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ABSTRACT

The time-complexity of deterministic and randomized protocols for achieving broadcast

(distributing a message from a source to all other nodes) in arbitrary multi-hop radio net-

works is investigated. In many such networks, communication takes place in synchronous

time-slots. A processor receives a message at a certain time-slot if exactly one if its neigh-

bors transmits at that time-slot. We assume no collision-detection mechanism, i.e., it is not

always possible to distinguish the case where no neighbor transmits from the case where

several neighbors transmit simultaneously.

We present a randomized protocol that achieves broadcast in time which is optimal up

to a logarithmic factor. In particular, with probability 1−ε, the protocol achieves broadcast

within O ( (D+log n/ε) . log n ) time-slots, where n is the number of processors in the net-

work and D its diameter. On the other hand, we prove a linear lower bound on the deter-

ministic time-complexity of broadcast in this model. Namely, we show that any determinis-

tic broadcast protocol requires Θ(n) time-slots, even if the network has diameter 3, and n is

known to all processors. These two results demonstrate an exponential gap in complexity

between randomization and determinism.
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1. INTRODUCTION

Channels in computer networks are commonly divided into two categories: point-to-

point channels (also known as store-and-forward) and multi-access channels. These

categories are very different in nature and each has its advantages and disadvantages making

it more suitable to various applications [T81]. The fundamental feature of multi-access chan-

nels is that a message placed on the channel is delivered to all stations sharing the channel if

and only if it is the only message placed on the channel at ‘‘that time’’. If two (or more)

messages are placed on the channel (by different stations) at the same time, a collision occurs

and none of these messages is delivered. Most works assume that such collision can be

detected yet this assumption cannot always be justified (cf. [G85]). In particular, in radio

channels, which constitute an important type of multi-access channels, collision is hard to

distinguish from the noise that is always present on the channel (cf. [G85]). Furthermore,

also in settings where collision is normally detected, it is desirable not to rely on the collision

detection mechanism: a communication protocol which does not use collision detection is

likely to be more reliable (than one which does use it) since the protocol will not fail in case

of undetected collision.

Here we consider multi-access channels without collision detection. As radio transmis-

sion constitutes the most popular example of such channels, we carry on our discussion using

the terminology of radio networks. In this terminology a single channel is a single-hop radio

network [A70], whereas a network consisting of several different channels is a multi-hop

radio network.

A useful (and sometimes unavoidable) paradigm of radio communication is the struc-

turing of communication into time-slots. This paradigm is commonly adopted in the practi-

cal design of protocols and hence the use of the paradigm in the theoretical analysis of radio

communication is justified [R72] (cf. [G85, sec. IV.A] and [T81, sec. 6.1.2]).

We now present explicitly the model used throughout the paper. The model consists of

an arbitrary multi-hop (undirected) network, with processors communicating in synchronous

time-slots subject to the following rules. In each time-slot, each processor acts either as a

transmitter or as a receiver. A processor acting as a receiver is said to receive a message in
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time-slot t if exactly one of its neighbors transmits in time-slot t. The message received is

the one transmitted. If more than one neighbor transmits in that time-slot, we say that a

conflict has occurred. We assume that conflicts (or ‘‘collisions’’) are not detected, hence a

processor cannot distinguish the case in which no neighbor transmits from the case in which

more than one of its neighbors transmits during that time-slot. The topology of the entire

network is not a priori known to the processors. Since communication is synchronous the

main difficulty in routing messages, in this model, is the possibility of conflicts; that is, situa-

tions when several neighbors of a processor transmit simultaneously and (as a result) it

receives nothing. This difficulty is aggravated when the processors have no a priori

knowledge on the topology of the entire network.

We investigate the complexity of implementing broadcast in the above model. Broad-

cast is a task initiated by a single processor, called the source, transmitting a single mes-

sage (1) . The goal is to have the message reach all processors in the network. We consider

both deterministic and randomized protocols for broadcast and concentrate on their time-

complexity (i.e., the number of time-slots required to complete broadcast). Our results

demonstrate the advantage of using randomization in the above model.

1.1. Randomized Protocols

We show how conflicts, arising in broadcast protocols, can be resolved quickly by using

randomization. In particular, we present a randomized broadcast protocol that always ter-

minates and, with probability ≥ 1−ε, succeeds after O ( (D+log n/ε) . log n ) time-slots, where

D is the network’s diameter (distance between its most distant processors) and n the number

of processors. Thus, the complexity is only a logarithmic factor away from the trivial lower

bound (i.e., the diameter of the network). The only inputs required by our protocol are the

number of processors in the network – n, and the error bound – ε.�������������������������������
1) There is some confusion regarding the term broadcast. In particular, some authors use broadcast to mean
the task of distributing (many) messages to all processors in a network. A first step in the design of broadcast
protocols is the design of protocols which handle correctly the broadcast of a single message (and indeed our
paper which handles the single-message broadcast was followed by [BII89] in which broadcasting an arbi-
trary number of messages was investigated). In the rest of this paper, broadcast will mean the simpler task of
single-message broadcast. This convention is in accordance with a significant number of papers.
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Our protocol performs almost as well when given instead of the actual number of pro-

cessors (i.e., n), a "good" upper bound on this number (denoted N). An upper bound polyno-

mial in n yields the same time-complexity, up to a constant factor (since complexity is loga-

rithmic in N).

Our protocol does not use processor IDs, and thus does not require that the processors

have distinct IDs (or that they know the identity of their neighbors). Furthermore, a proces-

sor is not even required to know the number of its neighbors. This property makes our proto-

col adaptive to changes in topology which occur throughout the execution, and resilient to

non-malicious faults.

The protocol is conceptually simple, and requires a minor amount of local computation.

All that is needed is to toss one coin and to increment a counter, at each time-slot.

The basic idea used in the protocol is to resolve potential conflicts by randomly elim-

inating half of the transmitters. This process of ‘‘cutting by half’’ is repeated each time-slot

with the hope that there will exist a time-slot with a single active transmitter. The "cutting

by half" process is easily implemented distributedly by letting each processor decide ran-

domly whether to eliminate itself.

1.2. Deterministic Lower Bound

No deterministic protocol can achieve broadcast in radio networks when processors do

not have unique IDs. To see why, consider the case where the network consists of n proces-

sors arranged so that the source is connected to two nodes of an (n −1)-clique. With no IDs,

the conflict between these two nodes cannot be resolved deterministically. Thus, the (above

mentioned) use of randomness ‘‘beats’’ an impossibility result.

A more reasonable model is one where the processors have unique IDs. The impossi-

bility result does not hold in this case, as broadcast can be achieved (e.g. by a DFS-like pro-

cedure). However, we show that in this model (of distinct IDs) the use of randomization

allows a dramatic improvement. In this case, the improvement is in complexity. We show a

lower bound of Ω(n) for the number of time-slots in a deterministic broadcast protocol run-

ning on a network of diameter 3. This should be contrasted with the number of time-slots of
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the randomized protocol on such networks, which is O ((log n /ε).log n) (terminating with

probability 1−ε).

1.3. Related Work

In this work we consider ‘‘collision resolution’’ in (multi-hop) radio network without

collision detection mechanisms. By ‘‘collision resolution’’ we mean guaranteeing the

receipt of an arbitrary message sent by one of the processors wishing to deliver a message at

this stage. A seemingly related problem which has received much attention in the late 70’s

and early 80’s is that of ‘‘collision resolution’’ in (single-hop) radio network (also known as

multi-access channels) with collision detection mechanisms (e.g., [C79, H78, TM79, GL83,

GW85]). In these works, however, ‘‘collision resolution’’ means guaranteeing the receipt of

all messages sent by processors wishing to deliver a message at this stage.

Gaps between the power of determinism and randomization are quite common in distri-

buted computing. In the context of radio networks (with collision detection mechanisms)

randomization is used in practice to resolve conflicts (cf. [A70, T81]). The key role of ran-

domization in that context was demonstrated in [GW85] that contrasted with (for example)

[GL83] yields a gap between the power of determinism and randomization. The gap is essen-

tially a multiplicative factor which is logarithmic in the number of processors sharing the

channel. The gap we demonstrate is between the power of determinism and randomization

in the context of radio communication without collision detection mechanisms. We show

that the time required by deterministic procedures is exponential in the time required by ran-

domized ones.

Our lower bound argument introduces a combinatorial game which seems similar to

‘‘group testing’’, a problem that has been used in the context of multi-access channels (cf.

[W85]). However, to the best of our knowledge, research on group testing concentrates on

monotone feedback functions and the average cost with respect to specific instance distribu-

tion.

Our protocol can be thought of as consisting of a distributed algorithm for finding a

broadcast schedule (i.e., an assignment of processors to be transmitters and receivers in
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specified time-slots) and a trivial protocol using the schedule. It is thus interesting to con-

trast our results with the results known for the time complexity of centralized����������������� algorithms for

finding broadcast schedules. Chlamtac and Kutten [CK85] showed that, given a network and

a designated source, finding an optimal broadcast schedule (i.e., a schedule which uses the

minimum number of time-slots) is NP-Hard. Chlamtac and Weinstein [CW87] presented a

polynomial-time (centralized) algorithm for constructing a broadcast schedule which uses

O (Dlog2n) time-slots. This centralized algorithm can be implemented in a distributed sys-

tem assuming the availability of special control channels, but the number of control mes-

sages sent may be quadratic in the number of nodes of the network [W87].

Finally, it is interesting to note that Bar-Yehuda, Israeli and Itai, building on the ideas

presented in our protocol, have developed efficient protocols for broadcasting multiple mes-

sages and point-to-point routing of messages in multi-hop radio networks [BII89].

Organization

In Section 2 we present our randomized broadcast protocol. In Section 3 we prove a

linear lower bound on the deterministic time complexity of broadcast. Our conclusions

appear in Section 4.

2. RANDOMIZED PROTOCOLS

Throughout this section, n denotes the actual number of processors in the network, N

denotes an a priori known upper bound on n, and ∆ an a priori known upper bound on the

maximum degree in the network (both bounds are a priori known to the source).

The basis for all our protocols is a randomized procedure, called Decay, which resolves

conflicts among the transmitting neighbors of a receiver by randomly eliminating half of

them at each time-slot.



-- --

- 9 -

2.1. The Basic Transmission Protocol – Decay

The intuition behind the Decay procedure is as follows: A processor receives a message

in a certain time-slot if and only if exactly one of its neighbors acts as a transmitter during

this time-slot. Thus, in order to guarantee that a message is received, one must coordinate

the neighbors so that exactly one of them transmits. As we will see in Section 3, coordinat-

ing neighbors by deterministic means is highly inefficient, since the "coordination channels"

are subject to exactly the same difficulties. Thus, we abandon the desire of achieving deter-

ministic coordination, and turn for help to randomization procedures. Suppose d≤∆ proces-

sors compete for a time-slot in which exactly one of them sends a message. Simultaneously,

they all start a game of coin flips. At each time-slot, on the average half of the remaining

processors remove their candidacy. We will show that, with constant probability, before all

processors remove their candidacy there exists a time-slot with exactly one candidate.

We now present a precise description of the procedure as executed by each processor.

procedure Decay (k,m);

repeat at most k times (but at least once!)

send m to all neighbors;

set coin ← 0 or 1 with equal probability.

until coin = 0.

By using elementary probabilistic arguments, we get

Theorem 1: Let y be a vertex of G. Also let d≥2 neighbors of y execute Decay during the

time interval [0,k) and they all start the execution at Time=0. Then P (k,d), the probability

that y receives a message by Time=k, satisfies:

(i)
k→∞
lim P (k,d) ≥ 2⁄3;

(ii) for k ≥ 2
�
log d� , P (k,d) > 1⁄2.

Convention: Throughout the paper all logarithms are to base 2.
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Proof: Clearly, for fixed d, P (k,d) is a nondecreasing function of k; since it is also bounded

by 1, it converges. Let P (∞,d) denote that limit.

(i) Clearly, P (∞,0) = 0 and P (∞,1) = 1. Also for each d≥2, we get the recurrence

P (∞,d) =
i =0
Σ
d

( i
d)2−dP (∞,i) =

i =1
Σ
d

( i
d)2−dP (∞,i). (1)

We proceed by induction on d ≥ 2.

Induction Basis :�	������������������������� By (1),

P (∞,2) =
1 − 1⁄4
2.1⁄4
 
�
�
�
�
 = 2⁄3.

Induction Step :������������������������� Let d > 2, and assume that P (∞,i) ≥ 2⁄3, for all i < d. By (1), we get

P (∞,d).(2d −1 ) = (1
d)P (∞,1) +

i =2
Σ

d −1
( i
d)P (∞,i).

By the induction hypothesis and P (∞,1) = 1,

P (∞,d).(2d −1 ) ≥ 1.(1
d) + 2⁄3

i =2
Σ

d −1
( i
d) > 2⁄3.(2d − 1) [d > 2]

and (i) follows.

(ii) Case d≤5:
�
�
�
�
�
�
�
�
 by inspection.

Case d≥6:����������������� Consider runs of the procedure Decay without a time bound (i.e., k = ∞). Let

Tt,d be a Boolean random variable assigned True if and only if all the neighbors of y ter-

minate by Time t; and Rd be a Boolean random variable assigned True if and only if y

received a message at finite time.

P (k,d) ≥ Pr (Rd∧Tk,d)

= 1−Pr (Rd

���
)−Pr (Tk,d

�����
)

≥ P (∞,d)−d .2−k

≥ 2⁄3−d .d −2 [by (i) and k≥2logd]

≥ 1⁄2 [d≥6]

�
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The expected time of the algorithm depends on the probability that coin = 0. Here, this pro-

bability is set to be one half. An analysis of the merits of using other probabilities was car-

ried out by Hofri [H87].

2.2. The Broadcast Protocol

The broadcast protocol makes several calls to Decay (k,m). In order to obtain the

desired probability of Theorem 1 (ii), the parameter k should be at least 2log d, where d is the

number of neighbors sending a message to a node. Since d is not known, we choose

k =2� log ∆� (recall that ∆ was defined to be an upper bound on the indegree). Theorem 1

also requires that all participants start executing Decay at the same time-slot. Therefore, we

start Decay only at integer multiples of 2� log ∆� (i.e., we synchronize the initialization of the

various versions of Decay).

procedure Broadcast ;

k := 2 � log∆� ;

t := 2 � log(N/ε)� ;

Wait until receiving a message, say m;

do t times

Wait until (Time mod k) = 0 ;

Decay (k,m) ;

od

A network is said to execute the Broadcast_scheme if some processor, denoted s,

transmits an initial message and each processor executes the above Broadcast procedure (2) .

The following lemma demonstrates the effectiveness of Broadcast_scheme, albeit in a crude

way. It states that, with very high probability, the communication activity in the network

does not die out before all processors receive the message.�������������������������������
2) We distinguish between Broadcast which is a program to be executed by each processor and the
Broadcast_scheme which is a distributed protocol augmented by an initialization assumption (namely that a
single processor initiates the execution of the protocol by sending a single message).
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Lemma 2: If a network executes Broadcast_scheme then:

Pr ( All nodes receive m ) ≥ 1 − ε.

Proof:

Pr (not all nodes received the message m)

= Pr(∃v≠ssuch that v did not receive m and one of v’s neighbors received m)

≤
v≠s
Σ Pr ( v did not receive m and one of v’s neighbors received m)

≤
v≠s
Σ Pr ( v did not receive m | one of v’s neighbors received m)

≤ n .(1⁄2)� log (N/ ε)� ≤ n .(ε/N) ≤ ε. �
The above Lemma bounds from below the probability that broadcast is successful in the

network, but does not implicitly address the question of when this happens (i.e., after how

many time-slots). An obvious upper bound of O (Dk .log (n/ε) ) can be obtained from the

proof of the Lemma. A much sharper bound on the number of time-slots required for broad-

cast is given by Lemma 3 below.

Notation: For 0 < ε ≤1, let

M(ε) =√log
ε
n ! and T(ε) = 2.D + 5M(ε).Max(√"#"D , M(ε)) (2)

We abbreviate M(ε) by M and T(ε) by T.

Lemma 3: Consider an execution of a modified Broadcast_scheme in which the main loop is

not timed-out after $ log(n/ε)% repetitions, but rather is executed indefinitely (starting at

Time = 0). Then for all 0 < ε ≤1, the following hold

(i) Let Tv be a random variable denoting the time by which processor v receives the mes-

sage m. Then for ∀v ∈ V,

Pr ( Tv > 2& log∆' . T(ε) ) <
n
ε(!(

(ii) Let Tfin =
v

max Tv . Then

Pr ( Tfin ≤ 2) log∆* . T(ε) ) > 1 − ε.
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The bound provided by Lemma 3 contains two additive terms: the first represents the diame-

ter of the network and the second represents delays caused by conflicts (which are rare yet

exist).

Proof: Following is a sketch of the proof of Part (i), from which Part (ii) easily follows.

Consider a node v ∈ V. Let the random variable Disti be the length of a shortest path from

the set of nodes which have received the message m at phase i to v (each phase takes

2+ log∆, time-slots). Since at Time =0 the source has m,

Dist 0 ≤ D (3)

From (ii) of Theorem 1 we get

Pr (Disti − Disti +1 = 1 | Disti≠0) ≥ 1⁄2 (4)

Now, Pr ( DistT(ε) > 0 ) is the probability that v has not received the message m by time

T(ε).2- log∆. . On the other hand,

Pr( DistT(ε) > 0 )

= Pr (
i =0
Σ

T(ε)−1
(Disti − Disti +1) < Dist 0)

≤ Pr (
i =0
Σ

T(ε)−1
(Disti − Disti +1) < D) . [by (3)]

Define a 0-1 random variable χi = Disti−Disti +1 . By (4), Pr (χi=1) ≥ 1⁄2. Thus, the above

expression corresponds to the probability that the sum of such T(ε) variables does not exceed

D. Using the Chernoff bound [ES74, p. 18] this probability is

< exp

/0
1 −(1−

T(ε)
2D2 2�2�2�2 )2 .

4
T(ε)3 3�3�3�3

465
7

≤ exp

89
: −

4
25M 2;<;�;�;�;�; .

2D +5M .Max{√=#=D ,M}
Max{D,M 2}>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>

?6@
A [substitute for T]

≤ exp

BC
D −

4
25M 2E<E�E�E�E�E .

2+5
1FGF�F�F

H6I
J ≤ 2−M 2

=
n
εK!K [substitute for M]
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This concludes the proof of (i). L

Combining Lemmas 2 and 3, we get

Theorem 4: Let T = 2D + 5max{√M#MD , √N�N�N�N�N�N�Nlog(n/ε) }.√O�O�O�O�O�O�Olog(n/ε) . Assume that

Broadcast_scheme starts at Time = 0 then, with probability ≥1−2ε, by time 2P log ∆Q . T all

nodes received the message. Furthermore, with probability ≥ 1−2ε, all the nodes have ter-

minated by time 2R log ∆S . (T + T log(N/ε)U ).

Remark: Theorem 4 remains valid also in the case that Broadcast is initiated by a non-

empty set of processors at the same time (i.e., Time = 0) with the same initial message.

Namely, redefine Broadcast_scheme so that at Time = 0 a non-empty subset of the processors

have received ("from an external source") copies of the same initial message. Then, with

probability ≥ 1−2ε, all the processors have received a copy of the initial message and ter-

minated by time 2(T + V log(N/ε)W ).log X ∆Y . In case Broadcast_scheme is initiated by a sub-

set of the processors having arbitrary (i.e., not necessarily identical) messages then, with

high probability, each processor terminates getting at least one of these messages.

Additional Properties of our Broadcast Protocol:

1) Simplicity and Fast Local Computation − In each time slot each processor does a con-

stant amount of local computation.

2) Message complexity − Each processor is active for Z log( N/ε)[ consecutive phases and

the average number of transmissions per phase ≤ 2. Thus the expected number of

transmissions is bounded by 2n .\ log(N/ε)] .

3) Adaptiveness to Changing Topology and Fault Resilience − Our protocol is resilient to

some changes in the topology of the network. For example, edges may be added or

deleted at any time, provided that the network of unchanged edges remains connected.

This corresponds to fail/stop failure of edges, thus demonstrating the resilence to some

non-malicious failures.

4) Directed Networks − Our protocol does not use acknowledgements. Thus it may be

applied even when the communication links are not symmetric, i.e., the fact that
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processor v can transmit to u does not imply that u can transmit to v. (The appropriate

network model is, therefore, a directed graph.) In real life this situation occurs, for

instance, when v has a stronger transmitter than u.

2.3. Other Applications of Decay

We first describe an application of Decay to Breadth First Search (BFS) defined as fol-

lows: given a root r, mark all nodes v by integer dist (r,v) denoting the distance from r to v.

BFS can be used for the construction of shortest (i.e., ‘‘minimum hop’’) routing paths in the

network.

Before presenting our BFS algorithm, let us note that the paths induced by the

Broadcast_scheme presented above are unlikely to form a BFS tree. This fact is a conse-

quence of the independence of the randomized events corresponding to a successful receipt

of a message at various processors neighbouring the same transmitter (or transmitters of

equal distance from s). In fact, though the expected^ ^�^�^�^�^�^�^ phase number in which a processor

receives the message sent by s equals twice the distance between the processor and s, the

variance in the value of this random variable is non-negligible. We overcome the difficulty

by ‘‘slowing down’’ so to force it to progress "layer by layer". We define each phase to be

of length _ log(N /ε)̀ times the duration of Decay. (I.e., each phase takes 2a log∆bdc log(N/ε)e
time slots.) The distance from r is equal to the number of phases from the start until the mes-

sage was first received. This can be done simply by having r send the start time along with

the message. Thus, without loss of generality, we can assume that the protocol started at

Time = 0.

procedure BFSv ;

k := 2 f log∆g ;

Wait until receiving a message, say m;

Distancev := h Time/(k i log(N/ε)j�k ;

do l log (N/ε)m times

Wait until (Time mod k n log(N/ε)o ) = 0 ;

Decay (k,m) ;

od
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If r starts the algorithm at Time = 0 and the only transmissions in the network are those of

procedure BFS then

Pr(∀v ∈ V Distancev = dist (r,v) ) ≥ 1 − ε.

The proof is identical to that of Lemma 2. Thus, with probability ≥ 1 − ε the number of con-

secutive time slots required by the BFS algorithm is 2D p log∆qdr log
ε
Nstsvu .

In the preliminary version of this paper [BGI87], we have stated an application of our

broadcast scheme to achieve leader election in arbitrary multi-hop radio networks. That pro-

tocol can be viewed as an emulation of Willard’s protocol, for electing a leader in a single-

hop radio network with collision detection [W86], on an arbitrary multi-hop radio network

without collision detection. This emulation is in fact independent of the specific protocol and

has appeared in [BGI89].

Finally, we note that Decay plays a central role in the efficient protocols for the broad-

cast and point-to-point routing of messages in multi-hop radio networks presented in [BII89].

3. A DETERMINISTIC LOWER BOUND

Before presenting our lower bound, we formally present the problem of broadcast in

radio networks.

Definition 1: (broadcast protocols): A broadcast protocol for radio networks is a multi-

processor protocol the execution of which proceeds in time-slots (numbered 0,1,2,...) as fol-

lows.

1) In the initial time-slot, referred to as time-slot 0, a specific processor, called the source,

transmits a message, called the initial message (or the message).

2) In each time-slot, including time-slot 0, each processor either acts as a transmitter or

acts as a receiver or is inactive.

3) A processor receives a message in a specific time-slot if and only if it acts as a receiver

in this time-slot and exactly one of its neighbors acts as a transmitter in that time-slot.

(The message received in this case is the message transmitted by that neighbor.)
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4) The action of a processor in a specific time-slot is determined as a function of its initial

input (which consists of its own ID and the IDs of its neighbors), and the (sequence of)

messages that it has received in previous time-slots. Thus, without loss of generality,

all processors have identical copies of the same program.

5) A processor may act as a transmitter in a time-slot only if it has received a message in a

previous time-slot (i.e., there are no ‘‘spontaneous’’ actions). (As we will see in subsec-

tion 3.5, this condition can be omitted).

6) The broadcast is completed at time-slot t, if all processors have received the initial mes-

sage at one of the time-slots 0,1, . . . ,t.

A broadcast protocol Π for radio networks is correct for the class C if for every G (V,E) ∈ C

and any assignment of IDs, φ, to the nodes of G there exists an integer t such that Π com-

pletes broadcast at time-slot t when executed in the graph G with the ID assignment φ.

In our lower bound argument, we consider an arbitrary deterministic broadcast protocol

and its executions on members of a particular class of networks denoted Cn . Clearly, the

lower bound holds for protocols running on any class of networks containing Cn . All net-

works in Cn have exactly n +2 processors, and thus we can think that the protocol gets the

number of processors as input.

3.1. The Networks Used in our Argument

A (generic) member of Cn will be denoted as GS , where S is a non−emptyw w�w�w�w�w�w�w�w�w subset of

{1,2,...,n}. The processors in this network have IDs denoted 0 through n +1, and are associ-

ated with nodes 0 through n +1. The structure of the network GS constitutes a graph with

vertex-set {0,1,2,...,n +1} and edge-set E 1 ∪ E 2 , where

E 1 = {(0,i) : 1 ≤ i ≤ n}

E 2 = {(i,n +1) : i ∈ S }

The nodes are organized in three layers. The first layer consists of node 0, called the source.

The second layer contains nodes 1 through n, these nodes will be the receivers of the initial

transmission. The third layer consists of the last node n +1, which is adjacent to the nodes in
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S (see figure).

0 n +1

S

The problem of broadcast, in networks of Cn , thus reduces to reaching the node of the third

layer, called the sink. The difficulty stems from the fact that the partition of the second layer

(i.e., S) is not known a priori.

3.2. Reduction to a Combinatorial Game

In this subsection we reduce the problem of broadcast to a simple combinatorial game,

called the hitting game. The reduction is in three stages. In the first two stages we simplify

the problem by restricting and strengthening broadcast protocols in a manner which does not

effect the lower bound, while in the third stage an abstract broadcast problem is reformulated

as a hitting game.

We first (slightly) restrict the broadcast protocol operating on the networks of the class

Cn . This restriction does not change the asymptotic complexity of broadcast in Cn .

Definition 2: (restricted broadcast protocols): A broadcast protocol Π for the class Cn is

called restricted if, for every graph GS ∈ Cn and every time-slot i, in the i-th time-slot of the

execution of Π on GS either the source is active or the sink is active, but not both.

Lemma 5: If there is a broadcast protocol which terminates within t time-slots on every net-

work in Cn , then there exists a restricted broadcast protocol which terminates within 2t

time-slots on every network in Cn .

The proof is given in Appendix A1.

To further simplify the analysis, we will consider only time-slots in which either the

source or the sink acts as a receiver. The effect of the other time-slots will be achieved by
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assuming that all processors of the second layer have gained knowledge of each transmission

received by the source or sink immediately after it has occurred. This and other simplifying

assumption are present in the following abstract communication model which certainly is not

intended to be a real model of radio communication. Nevertheless, we will show that the

complexity of broadcast in the model of Definition 2 is bounded below by the complexity of

broadcast in the abstract model. Before describing the abstract model we present the follow-

ing concept which relates to processors in a network GS ∈ Cn .

Definition 3: The S-indicator (the indicator) of a second layer processor p ∈ {1,2,...,n},

denoted χp
S , is a bit which equals 1 if and only if p ∈ S.

Definition 4: (abstract broadcast protocols): An abstract broadcast protocol for Cn is a

multi-processor protocol which proceeds in rounds (numbered 1,2,...) as follows.

1) In each round, only processors of the second layer may act as transmitters, and either

the source or the sink (but not both) may act as receivers. All messages sent consist

merely of the transmitter’s ID and its S-indicator. That is, each message transmitted by

processor p consists of the pair (p, χp
S).

2) A processor (sink or source) receives a message in a specific round if and only if it acts

as a receiver in this round and exactly one of its neighbors acts as a transmitter in that

round. A round is called successful if the processor acting as a receiver (i.e., either the

source or the sink) has received a message.

3) At the end of the round, all processors of the second layer know whether the round has

been successful. Furthermore, in case the round was successful these processor know

the contents of the message which was received.

4) The action of a processor in a specific round is determined as a function of its initial

input (which consists of its own ID and the IDs of its neighbors), and the sequence of

pairs (t,M), where t is a previous successful round and M is the message received in that

round.

5) The broadcast is completed once the processor indicator in the message received in a

successful round equals 1. (I.e., the broadcast is completed in the first round in which a

message sent by a processor in S is received.)
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It follows that the processor indicator in the messages in all successful rounds preceding the

last one is 0.

Lemma 6: If there is a restricted broadcast protocol which terminates within t time-slots on

every network in Cn , then there exists an abstract broadcast protocol which terminates within

t rounds on every network in Cn .

The proof is given in Appendix A2.

Notation: Let Sx denote the set {1,2,...,n}−S.

Let us now take a closer look at the execution of the abstract protocol Π. Let Hi −1 be

the common knowledge of the history rounds 1 through i −1. This history consists of the

sequence of successful rounds and the corresponding successful transmitters. Namely

Hi −1=P 1 ,P 2 , ...,Pi −1 , where Pk is a special symbol (say −1) in case round k is not successful,

and otherwise Pk is the ID of the processor the message of which is received in round k.

Processor p ∈ {1,2,...,n} decides whether to transmit in round i as a function of its ini-

tial input (which in turn is determined by its ID, p, and its S-indicator χp
S) and the history

Hi −1 . Let us denote this predicate by π; namely, the p-th processor acts as transmitter in

round i if and only if π(p, χp
S ,Hi −1) = 1. Without loss of generality,

π : {1,2,...,n}×{0,1}×{−1,1,2,...,n}*→{0,1}.

The set of transmitters in round i is denoted by Ti . The following equalities are easily

verified.

Ti = {p :π(p, χp
S ,Hi −1) = 1}

= {p ∈ S:π(p, 1,Hi −1) = 1} ∪ {p ∈ Sy :π(p, 0,Hi −1) = 1}

=
z{
{p:π(p, 1,Hi −1) = 1} ∩ S

|}
∪

~�
{p:π(p, 0,Hi −1) = 1} ∩ S�

��

Let Ti
(σ) = {p:π(p, σ,Hi −1) = 1}, for σ ∈ {0,1}. Then

Ti = ( Ti
(1) ∩ S ) ∪ ( Ti

(0) ∩ S� )
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Recall that round i is successful if and only if | Ti ∩ S | = 1. In formulating the following

combinatorial game, which captures the structure of abstract broadcast protocols, we will use

a relaxed condition.

Definition 5: (The n-th hitting game): The n-th hitting game is a combinatorial game played

by two parties, called the explorer and the referee. The game is played on a non-empty set

S ⊆ {1,2,...,n}, known only to the referee. The explorer’s task is to "hit" an element of S.

The game proceeds in moves. In the i-th move the explorer, based on the consequence of his

previous moves, specifies a set Mi . If Mi ∩ S is a singleton then the referee reveals it to the

explorer, and the game is terminated. If Mi ∩ S� is a singleton then the referee reveals it to

the explorer without terminating the game. Otherwise (i.e., both Mi ∩ S and Mi ∩ S� are not

singletons) the referee says ‘‘nothing’’. We stress that the actions of the referee are com-

pletely determined by the explorer’s moves and the set S. We say that the explorer won the

game in t moves if the game was terminated at the t-th move (when the referee handed an

element of S to the explorer). We say that the explorer has a t-move winning strategy if, no

matter what S is, the explorer wins within t moves.

Remark: An explorer strategy determines each move of the explorer as a function of the

current history of the game. In fact, it suffices to consider the consequences of (i.e., referee’s

answer to) the previous moves of the explorer.

Lemma 7: If there is an abstract broadcast protocol which terminates within t rounds on

every network in Cn , then there exists a 2t-move winning strategy for the n-th hitting game.

The proof is given in Appendix A3.

Combining Lemma 5, 6 and 7, we get

Proposition 8: Let T (n) be the deterministic time-complexity of broadcast on networks in

Cn , and let G (n) be the number of steps required to win the n-th hitting game. Then

T (n) ≥
4
1�!� . G (n)

Remark: A more careful reduction yields T (n) ≥ G (n) /2. The essential ideas appear in

Appendix A4.
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3.3. A Lower Bound on Hitting Games

In this subsection we prove a linear lower bound on the number of moves required to

win the n-th hitting game. We do this by presenting an ‘‘adversary’’ procedure for determin-

ing, for each explorer strategy of n/2 moves, a (non-empty) S which foils this strategy.

Furthermore, we will show that for every strategy of less than n/2 moves there exists a set S

so that the referee answers ∅ to all non-singleton moves. Clearly, the referee answers all sin-

gleton moves with the singleton itself, and it goes without saying that these moves are not in

S. We stress that for such a set S, the referee’s answers are determine solely by the

explorer’s moves, and thus the explorer gains no information from these answers. Hence, the

problem of finding sets which foil all explorer strategies reduces to the problem of finding

sets which foil all (‘‘oblivious’’) strategies which do not depend on the referee’s answers to

the previous moves.

We start by constructing a set S which foils an oblivious strategy (for the explorer). An

arbitrary oblivious strategy consists of a fixed sequence of moves. Given a sequence of t

(≤ n/2) moves M 1 ,M 2 , ...,Mt we construct a (non-empty) set S that contains no singleton

moves and for all non-singleton moves Mi both | Mi ∩ S | ≠ 1 and | Mi ∩ S� | ≠ 1. An

equivalent condition is that for all i, the set Mi ∩ S is not a singleton and the set Mi ∩ S� is a

singleton iff Mi is a singleton.

The construction of the set S proceeds as follows. We start with S={1,2,...,n}. First

we omit all singleton moves from S, and their elements from all other moves. New residual

moves are created. If any of them is a singleton it is omitted from S too (and residual moves

are updated again). This process guarantees that no move has a singleton intersection with S.

Recall, that we need also to guarantee that except for singleton moves, no other moves have

singleton intersection with S� . To this end, we remove another element from S each time a

non-singleton move is updated for the first time (guaranteeing that the intersection of this

move with S� has cardinality ≥2).

procedure find_set;

input: M 1 ,M 2 , ...,Mt;
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initialization: S←{1,2,...,n};

while (∃i s.t. | Mi ∩ S | = 1) do begin

let x denote the single element of Mi ∩ S;

set S←S − {x};

while (∃ j s.t. | M j ∩ S | = | M j | −1 > 0)

do begin

pick (arbitrary) p ∈ M j ∩ S;

set S←S−{p};

end;

end;

output: S;

First, we show that if the procedure has output a non-empty S then S is consistent with

the input moves. Namely,

Lemma 9: Let the Mi’s be as in the procedure, and suppose that the procedure outputs S.

Then, for every i (1 ≤ i ≤ t):

1) The set Mi ∩ S is not a singleton.

2) Mi ∩ S� is a singleton if and only if Mi is a singleton.

Proof: We consider two cases:

Case 1: Mi ∩ S is empty. Condition (1) holds trivially. To see that condition (2) holds note

that in this case Mi ⊆ S� and | Mi ∩ S� | = | Mi | follows.

Case 2: Mi ∩ S is not empty. By the condition of the outer while loop, | Mi ∩ S | ≠ 1 and

condition (1) holds. Since | Mi | ≥ | Mi ∩ S | ∈| {0,1}, condition (2) requires showing that

| Mi ∩ S� | ≠ 1. We consider two subcases.

Subcase 2.1: Mi = Mi ∩ S. In this subcase, Mi ∩ S� = ∅ and the claim follows .

Subcase 2.2: Mi ≠ Mi ∩ S. In this subcase, 1 ≤ | Mi ∩ S� | = | Mi−(Mi ∩ S) | . By the

condition of the inner while loop, | Mi ∩ S | ≠ | Mi | −1 and therefore | Mi ∩ S� | ≠ 1. � .
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Next, we show that the procedure terminates outputting a non-empty S. Namely,

Lemma 10: If t ≤ n/2 then the above procedure outputs S ≠ ∅.

Proof: We prove the lemma by considering the decrease in | S | throughout the execution of

the procedure. Elements are omitted from S in two cases:

1) When Mi ∩ S becomes a singleton, then during the execution of the outer while loop, it

is omitted from S. In this case we charge this element to move i.

2) When M j ∩ S first decreases, then during the execution of the inner while loop, one of

its elements is omitted from S. In this case we charge this element to move j.

The above charging rule certainly satisfies the following two claims:

Claim 1: Each element omitted from S is charged to some move. (Proof: by definition

of the charging rule.)

Claim 2: Each move is charged at most twice. Furthermore, a singleton move is

charged exactly once and a (non-empty) non-singleton move is charged at most twice.

(Proof: each move is charged at most once by case (1) and at most once by case (2).)

This gives a bound of 2t on the number of elements omitted (and charged). To get a slightly

sharper bound note that either there are no singleton moves (and then no elements are omit-

ted) or there exists a singleton move (which is of course charged exactly once). The total

charge is thus 2(t −1)+1 ≤ n −1, and S ≠ ∅. �
The lower bound on the hitting game now follows. Given an explorer strategy, we con-

sider the moves it induces supposing that all previous non-singleton moves were answered

∅. Combining Lemma 9, and 10, we get

Proposition 11: Let G (n) be the number of steps required to win the n-th hitting game.

Then

G (n) >
2
n�!�

3.4. Summary

Combining Propositions 8 and 11, we get
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Theorem 12: There exists no deterministic broadcast protocol which terminates in less than

n /8 time-slots on any network in Cn .

We have proved a Ω(n) lower bound on the time-complexity of deterministic radio

broadcast (on arbitrary networks of n processors). This bound is tight, as it is easy to see that

one may reach all n processors in a network within 2n time-slots, by having the current

transmitter traverse the network in a Depth-First-Search manner. On the other hand, the gap

between the deterministic and randomized time-complexity of radio broadcast is striking, as

we have

Corollary 13: There exists a family of n-processor networks for which the (constant-error)

randomized time-complexity of radio broadcast is O (log n), whereas the deterministic time-

complexity is Ω(n).

Proof: Consider the family Cn −2 defined above. The deterministic lower bound is by

Theorem 12. Using the protocol of Section 2, for the randomized upper bound, the Corollary

follows. �

3.5. Extension to Spontaneous Transmission

Throughout the entire section we have assumed that, except for the source, no processor

transmits before receiving a message. If this assumption does not hold there exist a three

round broadcast protocol for the network class Cn . In round 0 the source transmits as usual,

in round 1 the sink spontaneously "awakes" and transmits the smallest among its neighbors

ID, and in round 2 this processor transmits and the broadcast is completed. Fortunately, a

slightly more complicated network class admits a lower bound similar to the one proven in

Theorem 12.

The new network class, denoted Cn
* , consists of graphs denoted as GS,R , where S and R

are non−empty� ����������������� subset of {1,2,...,n} and {n +1,n +2,...,2n}, respectively. The network con-

sists of 2n +1 processors having IDs denoted 0 through 2n. The structure of the network GS,R

constitutes a graph with vertex-set {0,1,2,...,2n} and edge-set E 1 ∪ E 2 , where
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E 1 = {(0,i) : 1 ≤ i ≤ n}

E 2 = {(i, j) : i ∈ S , j ∈ R }

As before, the nodes are organized in three layers. Node 0 is called the source, and the nodes

R are called the sinks. The problem of broadcast, in Cn
* , consists of reaching all sinks (which

is as difficult as reaching one of them!). An alternative formulation defines broadcast as

completed once a message is received through any of the links in E 2 . The reader may easily

verify that the arguments we have used still apply with respect to such a transmission being

in any of the two possible directions.

4. CONCLUDING REMARKS

We have shown how conflicts, arising in broadcast protocols, can be resolved quickly

by using randomization. This point is further pursuit in our emulation of single-hop radio

network with collision detection on multi-hop radio networks without collision detection

[BGI89].

The exponential gap between the deterministic and randomized complexities in this

model, is believed to be another strong indication to the importance of randomization for dis-

tributed applications.

Collision Detection: Sometimes it is reasonable to assume that a processor can detect

collisions: i.e, distinguish between the case that zero or more than one neighbor transmits.

Our randomized protocol achieve almost optimal behavior without resorting to collision

detection. However, our lower bound on deterministic protocols no longer holds. In particu-

lar, one can broadcast in Cn using 4 time-slots. An interesting open problem is to find

matching lower and upper bounds for deterministic broadcast protocols which use collision

detection.
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APPENDICES to Subsection 3.2

Appendix A1: Proof of Lemma 5

Let Π be a broadcast protocol such as in the hypothesis. We construct a restricted broadcast

protocol, Π′, which simulates Π as follows. The i-th time-slot of Π is simulated by the

2i −1-st and 2i-th time-slots of Π′. In the 2i −1-st time-slot of Π′, the sink is inactive while

all other processors (i.e., the source and the processors of the second layer) act as in the i-th

time-slot of Π. In the 2i-th time-slot of Π′, the source is inactive while all other processors

(i.e., the sink and the processors of the second layer) act as in the i-th time-slot of Π. After

the 2i-th time-slot each processor considers the messages it has received in the 2i −1-st and

2i-th time-slots. If it has received messages in both time-slots, the processor ignores these

messages and records that it has received no messages in simulating the i-th time-slot. (This

may occur only for processors in the set S.) Otherwise, the processor records the message

(possibly none!) it has received as the message received in the simulation of the i-th time-

slot. Clearly, the message (possibly none) recorded by each processor after time-slot 2i

equals the message received by the very same processor in the i-th time-slot of the execution

of Π. Thus, Π′ completes broadcast within 2t time-slots on every network in Cn , and the

Lemma follows.

Appendix A2: Proof of Lemma 6

Let Π be a restricted broadcast protocol such as in the hypothesis. Recall that without loss of

generality all processors have identical copies of the same local program. It follows that,

without loss of generality, all messages sent by a processor p ∈ {1,2,...,n} contain only the

pair (p, χp
S) and the sequence of all messages received by processor p in previous rounds.
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We now construct an abstract broadcast protocol, Π′, which simulates the above proto-

col Π. The i-th time-slot of Π is simulated by the i-th round of Π′ as follows. The proces-

sors of the second layer which are active as transmitters in the i-th time-slot of Π are active

as transmitters in the i-th round of Π′. If either the source or the sink is active as receiver in

the i-th time-slot of Π then it is active as receiver in the i-th round of Π′. In all other cases (a

processor of the second layer which does not act as transmitter or the sink or source which is

not active as receiver) the processor is inactive. The messages transmitted contain only the

transmitter’s ID and indicator and in case of success the transmitter’s ID is immediately

known to all processors of the second layer.

We need to verify that the processors of the abstract protocol have the knowledge

required to simulate the corresponding processors in the restricted protocol Π. First note that

by the termination condition, the sink does not transmit during the execution of Π, since the

sink may transmit only after receiving a message (and at this point Π terminates). Since Π

must work for all initial messages we may consider its execution with some standard mes-

sage, which may be incorporated into the protocol. Thus, there is no need to send the stan-

dard message and the protocol Π terminates when some message reach the sink. Also, the

first transmission in Π (i.e., time-slot 0 in which the source transmits), does not add any

information and may be omitted. Omitting all the other transmissions of the source also does

not decrease the information available to the processors of the second layer. This is the case

since after the i-th time-slot the source only knows its initial input (which is a priori known

to all processors), and the list of all previous successful rounds and the corresponding

transmitters (which is known to also to all processors of the second layer - by definition of

the abstract model). A similar argument shows that no information is lost when omitting

from the messages of the processors of the second layer everything but the ID of the

transmitter and its indicator.

The Lemma follows by noting that if Π terminates in the t-th time-slot then Π′ ter-

minates in the t-th round.
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Appendix A3: Proof of Lemma 7

Let Π be an abstract broadcast protocol as in the hypothesis, and π be the corresponding

predicate determining whether to transmit or not. We construct a 2t-move winning strategy

for the n-th hitting game as follows. The i-th round of Π is simulated by the 2i −1-st and 2i-

th moves of the game.

For M ⊆ {1,2,...,n}, let refS(M) denotes the referee’s answer to the move M. That is,

refS(M) equals M ∩ S if M ∩ S is a singleton, and equals the empty set (denoted ∅) other-

wise. The first move of the game consists of the set T1
(1) (= {p:π(p, 1,∅) = 1}) and the

second move consists of the set T1
(0) (= {p:π(p, 0,∅) = 1}). If either set has a singleton inter-

section with S then the game is terminated. Otherwise, let R 1 ← g (refS(T1
(1) ),refS(T1

(0) )),

where g (A,B) equals p if {p} = A ∪ B and equals −1 if | A ∪ B | ≠ 1. For σ ∈ {0,1}, the

2i −σ-th move is the set Ti
(σ) = {p:π(p, σ,Ri −1) = 1}. Note that the explorer can compute his

moves! If either (the 2i −1-st or 2i-th) moves has a singleton intersection with S then the

game is terminated. Otherwise, let Ri ← Ri −1 , g (refS(T1
(1) ),refS(T1

(1) )), where g is as above.

For every i, if the game is not terminated within 2i moves, when playing according to

the above strategy on the set S, then the sequence Ri computed by the explorer corresponds

to the history sequence Hi in the execution of the protocol Π on the graph GS . If the protocol

Π is completed at the i-th round, when executed on the graph GS , then | Ti ∩ S | = 1 and

furthermore | Ti
(1) ∩ S | = 1. It follows that, when playing according to the above strategy on

the set S, the game terminates no later than after the 2i −1-st move. Thus, the above strategy

constitutes a 2t −1 moves winning strategy for the n-th hitting game, and the lemma follows.

Appendix A4: Essential Ideas for a more Careful Reduction

This appendix refers to the reduction of the time-complexity of broadcast to the hitting

game. The reduction presented in section 3.2 yields T (n) ≥ G (n) /4. A careful modification

of that reduction yields T (n) ≥ G (n) /2. Following are the essential ideas:

1) In the restricted broadcast protocol generated by the proof of Lemma 5, the source is

active only in odd time-slots, while the sink is active only during even time-slots.

Furthermore, the same processors of the second layer are active in the 2i −1-st and 2i-th
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time slots, for every i.

2) One can modify the abstract broadcast protocol produced by the proof of Lemma 6 so

that all processors in S� are inactive during each even round, while all processors in S are

inactive during each odd round. (The first modification is obvious since processors in S�
transmitting during an even round have no effect. For the second modification note that

if the message sent by a processor in S is received by the source in round 2i −1 then it

will be received by the sink in round 2i, and therefore cancelling the first transmission

only delays termination by 1 round.)

3) It follows that Ti
(0) is empty for even i, while Ti

(1) is empty for odd i. Using this fact,

Lemma 7 can be strengthened to yield that an abstract broadcast protocol which ter-

minates within t rounds on every network in Cn implies a t-move winning strategy for

the n-th hitting game. In the proof of the modified Lemma, let the i-th move of the

explorer consist of Ti
(0) for odd i and Ti

(1) for even i.
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