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Abstract

Time synchronization is necessary in many distributed systems, but achieving synchronization in sen-
sornets, which combine stringent precision requirements with severe resource constraints, is particularly
challenging. This challenge has been met by the recent Reference-Broadcast Synchronization (RBS) pro-
posal, which provides on-demand pairwise synchronization with low overhead and high precision. In this
paper we introduce a model of the basic RBS synchronization paradigm. Within the context of this model
we characterize the optimally precise clock synchronization algorithm and establish its global consistency.
In the course of this analysis we point out unexpected connections between optimal clock synchroniza-
tion, random walks, and resistive networks, and present a polynomial-time approximation scheme for the
problem of calculating the effective resistance in a network based on min-cost flow. We also sketch a
polynomial-time algorithm for finding a schedule of data acquisition giving the optimal trade-off between
energy consumption and precision of clock synchronization. We end with a discussion of more practical
issues, including synchronizing in the presence of clock skews, defining the actual message exchanges,
and possible deployment in a network of seismic sensors that requires global clock consistency.

1 Introduction

Many traditional distributed systems employ time synchronization to improve the consistency of data and
the correctness of algorithms. Time synchronization plays an even more central role in sensornets, whose
deeply distributed nature necessitates fine-grained coordination among nodes. Precise time synchronization is
needed for a variety of sensornet tasks such as sensor data fusion, TDMA scheduling, localization, coordinated
actuation, and power-saving duty cycling. Some of these tasks require synchronization precision measured in
�secs, which is far more stringent than the precision required in traditional distributed systems. Moreover, the
severe power limitations endemic in sensornets constrain the resources they can devote to synchronization.
Thus, sensornet time synchronization must be both more precise, and more energy-frugal, than traditional
time synchronization methods.

The recent Reference-Broadcast Synchronization (RBS) design meets these two exacting objectives by
producing on-demand pairwise synchronization with low overhead and high precision [5]. RBS is specifically
designed for sensornet contexts in which (1) communications are locally broadcast, (2) the maximum speed-
of-light delay between sender and receiver is small compared to the desired synchronization precision, and
(3) the delays between time-stamping and sending a packet are significantly more variable than the delays
between receipt and time-stamping a packet (so estimates of when a packet is sent are far noisier than estimates
of when it is received). See [5] for a much fuller discussion of this last point, but measurements described
therein suggest that the receiving delays can be reasonably modeled as a Gaussian centered around some
mean, with the mean being the same for all nodes (assuming they share the same hardware/software).

There is a vast literature on clock synchronization in the theory and distributed systems literature, which
we don’t have space to review (e.g., [3, 7, 16, 13]; see [4] and references therein for a comprehensive review).
We note, however, that most traditional methods synchronize a receiver with a sender by transmitting current
clock values, and are thus sensitive to transmission delay variability and asymmetry. In contrast, RBS avoids
these vulnerabilities by synchronizing receivers with each other, leveraging the special properties of sensornet
communications. Reference broadcast signals are periodically sent in each region, and sensornet nodes record
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the times-of-arrival of these packets. Nodes within range of the same reference broadcast can synchronize
their clocks by comparing their respective recent time-of-arrival histories. Nodes at distant locations (not
in range of the same reference broadcast) can synchronize their clocks by following a chain of pairwise
synchronizations. RBS is therefore completely insensitive to transmission delays and asymmetries. In fact,
errors in RBS arise only from differences in time-of-flight to different receivers and delays in recording packet
arrivals. In the contexts for which RBS is intended, both of these errors are quite small and the latter dominates
the former. Therefore, most of the errors in synchronization are due to essentially random delays in recording
times-of-arrival (which, as observed earlier, are reasonably modeled as Gaussian).

To penetrate this randomness, RBS uses pairwise linear regressions of the time-of-arrival data from a
shared broadcast source. While this seems like a very promising approach, and has been verified on real
hardware, there are two aspects of RBS, and in fact of any similar synchronization algorithm, that we wish to
improve upon. First, the resulting synchronization is purely pairwise, in that for any pair of nodes �� � RBS can
compute coefficients ����� ���� that translate readings on �’s clock into readings on �’s clock via �� � ��������� ,
but these pairwise translations are not necessarily globally consistent. Converting times from � to �, and then
� to � can be different than directly converting from � to �; i.e. the transitive properties ������ � ��� and
������ � ��� � ��� need not hold.1 Second, the pairwise synchronizations are not optimally precise in that
they do not have minimal variance from the truth. The RBS synchronization of two sensornet nodes is based
only their time-of-arrival information from a single broadcast source. No information from other broadcast
sources is used, nor is time-of-arrival information from other receivers. Thus, much relevant data is being
ignored in the synchronization process, resulting in suboptimal precision.2

We address these limitations in a simplified model of synchronization in which changes in clock skew
(differences in the rates of clocks) occur at much longer time scales than changes in clock offset (differences
in the current clock values);3 that is, we assume that over short time scales the clock skews are known (and
compensated for) so synchronization is used only to adjust for clock offsets; estimates of clock skew are
taken on much longer time scales. Thus, in what follows we will assume that all clocks advance at the same
rate (because any differences in rate are explicitly compensated for); later, in Section 5, we will relax this
assumption.

Our focus in this paper is primarily theoretical and we do not evaluate the feasibility (in terms of energy
consumption) of this approach. However, we are planning to adopt this approach in a seismographic sensornet
array. The requirements of optimally precise and globally consistent time synchronization are particularly
acute in this context. We expect that there are ways to increase the energy efficiency of the approach described
here without sacrificing significant precision or consistency.

RBS is, of course, not the only approach to sensornet clock synchronization. In some contexts, Global
Positioning System (GPS) can provide a universal clock signal, but GPS requires a clear sky view, and thus
does not work inside buildings, underwater, or beneath dense foliage. Moreover, many current sensornet nodes
(e.g., the Berkeley Motes [9]) are not equipped with GPS. There are several proposals for synchronizing clocks
within a single broadcast domain [19, 18, 14], but they do not generalize to global synchronization which is
what we address here.

Two global synchronization proposals of note are [12] and [17]. The microsecond precision achieved
in [12] is similar to our goals here, but the approach assumes a fixed topology and guarantees on latency
and determinism in packet delivery. A very energy-efficient time diffusion algorithm is presented in [17],
but the precision analysis assumes deterministic transmission times. Our interest here is in synchronization

1Note that requiring the pairwise synchronizations to be globally consistent is equivalent to saying that there is some universal
time standard to which all nodes are synchronized (e.g., the time of one particular node could serve as this universal time, though we
choose to adopt a more distributed approach).

2Some of this is inherent in the RBS approach and some is an artifact of the particular design described in [5]. Using only a
single synchronization source is an artifact; not incorporating time-of-arrival data from other receivers is inherent in the general
pairwise-comparison approach adopted by RBS.

3In our previous notation where �� � ��������� , ��� represents the relative clock skew and ��� represents the relative clock offset.
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algorithms that do not require specific underlying networks to function.
Some synchronization designs, such as [8, 6], integrate the MAC with the time synchronization procedure.

While our discussion does not make assumptions about the underlying hardware and MAC, the results would
benefit from these MAC-specific features to the extent that they reduce the magnitude of the receive-time
errors. We note that while the discussion of our approach builds on RBS, our methods and results could be
extended to any pairwise synchronization procedure whose errors were independent.

Another quite different approach is that taken in [15], which doesn’t directly synchronize clocks but
instead refers to events in terms of their age, not time. The problem of calibration [20] is related to that of
synchronization, though it differs in some essential details. The discussion in [2] is especially relevant to
our discussion here, as it considers how to use nonlocal information across multiple calibration paths in a
consistent manner.

2 Summary of Results

The core problem of the paper is the following. We are given a set of receivers. Each receiver �� has a clock
that is offset from a (fictitious) universal time standard by a constant amount 	�. We are also given a set of
synchronization signals. Each synchronization signal 
� is transmitted at an unknown time �� and is received
by a set of receivers. the time-of-flight of 
� is negligible. If �� is a receiver of 
� then �� measures the arrival
time of 
� on its local clock. Let this measured time be ���. We assume that ��� � �� � 	� � �� where
the error �� is a random variable with zero mean and variance ���. We also assume that the errors �� are
independent.

The main results are as follows:

1. We define a resistive network with a node for each receiver and each signal, such that the minimum-
variance estimator of 	� � 	� is derivable from the distribution of current when one unit of current is
inserted at node 	� and extracted at node 	� .The variance of the estimator is the effective resistance
between 	� and 	� . The variances ��� appear as resistances in this network.

2. The minimum-variance estimator is globally consistent, in the sense that for any triple ��� ���� the
estimates of 	� � 	� , 	� � 	� and 	� � 	� sum to zero.

3. The effective resistance between two nodes of a network can be approximated with relative error � by

performing
�

�
�� flow augmentations on the network, where � is the sum of the resistances and � is

the effective resistance.
4. The effective resistance of the regular infinite �-dimensional grid is given explicitly, and indicates the

advantage of the proposed synchronization scheme over its predecessor RBS in this case. We believe
that similar advantages will typically be realized in large-scale sensornets in which the sensors have a
homogeneous spatial distribution.

5. Under the additional assumption that the errors �� are Gaussian, the maximum-likelihood joint choice
of the 	� and ��, subject to the convention that 	� � �, is the unique solution to a linear system of least-
squares equations. This sparse system of equations can be solved iteratively by a distributed sensornet
algorithm in which each receiver or generator of a signal is responsible for updating the corresponding
variable 	� or ��.

6. The maximum-likelihood joint choice of the 	� and �� agrees exactly with the minimum-variance
pairwise estimates of 	�� 	� . Therefore the minimum-variance estimator is what is known in statistics
as an efficient estimator.

7. The maximum-likelihood estimate of 	� is exactly the hitting time of a random walk from �� to �� on
a weighted directed graph with ‘delay’ ��� on edge ���� 
�� and ���� on edge �
�� ���, where �� is a
receiver of signal 
�, and the transition probabilities out of each vertex are inversely proportional to the
variances ���.
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8. A polynomial-time algorithm is presented which, given a set of receivers and a set of potential signals,
determines the optimal repetition rate of each signal to minimize energy consumption while keeping
the variance of the estimate of each offset 	� � 	� below a specified value.

9. A method is given for estimating clock skews under the assumption that the clock of each receiver ��
advances at a fixed rate �� per unit time. The method is based on measurements of the time elapsed
on the clock of each signal transmitter and the time elapsed on the clock of each receiver between two
transmissions of the same signal widely separated in time. The method is based on an isomorphism
between this version of the clock skew problem and the clock offset problem described above.

3 Optimal and Global Synchronization

In this section we consider a simple model where clocks all progress at the same rate (i.e. no skew), but have
arbitrary offsets; we later, in Section 5, extend our results to the case of general clock skew. After describing
the model and notation, we consider the question of optimal pairwise synchronization and then that of the
most likely globally consistent synchronization. We then show their equivalence and end this section by
describing a simple iterative computation of the solution and its variance.

3.1 Model and Notation

We consider the case where there are � sensornet nodes, and let �� denote the �’th such node. These nodes
use synchronization signals to align their clocks; let 
� denote the �’th synchronization signal. Our treatment
does not care from whence these signals come, only which nodes hear them, so we don’t identify the source
of these signals. We let � be the set of pairs ���� 
�� such that node �� receives signal 
�; in what follows, we
will use the terms “node” and “receiver” interchangeably. In order to explain our theory, we make reference
to a perfect universal time standard or clock; of course, no such clock exists and our results do not depend on
such a clock, but it is a useful pedagogical fiction. In fact, the approximation of such a universal time standard
is one of the goals of our approach.

We assume, in this section, that all clocks progress at the same rate and that propagation times are in-
significant (or have been explicitly compensated for). We represent the offset of a node, or receiver, by the
variable 	�. This offset is the difference between the local time on ��’s clock and the universal absolute time
standard. Of course, there is a degree of freedom in choosing these 	�, as they could all be increased by the
same constant without changing any of the pairwise conversions; the addition of such a constant term would
reflect changing the setting of the global clock. We represent by �� the time when synchronization signal 
�
is sent (or, equivalently, received) according to the absolute time standard. The ��’s are not known, but are
estimated as part of the synchronization process; thus, they are outputs, not inputs, of our theory.

Each node records the times-of-arrival of all synchronization messages it receives (i.e. all those that they
are in range of). We let ��� denote the measured time on ��’s clock when it receives signal 
�. The quantity
��� is defined if and only if ���� 
�� � �. The basic assumption we make about measurement errors is that:

��� � �� � 	� � �� (1)

where �� is a random variable with mean zero and variance ���. We further assume that all these random
variables are independent.

To find the optimal (e.g. the minimum-variance) pairwise synchronization between nodes � and �, we
must produce the minimum-variance estimate of the difference 	� � 	�. In contrast, to produce a globally
consistent synchronization, we must estimate all the 	� independently and seek a maximum-likelihood joint
choice of all the offsets 	�. When we assume the measurement errors �� are Gaussian we are able to reduce
this maximum-likelihood problem to a linear system of least-squares equations. Surprisingly, the solution to
this system of equations also solves the flow problem used to produce minimum-variance estimators.
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3.2 Minimum-Variance Pairwise Synchronization

Given two nodes �� and �� an unbiased estimator of 	��	� can be obtained from any appropriate path between
�� and ��. In general such a path is of the alternating form ��� � 
�� � ��� � 
�� � � � � � 
�� � ����� where ��� � �� and
����� � �� and each adjacent pair is in�. The corresponding estimator is ���������������������� � ����������

which, in view of the equation ��� � ���	����, is equal to 	��	��������������������� � ��������� .
This estimator is unbiased because each �� has zero mean.

By considering appropriate weighted combinations of alternating paths we can obtain an estimator of
much lower variance than any single path can provide, thus providing a more accurate synchronization of the
two nodes. Such a weighted combination of paths is a flow from �� and ��, satisfying the flow conservation
requirement that the net flow into any node except �� and �� is zero. In this subsection we characterize the
minimum-variance estimator of 	� � 	� in terms of flows.

Consider an undirected flow network with edge set �. We will use the following convention regarding
summations:

�
�� will denote a summation over all pairs ��� �� such that ���� 
�� � �; when � is understood

from context,
�

� will denote a summation over all � such that ���� 
�� � �; and when � is understood from
context,

�
� will denote a summation over all � such that ���� 
�� � �.

We first state, without proof, a basic but straightforward fact about unbiased estimators:

Theorem 1. The unbiased estimators of 	� � 	� are precisely the linear expressions
�

�� ������ such that
����� is a flow of value 1 from �� to ��. Here ��� is positive if the flow on edge ���� 
�� is directed from �� to

�, and negative if the flow is directed from 
� to ��. The variance of the unbiased estimator ����� is

�
�������.

A similar statement holds for the unbiased estimators of 	� � 	�, for any � and �.

The problem of finding a minimum-variance unbiased estimator of 	� � 	� is related to the problem
of determining the effective resistance between two nodes of a resistor network. In order to sketch this
connection we review some basic facts about resistive electric networks.

Let � be a connected undirected graph with vertex set � and edge set �, such that there is a resistance
���� �� associated with each edge ��� ��. An applied current vector is a vector  with a component ��� for
each vertex, such that

�
��� ��� � �; ��� represents the (steady-state) current (positive, negative or zero)

injected into the network at vertex �. Associated with every applied current vector  is an assignment to each
ordered pair ��� �� of adjacent vertices of a current ���� �� and to each vertex � a potential ���� satisfying
Kirchhoff’s law (net current into a vertex = 0) and Ohm’s law ���� � ���� � ���� ������ ��. The current is
unique and the potential is unique up to an additive constant. When we want to identify the particular applied
current vector  we write �	��� �� and �	���. A key property is the superposition principle:

�	��	���� �� � �	���� �� � �	���� ��

and
�	��	����� �	��	���� � ��	����� �	����� � ��	����� �	�����

The effective resistance between � and � is the potential difference ����� ���� when the applied current
vector is as follows: ��� � �, ��� � �� and all other components of  are zero; i.e. when one unit of
current is injected at � and extracted at �.

The effective resistance between � and � can be characterized in terms of a minimum-cost flow problem
with quadratic costs. It is the minimum, over all currents ���� �� satisfying Kirchhoff’s law (with external
current 1 at � and �� at �) of

�
���
��� ���� ��

����� ��. This quadratic objective function represents the
power dissipation in the network.

Now consider the undirected bipartite graph of signals �
�� and receivers ���� as a resistor network, with
the variance ��� as the resistance of the edge �
�� ���. Combining Theorem 1 with the minimum- cost-flow
characterization of effective resistance we obtain the following theorem.
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Theorem 2. The minimum variance of an unbiased estimator of 	� � 	� is the effective resistance between
�� and ��, and the corresponding estimator is

�
�� ������ where ��� is the current along the edge from �� to


� when one unit of current is injected at �� and extracted at ��.

The following theorem establishes the mutual consistency of the minimum-variance estimators of the
differences between offsets. Its proof is a simple application of the superposition principle. Let ���� �� be the
minimum-variance estimator of 	� � 	� .
Theorem 3. For any three indices i, m and j, we have ������ ����� �� � ���� ��.

It follows from Theorem 3 that we can compute ���� �� for all � and � by computing ������ for all � and
a fixed � and using the identity ���� �� � ������ � ������. This shows that the set of minimum-variance
pairwise synchronizations are globally consistent. The question remains whether they are the maximally
likely set of offset assignments.

3.3 Maximum-Likelihood Offset Assignments

We now seek the maximally likely set of offset assignments 	�. This approach is guaranteed to produce
a globally consistent set of pairwise synchronizations, but it is not clear a priori that they are minimum-
variance pairwise synchronizations. In this formulation we assume that the ��� are independent Gaussian
random variables such that ��� has mean ���	� and variance ���. Then the joint probability density � of the
��� given values 	� for the offsets of the receivers and �� for the absolute transmission times of the signals is
given by:

� �
�
��

��
�����


�

�����������
�

����

We shall derive a system of linear equations for the 	� and �� that maximize this joint probability density.
Let ��� denote the reciprocal of ���. We refer to ��� as the conductivity between 
� and ��.
Differentiating the logarithm of the joint probability density with respect to each of the �� and 	� we find

that the choice of ���� and �	�� that maximizes the joint probability density is a solution to the following
system of equations:

For each �, �
�

������ � 	�� �
�
�

������ (2)

For each �, �
�

������ � 	�� �
�
�

������ (3)

¿From these equations we can derive an interpretation of each 	� as the hitting time of a random walk
from �� to �� on a directed graph with a positive or negative ‘delay’ on each edge. Assume that the set of
indices � associated with the receivers is disjoint from the set of indices � associated with the signals. Under
this assumption there is no ambiguity in defining, for each signal index �, a new variable 	� equal to ���.
The system of equations becomes:

For each �,

	� �

�
� �������� � 	���

����
(4)

For each � �� �,

	� �

�
� ������� � 	���

� ���
(5)

Fixing 	� at �, it is clear by inspection that these equations support the following interpretation: for each
receiver �, 	� is the expected total delay of a random walk starting at �� and ending at the first visit to ��, where
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the transition probability from �� to 
� is ����
� ���

, the transition probability from 
� to �� is ����
� ���

, the delay
on a transition from �� to 
� is ��� and the (negative) delay on a transition from 
� to �� is ����.

3.4 Equivalence of the Two Formulations

The following theorem shows that, even though the minimum-variance pairwise synchronization and the
maximum-likelihood offset assignment appear to be based on different principles, they determine the same
values of 	� � 	�, for all � and �. Our proof is based on the superposition principle, but the theorem can also
be seen as a consequence of the Cramer-Rao inequality [11], a general tool for eastablishing that the variance
of an estimator is best possible.

Theorem 4. For any fixed index m we obtain a solution to the system of equations 4 and 5 by setting 	 ��� �
������ for each �.

3.5 Solving the Equations

The solution to the system of equations 2 and 3 can be found through a simple two-step iterative process. In
the first step, the ��� and 	� are used to estimate the ��:

For each �,

�� 	
�

�������� � 	���
� ���

In the second step, the ��� and �� are used to estimate the 	�:

For each �,

	� 	
�

� ������� � ����
� ���

Each iteration reduces
�

�

�
� ������� � �� � 	���. It follows that the iterative process converges to a

solution of the system. Convergence can be accelerated by over-relaxation techniques which are standard in
numerical analysis [1].

While this theory produces optimal (in two senses of optimality, maximum-likelihood and minimum-
variance) estimators, it does not directly reveal the quality of the estimated values. The variance of each
the estimators can be obtained by computing the effective resistance between the corresponding receivers.
This can be done exactly by solving a system of linear equations or approximately by a new approximation
algorithm based on minimum-cost flow. these two approaches are described in the following subsections.

3.6 Computing Optimal and Near-Optimal Estimators and Their Variances

As we have seen, finding an optimal unbiased estimator of 	��	� and determining its variance is an equivalent
problem to computing the distribution of currents, and the corresponding effective resistance, when a unit of
current is injected at node 
 and extracted at node � of a resistive network. A standard approach is to set up
and solve a system of linear equations for the currents and potentials using Ohm’s Law and Kirchhoff’s Law.

In certain special cases the effective resistance can be determined analytically. For example, in the infinite
�-dimensional grid with unit resistors and unit distance between neighboring nodes, the effective resistance
between two nodes at Manhattan distance � is  �	
���. Thus, in the clock synchronization problem corre-
sponding to this network, our approach would yield an estimator with variance  �	
��� whereas RBS, which
bases its estimator on a single path, would yield an estimator with variance �.
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3.7 A PTAS for Effective Resistance

An alternate approach is to use the formulation of effective resistance as a flow problem in which each edge
has unbounded capacity and cost quadratic in the flow. The quadratic edge costs can then be approximated by
piecewise-linear functions, yielding a flow problem with finite capacities but linear costs [10]. Pursuing this
idea, we have shown that the effective resistance can be approximated within relative error � by performing�

�
�� flow augmentations in the linear-cost network, where � is the sum of the resistances and � is the

effective resistance. Moreover, this bound can be achieved without knowing � in advance.
Given a resistive network � � ����� !� � �, we denote by � the sought by � the sum of the resistances ���

of all edges of �.

Theorem 5. � can be approximated within � " � by
�

�
�� flow augmentations.

Proof: For any positive real # , let $�# � be the problem of finding a flow of value # that minimizes the
quadratic objective function

�
��� �

�
����� over all flows ����� of value # from 
 to �, and let ���# � be the cost

of a minimum-cost solution to $�# �. Notice that the effective resistance is �����, and ���# � � # ������.
For each # we shall define a linear-cost network flow problem ��# � in which the quadratic objective

function of $�# � is replaced by a piecewise-linear approximation which becomes very tight when # is suffi-
ciently large.

The piecewise-linear function ��%� is defined as follows: ���� � �; for any odd positive integer ��� �,
������� � ���; over the interval [0,1] and each interval ������ ����� is linear. Then, for all nonnegative
%, ��%� 
 %� 
 ��%� � �.

For any positive real # let ��# � be the problem of minimizing
�

�� ��������� over all flows from �� to ��
of value # . Let &�# � denote the cost of an optimal solution of ��# �. Then &�# � 
 ���# � 
 ���# � � � ,
since a minimum-cost flow in ��# � will have cost less than or equal to&�# ��� with respect to the quadratic
cost function of $�# �.

Our goal is to compute a solution to $�# � of cost less than or equal to �� � �����# �. By the above

inequalities, it suffices to take an optimal flow for ��# �, for any # greater than or equal to
�

�
�� . Since � is

initially unknown, we will solve the sequence of problems ����� ����� ���� � � � until a solution is found that
can be verified to solve some $�# � within the approximation ratio � � �. This solution, scaled down by the
factor # , provides the required approximate solution to the original Problem $���.

To solve this sequence of linear-cost flow problems we construct a network in which, between any pair
���� ��� of adjacent vertices there are (in principle) infinitely many parallel edges. The first of these has
capacity �, and each each subsequent edge has capacity �. The cost coefficient of the first edge is �, and the
cost coefficient of the �th subsequent edge is ����� . The cost of a flow of � along an edge is � times the cost
coefficient of the edge. In an optimal solution to this linear network flow problem for a specified flow value
# , the flow through this set of parallel edges will exhaust the capacities of these edges in increasing order of
their cost coefficients. It is easy to check that this linear network flow problem is equivalent to Problem ��# �.

If we start with the zero flow and repeatedly augment the flow by sending one unit of flow along a
minimum-cost flow-augmenting path from �� to �� then, after # augmentations, we will have a minimum-
cost flow for ��# �. The computational cost of each augmentation is  ���, where � is the number of edges
in the resistor network for the original problem $���.

For each successive # , an optimal flow for ��# � is computed, and its cost is computed both in $�# � and
in ��# �. When for some # , the ratio of these costs is less than or equal to � � �, the current flow (scaled
down by the factor # ) achieves the desired approximation ratio, and the algorithm halts. This will happen

after at most
�

�
�� flow augmentations. In the case where all ��� are equal to �, � � � and � � �'�,

so the number of flow augmentations is at most �����, and the execution time of the polynomial-time
approximation scheme is at most O(�������.
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4 Optimal Synchronization Design

An interesting problem raised by the results above is to select a subset of the set of available signals, and their
rate of synchronization messages, so as to minimize the energy consumption required to achieve a specified
precision in the estimates of all offsets 	��	� . We formulate this problem as a continuous nonlinear optimiza-
tion problem, and present a polynomial-time algorithm, based on the ellipsoid method, for approximating the
solution to any desired accuracy.

We associate with each signal 
� a real variable %� giving the frequency with which the signal is repeated.
We assume that successive repetitions are independent, so that the composite signal obtained by averaging %�
repetitions of 
� reduces the variance of each measured value ��� by the factor %�, yielding a variance of ���

��
.

We also assume that the rate of power consumption for the network is proportional to the sum of the %�.
We wish to minimize

�
� %� subject to the requirement that, for the corresponding set of variances ���

��
,

the effective resistance between each pair of receivers is at most a specified value �. The joint choice of all the
variables %� yields a point in a euclidean space of dimension equal to the number of signals 
�. For a given
pair ��� �� of receivers, let (�� be the set of points in this space for which the effective resistance between ��
and �� is less than or equal to �. Let( be the intersection of all the sets(�� . Thus our synchronization design
problem is:

���
�
�

%�

subject to % � (
.

Note that, because dividing all the resistances in a network by a factor � reduces the effective resistances
by that same factor, the optimal choice of % for a bound ) on the effective resistances is obtained from the
optimal choice for � simply by multiplying each %� by �

� .
The following can be shown: each set (�� is convex and possesses a polynomial-time separation oracle;

i.e., a polynomial-time algorithm which, given any point � not in(�� , returns a hyperplane separating � from
(�� . It follows at once that( is convex and possesses a polynomial-time separation oracle. Given these facts,
the following theorem is a consequence of general results on separation vs. optimization due to [GLS]. Full
details will be given in the final paper.

Theorem 6. The optimum solution to the synchronization design problem can be approximated to any desired
accuracy in polynomial time.

5 From Theory to Protocol

We have described abstractly how one could optimally compute the appropriate clock offsets 	� from the
measurement data ���. In this section we briefly discuss how one might transform this theory into a practical
protocol. This discussion is by no means complete or definitive, and is completely untested; instead, we
offer it only as providing some glimmer that the ideas of presented here could be successfully applied to real
systems with their skewed clocks and energy constraints. The two issues we address are: (1) generalizing the
theory to compensate for clock skew and (2) turning the abstract calculation into a series of practical message
exchanges.

5.1 Clock Skew

The theoretical treatment assumed that all clocks progressed at the same rate. We now relax this assumption
and describe how one can estimate the relative rates of clocks. In particular, we wish to estimate parameters ��
that describe the rate of the local clocks relative to the standard clock: if a time Æ has elapsed on the universal
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standard clock then each local clock shows that time ��Æ has elapsed (so large �� reflect fast clocks). As
with the offsets 	�, there is a degree of freedom in choosing these ��; each could be multiplied by the same
constant (which would only change the speed of the absolute clock).

Given the pair ���� 	�� for some node �, we can translate local times �� into standard times * : * � ��
��
�	�.

Moreover, if one had the constants ��, then one can estimate the 	�’s as in the previous section by first dividing
all local clocks by ��. Thus, we must now describe how to obtain estimates of these skew values ��, and do
so without knowledge of the offsets 	� (since the computation of the 	� requires knowledge of the ��).

To estimate clock rates, we use the same set of synchronization signals, but now select pairs of them
originating from the same source spaced at sizable intervals (i.e., large compared to the variances ��� of
the individual measurements). We label the �’th signal pair by ��. We let +� and ,�� represent the time
elapsed between their transmission as measured by, respectively, the standard clock and �’s local clock. In the
notation of Section 3,+� is the difference between the pair of signals of the � values; ,�� is the corresponding
difference in the � values. We assume that the measurement errors, as expressed by the ��, are negligible
compared to the magnitude of the +�. If all clocks progressed at perfectly constant rates, then ,�� � +���
for each �� � and we could estimate the variables �� based on a single measurement for each �.

However, clock rates drift and wander over time in random and unpredictable ways. The skew variable ��
represent the long-time averages of the skew, and instantaneous estimates of the skew are affected by drifts in
the clock rate. More specifically, we assume that clock rates vary in such a way that ,�� � ��

Æ��+� where
Æ�� is a random variable with mean zero and variance -��.

Note that, when taking the logs, the equation becomes:

	
�,�� � 	
�+� � 	
��� � Æ��

Note that this is exactly the form of Equation 1 with the following substitutions:

� ���  	
�,��

� ��  	
�+�

� 	�  	
���
� ��  Æ��
� ���  -��

Thus, we can apply all of the previous theory to the estimate of clock skew. The difference is that the
basic measurements now are the locally measured intervals between two synchronization signals (and thus
are unaffected by the offsets), and the magnitude of these intervals is much larger than the measurement errors
(i.e., +� � ���) so the only significant errors arise from clock frequency drift. The same set of equations,
and the same iterative procedure, will produce the optimal and globally consistent estimates of skews through
the set of parameters ��.

We can treat skew and offsets on different time scales. That is, we can adjust the parameters �� roughly
every *� time units, whereas we adjust the parameters 	� roughly every *� time units, with *� � *�; the
absolute values of these quantities will depend on the nature of the clocks and the setting. When computing
the offsets we treat the skew as constant (and known), so we can apply the theory we presented earlier. On
longer time scales, we adjust the skew using the same iterative procedure (with different variables).

The result is that we can treat general clocks with both offsets and skews. Experiments with real clocks
will be needed before we can fine tune the time constants and verify that this two-time-scale approach is valid.

5.2 Outline of a Synchronization Protocol

The calculations in Section 3 seem, at first glance, far too complex for implementation in actual sensornets.
This may well be true, but here we sketch out how one might achieve the desired results in an actual sensornet
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protocol. None of the various parameters are specified; we only sketch out the structure of what a protocol
might look like.

The synchronization process can use any message as a synchronizing signal. We will assume that all
messages have unique identifiers, so different nodes can know that they are referring to the receipt of the same
message. Also, in what follows pairs of nodes are considered to be in range of another node if and only if they
can exchange messages; pairs where one node can hear another, but not vice versa, are not considered to be
in range. We first describe the approach for estimating clock offsets, and then later describe how to use this
for estimating clock skew.

Each node broadcasts a synchronization status message every *� (with some randomness), which contains
data for the last *� seconds; *� represents a time window after which data is discarded. Each status message
contains:

� Their current estimate of 	�.
� Their current estimates of �� for all previous status messages sent within the last *� seconds.
� Their time-of-arrival data ��� for all status messages received in the last *� seconds.

Upon receipt of a status message, node � uses the data to update their estimate of 	� and �� as described in
the iterative equations 2 and 3. Thus, each round of synchronization messages invokes another round in the
iterative computation. At longer intervals, *�, nodes send skew status messages that additionally contain the
data on ��,+�, and ,��. This data can be used to update the skew variables in the same way as for the offset
variables.

The main open question is what rate of message passing is needed to achieve reasonable degrees of
convergence and whether this entails too much energy consumption. The answer will depend greatly on the
nature of clock drifts and measurement errors in real systems. If the rates of change are slow, then once
the system is reasonably well synchronized (which can be achieved by applying RBS initially without our
global modifications) only a slow rate of iterations will be required to stay converged. If the rates of change
are high, then a much faster rate of iterations will be required to stay within the desired precision bounds.
Because we don’t know what the relevant rates of change will be, we don’t offer any conjectures about the
feasibility of this approach. Instead, we hope to investigate the issue empirically by deploying this approach
in an experimental setting.

Our first planned real-world deployment is for an ad-hoc deployable distributed array for detecting seis-
mic activity. Seismologists often perform source localization through coherent beam-forming, requiring time
consistency within the array of order 10 microseconds. Traditionally, all nodes in a seismic array are time syn-
chronized using satellites in the Global Positioning System, which provides the international UTC timescale
to sub-microsecond precision. Interest in network time synchronization has grown because it allows instru-
mentation of areas that are seismically interesting but inaccessible to GPS (e.g., within structures, canyons,
or tunnels). As an array grows in network diameter, existing RBS implementations may prove insufficient
because RBS does not optimize for global coherence that, unlike some other sensor network applications, is
required for seismic arrays. This makes it an ideal test application for our scheme.
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