflict Resolution in Multiple-Access 

Channels 
JANOS KOMLGS AND ALBERT G. GREENBERG, MEMBER, IEEE 

Abstract-A basic problem in the decentralized control of a multiple 
access channel is to resolve the conflicts that arise when several stations 
transmit simultaneously to the channel. Capetanakfs, Hayes, and Tsybakov 
and Mikhailov found a deterministic tree algorithm that resolves conflicts 
among k stations from an ensemble of n in time O(k + k log( n/k)) in 
the worst case. In this algorithm, at each step, the choice of which stations 
to enable to transmit depends crucially on feedback information provided 
by the channel. We show that if k is given n priori then such conflicts can 
be resolved in time O( k + k log(n/k)) using an algorithm in which the 
corresponding choices do not depend on feedback. 

I. INTRODUCTION 

A MULTIPLE-ACCESS channel provides a low cost 
means for a large number of geographically dispersed 

computing stations to communicate. Several such channels 
have been proposed and some have been implemented, 
based on coaxial cable, fiber optic, packet radio, or satellite 
transmission media. A well-known example is the 
ETHERNET [4], [16], which uses a coaxial cable of up to 
1.5 km in length to connect up to 1024 stations. 

We consider the following model commonly taken as the 
basis of mathematical studies of the multiple-access chan- 
nel [2], [3], [8]-[ll], [15], [17]. Let n be the total number of 
stations tapped into the channel. At steps numbered 
1,2,3;.., any station can transmit a packet of data to the 
channel. There is no central control. If k stations transmit 
simultaneously, the result depends on k as follows: 

l If k = 0 then of course no packets are transmitted. 
l If k = 1 then the packet is broadcast to every station, 

an event called a successful transmission. 
l If k 2 2 then all the packets are lost because the 

transmissions interfere destructively, an event called a 
collision. 

All stations receive the feedback 0, 1, or 2 + , indicating 
that k is 0, 1, or 2 2, respectively before the next step. 

Central to some recently proposed schemes for control- 
ling access to the channel is an algorithm that, to resolve a 
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transmission conflict, schedules retransmissions so that, 
with certainty, each of the conflicting stations eventually 
transmits singly to the channel [2], [3], [ll], [15], [17]. Just 
those stations involved in the initial conflict participate. At 
each step of its execution, the algorithm gives transmission 
rights to a subset of the stations, called the query set. A 
station transmits if it 

l is in the query set, 
l is one of the stations that caused the initial collision, 

and 
0 is, as of this step, still unsuccessful in its attempts to 

transmit singly. 

A conflict resolution algorithm may be used to coordinate 
access to the channel in the following way [2], [3], [ll], [15], 
[17]. Access alternates between intervals in which access is 
unrestricted and intervals in which access is restricted to 
resolve conflicts. Initially access is unrestricted, and sta- 
tions are permitted to transmit packets upon receipt. When 
a collision arises, the stations involved execute an al- 
gorithm to resolve it, and the other stations defer. All 
stations detect the algorithm’s termination on the basis of 
channel feedback, at which point access is again unre- 
stricted. 

Capetanakis [2], [3], Hayes [ll], and Tsybakov and 
Mikhailov [17] (independently) found a deterministic tree 
algorithm that resolves conflicts among k stations (2 I k 
5 n) in O( k + k log(n/k)) time in the worst case.’ (Worst 
case refers to the maximum over all possible choices of the 
k stations; time is measured as the number of steps used.) 
The algorithm works without any a priori information 
about k, other than k 2 2. The algorithm is adaptive in 
the sense that, at each step, the choice of query set depends 
on the feedback elicited at previous steps. Greenberg and 
Winograd [lo] showed that all deterministic conflict resolu- 
tion algorithms must use time a( k(log n)/(log k)) in the 
worst case, for all k and n (2 I k s n). 

i f(n) = O(g(n)) means If(n)1 5 clg(n)l for some constant c > 0 
and all sufficiently large n. 

f(n) = mdn)) means 1 f(n)1 > clg(n)l for some constant c > 0 
and all sufficiently large n. 

f(n) = @(g(n)) means J(n) = W(n)) ad f(n) = G(n)). 
Bounds like O( k + k log( n/k)) hold uniformly 
in k (the same constant c works for all k) unless 
stated otherwise. 
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Here we consider nonadapt ive conflict resolution al- 
gorithms. These are algorithms that, given both k and  n, 
generate the same sequence of queries, irrespective of the 
feedback elicited. Specifically, a  nonadapt ive algorithm 
generates a  list of queries, Q ,, Q2; * 0, Q ,, as a  function of 
k and  n. On  inspection of this list, any conflicting station 
x may find the subsequence Q ,,, Q ,; . . , Q . (1 I i, -c i, 
. . . < i, 5  t) of those queries enabhng stat&n x to trans- 
m it. At step ij (1 <j < s), station x transmits, provided 
that none of its earlier transmissions succeeded. Thus, a  
station must mon itor feedback and reschedule its next 
transmission only at steps at which it transmits to the 
channel. In contrast, in the tree algorithm (which is adap-  
tive), a  station must mon itor feedback and accordingly 
reschedule its next transmission at every step of execution. 

Our ma in result is to show that there is a  nonadapt ive 
algorithm that, for all k and  n, ,generates just .@(k + 
k log (n/k)) queries, the same number  (to within constant 
factors) as the tree algorithm. (A preliminary version of 
this result appeared in [9].) The  proof is non-constructive, 
and  is obtained using probabilistic methods. 

The  assumption that k is known a  priori does not 
necessarily lim it the practicality of nonadapt ive algorithms. 
Any nonadapt ive algorithm that works for given k and  n  
also works for k’ and n, provided k’ I k. Consider the 
following procedure for using a  nonadapt ive algorithm to 
construct a  particularly simple adaptive algorithm to re- 
solve a  conflict of unknown mu ltiplicity k. Try the al- 
gorithm for k = 2,4,8, * . a, and, following each try, query 
the whole ensemble { 1,2,. * . , n  }. Terminate if this query 
elicits no  transmissions. Suppose the running time  of the 
underlying nonadapt ive algorithm is O( k + k log (n/k)). 
Then  this procedure resolves conflicts of unknown mu lti- 
plicity k (2 I k I n) in time  on  the order 

f: 2’(1 + log?) = O(k + klo,;), 
i=l 2’ 

where p  = [log, kl . W e  note that an  even faster nonadap-  
tive algorithm could lead to an  even faster adaptive one. 
Suppose the running time  of the underlying nonadapt ive 
algorithm of the procedure above is 0( k(log n)/(log k)). 
Then  the procedure resolves conflicts of unknown mu lti- 
plicity k in time  on  the order 

P 

c (2’/i)logn = O(k(logn)/(logk)). 
i=l 

A related problem, group testing, deserves some men-  
tion. In group testing, the goal is to determine from the 
feedback to queries the identities of the k members of the 
input (a subset of size k from { 1,2,3,. * . , n  }), under  a  
mode l in which a  query produces feedback 0  if the query 
holds no  members of the input and  feedback lt other- 
wise. In one  sense, group testing is harder than conflict 
resolution, because in conflict resolution the algorithm 
need not determine the identities of the conflicting stations. 
In another sense, conflict resolution is harder than group 
testing, because in group testing the feedback is less infor- 
mative. Group testing can be  accomplished adaptively in 

O( k + k log (n/k)) time  in the worst case [12], and  non- 
adaptively 

l in O( k + k log(n/k)) time, if the algorithm is allowed 
to make errors (with small probability) and  k grows 
slower than any polynomial in n  [7], or 

l in O(logn) time, if k is fixed [13]. 

Under our definition of a  nonadapt ive algorithm, the 
queries are generated with no  dependence on  feedback. 
However, as described above, a  station must adapt to the 
feedback produced when it actually transmits. One  .can 
study even more restricted algorithms, where transmissions 
are not influenced by any feedback whatsoever. Then  the 
problem is to produce, given k and  n  (2 I k in), the 
shortest sequence of queries such that the following holds: 
For every possible set I,of k conflicting stations the query 
sequence is such that, for all x in I, the sequence contains 
a  query Q  with I n  Q  = {x}. Formally, this is the prob- 
lem of constructing m inimum length (k - 1, n, I) superim- 
posed codes [l], [5], [14]. An interesting result of Bassalygo 
[S] is that serially querying individual stations is ofitimal 
when k 2  fi + 1. A straightforward counting argument 
shows that 0( k* + k* log (n/k)) queries suffice, for all k 
and  n. 

II. A FASTNONADAPTIVEALGORITHM 

Let [n] denote the set of station identifiers { 1,2, * . . , n  }. 
W e  refer to the set of k conflicting stations as the input I 
(111 = k and  I G  [n]). Consider a  list of queries 
Q,, Q2,. . . > Q,, 

where each Q j c [n]. W e  define a  corre- 
sponding list I,, 12; * *, I,, where each Ij _C I, = i, as fol- 
lows: 

I/ = Ij-1 - Q j, if ]Qj n  lj-i] = 1  

= Ij-19 otherwise. 

W e  allow Q ,, Q2; . ., Q , to depend on  k and  n, but not on  
the choice of 1. When  Q j fl Ij-i = {x}, we say Q j isolates 
x. The  list of queries is said to be  (ol, m , n) universal if, for 
every input I with ]I) < m , the number  of members of 1  
that the queries fail to isolate is at most (1 - a)m, where 
O<a<landOIm<n. 

Our goal is to prove that for all k and  n  there is a  
(1, k, n) universal list Q ,,Q ,;.*,,Q, of length t  { O(k + 
k log (n/k)). Such a  list represents a  nonadapt ive al- 
gorithm in which query Q i is generated at the ith step of 
execution. A particular station, say station x, will transmit 
with success at that step j where Q j isolates x. 

For example, suppose k = 2, and  the list Q ,, Q ,; . ., Q , 
is (1,2, n) universal. How large must m  be? The  m  X n  
matrix whose ith row is the incidence vector of Q i must 
have distinct columns. (If the two stations indexed by 
matching columns are the active ones, then the two always 
collide.) Thus, we must have n  I 2”, i.e., m  = [log, nl + 1  
and  no  fewer queries suffice if k = 2. 

Our plan is as follows. W e  consider a  list of kj2 queries 
chosen randomly, and  prove that, with overwhelming prob- 
ability, the list isolates at least a  constant fraction of any 
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input of size k (Lemma 2). This leads to a proof that 
(c, k, n) universal lists of length O( k + k log (n/k)) must 
exist for some constant c (0 < c < 1) (Theorem 1). It is 
then a simple matter to build (1, k, n) universal lists from 
the (c, k, n) universal lists (Theorem 2). 

At this point, let us suppose that k divides n. We 
will drop this supposition when we get to Theorems 1 
and 2. Consider the list Q,, Q2; * *, Q,, where p = max (1, 
] k/2] } and each query Qi is of size n/k and is chosen 

uniformly at random from the 
( 1 

n;k possibilities. 
Lemma I: For all j (1 2 j I p), Qj isolates some mem- 

ber of the input with probability greater than 1/2e2; no 
matter what the result of Q,, Q2; . 0, Qj-,. 

Proof: The lemma holds trivially if k = n or k = 1. 
Suppose 2 I k < n, which means 2 I k I n/2, as k di- 
vides n. Consider any Qj with 1 < j I p. Let x denote the 
size of Ijel, so k - p < x I k. For given x, the probabil- 
ity that Qj isolates a member of Ij- 1 is 

x(n;fL',) 
n 

( 1 n/k 
x (n - n/k)(n - n/k - 1) ... (n - n/k - x + 2) =- 
k (n - l)(n - 2) *a. (n - x + 1) 

=; i l- n/k n-l - 1 I( 1 1 _ n/k n-2 - 1 ... 

( 1 _ n-x+1.’ n/k - 1 i 
But (n/k - l)/(n - i) 5 l/2 for all i with 1 I i I x - 1. 
Since 1 - 24 > exp(-2u) if 0 < u I l/2, 

> itexp( -2(n,k _ 1) 
k 

( 1 + 1 1 .- 
n-l 

-+ . . . + 
n-2 11 n-x+1 . 

Note that 
n 1 log”=/ -dU n-x n-x~ 
1 l+ + 1 >-+- . . . 

n-l n-2 n-x+1’ 
so 

(-2(n/k - l)log( &) 

x (n/k-1)2 
= f(1 - --) 

1 

‘-9 
2e2 

as was to be proved. 

LeAma 2: Q,, Q2; * ., Q,* isolate at least ck members 
of the input, with probability greater than 1 - l/ebk, 
where c and b are constants (0 < c < 1, b > 0). 

Proof: Let B(m, M, f) denote the probability of m or 
more failures in M independent trials, each of which fails 
with probability f: 

B(m,M,f) = C (y)fi(l -f)“-i. 
m<i<M 

Let us consider Qi a success if it isolates a member of the 
input and a failure otherwise. Let f = 1 - l/(2e2). By 
Lemma 1, each Qi fails with probability less than f, 
irrespective of the success or failure of any previous query. 
Hence 

Pr{mormoreQifail} <B(m,M,f). 
The list Q,, Q2,. . . , Qp isolates at least M - m members 
of 1, that is, at least M - m of the Qi succeed, with 
probability at least 

1 L Pr{m or more Qi fail} 2 1 - B(m, M,f). 
We want to find constants c and b (0 < c < 1, b > 0) 
such that, when M - m 2 ck, the right hand side of the 
last inequality is at least 1 - l/ebk. 

It follows from a result of Chernoff [6, p. 171 that, for 
any constants /-I (0 < p < 1) and f(0 < f < l), 

B((1 + /3)Mf, M,f) I l/e(82Mf/3). 

(The probability is extremely small, l/e”c”), that the 
number of failures is more than a constant factor greater 
than Mf, the expected number.) To complete the proof, let 
M = p (for concreteness), p = l/(2e2), and m = (1 + 
p)pj, so that M - m = p/(4e4) 2 kc and 

1/,(p2Mf/3) < l/ebk, 

where c = 1/9e4 and b = p2j/12. Combining these in- 
equalities gives the lemma. 

The next order of business is to convert the lemma about 
probabilities into a theorem about certainties. 

Theorem 1: For all k and n (2 I k 5 n), there is a 
(c, k, n) universal list of length O(k + k log (n/k)), where 
c is the constant of Lemma 2. 

Proof: Suppose, for the moment, that k divides n. 
Consider a list Q,, Q2,. . . , Q, of t queries, each of size n/k 
and each chosen uniformly at random from the n 

( 1 n/k 
possibilities. Associate with each input I of size k the 
random variable 

0, i fQ,,Q,,*-.,  Q, leaves I (1 - c)k 
x, = 

i 
unisolated members of I 

1, otherwise 

and let X = CX,, summing over all such I. (X is the 
number of inputs I such that the queries fail to isolate at 
least ck members of I.) Suppose t  is so large that the 
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expected value of X,, E { X,}, is less than 1  
ii ) ;: for every 

I. Then  E { X} = XE{ X, } is less than 1, which means that 
there is a  query list Q ,, Q2; * +, Q , under  which X1 = 0  for 
every I, that is, Q ,, Q2, * * ., Q , is (c, k, n) universal. W e  
need only show that, for t = O(k + k log(n/k)), we can 

ensure that E{ X,} = Pr(X, = 1) < 1  
I 

(E). 
Suppose the number  of random queries t = mp, where 

p  = max{l, 1  k/2] }. Suppose, for the moment,  that we 
restore the input just after steps p, 2p, 3p; * *,(m - 1)~. 
This means the query list Q jp+l,Qjp+2,...,Q,j+,,, acts 
on  the original input I (for each j, 0  < j 5  m), instead of 
the reduced input Ijp. By Lemma 2, with probability less 
than e-bk, Q jp+i;-.,Q,,+,,, leaves more than (1 - c)k 
unisolated members of the input. Since the queries are 
chosen independently, all m  groups leave more than (1 - 
c)k unisolated members of the input with probability less 
than e- bmk. Now, drop the supp osition that the input is 
restored after steps p, 2p, * 1  . , (m - 1)~. This can only 
lessen the aforementioned probability, 
e  - bmk. In order to make e  

As a  result, the list length t = mp  is O( k + k log( n/k)). 
W e  now consider the case where k does not divide n. 

Add up  to k dummy stations to get a  total of n’ 5  n  + k 
stations, where k divides n’. Using the argument given 
above, produce a  (c, k, n’) universal list of length O(k + 
k log (n’/k)) = O( k + k log (n/k)), and  strike the dummy 
stations from each query to obtain a  (c, k, n) universal list 
of the desired length. This proves the theorem. 

W e  now put together (1, k, n) universal lists using the 
(c, k, n) universal lists of Theorem 1  as building blocks. 

Theorem 2: For all k and  n  (2 I k _< n), there is a  
(1, k, n) universal list of length O(k + k log(n/k)). 

Proof: Theorem 1  guarantees the existence of (c, k, n) 
universal lists of length O( k + k log (n/k)), where c (0 < 
c < 1) is the constant of Lemma 2. Let 

p  = bgk)/(log1/(1 - c)>l + 1. 
Apply Theorem 1  to produce p  query lists L,, L,, . . . , Lp- 1  
such that L, is (c, (1 - c)‘k, n) universal and  has length 

@(k(l - c)~ + k(1 - c)‘log( ;(l - c)-i)). 

Concatenate the Lj to form a  list L  = L,L, . . . L,-,, 
which has length O( k + k log( n/k)). Notice that L, fails 
to isolate at most (1 - c)k members of any given input I. 
L,L, fails to isolate at most (1 - c)2k members of I. 
L,L,L, fails to isolate at most (1 - c)3k members of Z, 
and  so forth. Thus, L  fails to isolate at most (1 - c)Pk 
members of I and, by the definition of p, 

(1 - c)Pk I (1 - c) < 1. 

Thus, L  successfully isolates all k members of I, mean ing 
L  is (1, k, n) universal, as was to be  shown. 

III. DIRECTIONS FOR FURTHER&SEARCH 

An adaptive conflict resolution algorithm is allowed to 
determine each query as a  function of the feedback from 
its previous queries, where feedback indicates whether the 
query elicited 0, 1, or 2  2  transmission attempts. W ith 
respect to worst case running time, the fastest adaptive 
algorithm reported so far (the tree algorithm [2], [3], [ll], 
[17]) takes time  O( k + k log (n/k)) to resolve a  conflict 
among k stations, for any k and  n  (2 2  k I q). In this 
paper, we gave a  nonconstructive proof that there is a  
nonadapt ive algorithm that meets the same time  bound.  
Our counting methods were not refined enough to make it 
worthwhile to optimize the constants implicit in the 0  (k + 
k log (n/k)) bound.  It would be  of interest to do  a  tighter 
analysis aimed at getting small constants. It would also be  
of interest to get a  constructive proof, one  that produces an  
algorithm instead of verifying its existence. 

W e  note that a  simple extension of our argument indi- 
cates that, for some constant c > 0, a  random list of 
c( k + k log (n/k)) queries resolves the conflict with over- 
whelming probability. Thus, there is a  particularly simple, 
constructive probabilistic algorithm for resolving conflicts 
whose queries are chosen independent of feedback. 

All deterministic algorithms for conflict resolution, 
adaptive or nonadaptive, must have worst case running 
time  fi(k( logn)/( log k)) [lo]. It would be  of interest to 
narrow the gap between this lower bound and the order - _  
k + k log(n/k) upper  bound,  at least 
algorithms. 
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