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Abstract

In this paper we provide a theoretical foundation for the problem of network localization in which

some nodes know their locations and other nodes determine their locations by measuring the distances

to their neighbors. We construct grounded graphs to model network localization and apply graph rigidity

theory to test the conditions for unique localizability and to construct uniquely localizable networks. We

further study the computational complexity of network localization and investigate a subclass of grounded

graphs where localization can be computed ef£ciently. We conclude with a discussion of localization in

sensor networks where the sensors are placed randomly.

I. INTRODUCTION

Location service is a fundamental building block of many emerging computing/networking

paradigms. For example, in pervasive computing [22], [55], knowing the locations of the computers

and the printers in a building will allow a computer to send a printing job to the nearest printer.

In sensor networks, the sensor nodes need to know their locations in order to detect and record

events, and to route packets using geometric routing (e.g., [36]).

Manual con£guration is one method to determine the location of a node. However, this is unlikely

to be feasible for large-scale deployments and scenarios in which nodes move often. GPS [31]

is another possibility, however it is costly in terms of both hardware and power requirements.

Furthermore, since GPS requires line-of-sight between the receiver and satellites, it may not work

well in buildings or in the presence of obstructions such as dense vegetation, buildings, or mountains

blocking the direct view to the GPS satellites.

Recently, novel schemes have been proposed to determine the locations of the nodes in a network

where only some special nodes (called beacons) know their locations (e.g., [26], [41], [49]). In these

schemes, network nodes measure the distances to their neighbors and then try to determine their

locations. The process of computing the locations of the nodes is called network localization.

For example, in [49], Savvides et al. propose an iterative multilateration scheme to determine the

locations of nodes that do not know their locations initially.

Although the designs of the previous schemes have demonstrated great engineering ingenuity

and their effectiveness veri£ed through extensive simulations, some fundamental questions have not

been addressed. As a result, the previous schemes are mainly heuristic-based and a full theoretical

foundation of network localization is still lacking.
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Speci£cally, we identify the following three fundamental questions:

1) What are the conditions for unique network localizability? Although the network localization

problem has already been studied extensively, the precise conditions under which the network

localization problem is solvable (i.e., has a unique solution) are not known.

2) What is the computational complexity of network localization? Even though the computational

complexity of graph embeddability has been investigated before (e.g., general graphs by

Saxe [50] and unit disk graphs by Breu and Kirkpatrick [9]), the computational complexity

of determining the locations of the nodes in a uniquely localizable network has not been

studied.

3) What is the complexity of network localization in typical network deployment scenarios?

Furthermore, for a large-scale sensor network, it may not be possible to control the placement

of the sensor nodes precisely. Rather, they may be placed uniformly in a region. The unique

localizability and computational complexity of such scenarios have not been investigated.

The objective of this paper is to provide systematic answers to these two questions. We address

the £rst question using graph rigidity theory, the second for arbitrary uniquely localizable networks,

and uniquely localizable unit disk networks, the second for unit disk networks of randomly placed

nodes.

More speci£cally, in order to answer the £rst question, we propose the notion of grounded graphs.

In these graphs, each vertex represents a network node, and two vertices in the graph are connected

if the distance between the two is known; that is, when the distance between the two nodes is

measured or when the two nodes are beacon nodes and their distance is implicitly known. Given

our construction of grounded graphs, we show that a network has a unique localization if and only

if its corresponding grounded graph is generically globally rigid. By observing this connection, we

are able to apply results from the graph-rigidity literature to network localization and thus provide a

systematic and pleasantly intuitive answer to the £rst question. For example, to check if a network

in the plane is unique localizable, we just need to check if the corresponding grounded graph is

3-connected and redundantly rigid, both of which can be ef£ciently checked.

In addition, we demonstrate conditions and inductive sequences for constructing uniquely local-

izable networks, both in the plane and in 3-space. For instance, we show that a network with a

biconnected grounded graph is uniquely localizable if two-hop neighbors are connected, e.g., by
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doubling the range of distance measurements in a sensor network. By using our results, a designer

of a network can be assured that the constructed network is uniquely localizable, thus avoiding

expensive trial-and-error procedures.

To address the second question, we analyze the computational complexity of network localization

when the grounded graph is a generically globally rigid graph and show NP-hardness with a

reduction from set-partition. To strengthen this insight, we show that even in the idealized case that

distance measurements are present between all nodes within less than a certain known distance of

each other, localization is still NP-hard.

To address the third question, we explore the density-dependent average-case complexity of

network localization in realistic settings like sensor networks, we study a class of graphs in the

plane called trilateration graphs. We show that trilateration graphs are uniquely localizable and

the locations of the nodes can be computed ef£ciently. We show that random geometric graphs

are trilateration graphs with high probability if a certain node density or communication radius is

reached. We provide asymptotic results on the densities of the beacons suf£cient for trilateration

to be carried out in O(1) step, O(
√

log(n)) steps, or O(
√

n) steps, respectively, where n is the

number of nodes in the network.

The rest of this paper is organized as follows. The speci£c network localization problem to be

addressed is formulated in Section II. The concepts of rigidity and global rigidity are discussed in

Section III. In Section IV, suf£cient conditions for localization and construction of localizable

networks are presented. In Section V, we study the computational complexity of solving the

localization problem. In Section VI, we study localization of planar random geometric graphs.

In Section VII, we present simulation results for localization in 3-space geometric graphs. In

Section VIII, we discuss related work. Our conclusion and future work are presented in Section IX.

II. FORMULATION

A. The Network Localization Problem

In this paper we shall be concerned with the “network localization problem with distance infor-

mation” which can be formulated as follows. One begins with a network N in real d-dimensional

space (where d = 2 or 3) consisting of a set of m > 0 nodes labelled 1 through m that represent

special “beacon” nodes together with n − m > 0 additional nodes labelled m + 1 through n that
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represent ordinary nodes. Each node is located at a £xed position in IRd and has associated with it

a speci£c set of “neighboring” nodes. Although a node’s neighbors are typically de£ned to be all

other nodes within some speci£ed range, other de£nitions could also be used (e.g., those considering

the effects of obstacles). The essential property we will require in this paper is that the de£nition

of a neighbor be a symmetric relation on {1, 2, . . . , n} in the sense that node j is a neighbor of

node i if and only if node i is also a neighbor of node j. Under these conditions N’s neighbor

relationships can be conveniently described by an undirected graph GN = (V,EN) with vertex set

V = {1, 2, . . . , n} and edge set EN de£ned so that (i, j) is one of the graph’s edges precisely when

nodes i and j are neighbors. We assume throughout that GN is a connected graph. The network

localization problem with distance information is to determine the locations pi of all nodes in IRd

given the graph of the network GN, the positions of the beacons pj, j ∈ {1, 2, . . . , m} in IRd, and

the distance δN(i, j) between each neighbor pair (i, j) ∈ EN.

The network localization problem just formulated is said to be solvable if there is exactly one

set of vectors {pm+1, . . . pn} in IRd consistent with the given data GN, {p1, p2, . . . , pm}, and δN :

EN → IR. In this paper we will be concerned with “generic” solvability of the problem which

means, roughly speaking, that the problem should be solvable not only for the given data but also

for slightly perturbed but consistent versions of the given data. It is possible to make precise what

generic solvability means as follows. Fix GN and let e1, e2, . . . , eq denote the edges in EN. Note

that for any set of n points y1, y2, . . . , yn in IRd there is a unique distance vector z whose k − th

component (element) is the distance between yi and yj where (i, j) = ek. This means that there

is a well-de£ned function f : IRnd → IR(md+q) mapping {y1, y2, . . . , yn} �−→ {y1, y2, . . . , ym, z}.

Solvability of the network localization problem is equivalent to f being injective at {p1, p2, . . . , pn}
in the sense that the only set of points {y1, y2, . . . , yn} ∈ IRnd for which f(y1, y2, . . . , yn) =

f(p1, p2, . . . , pn) is {y1, y2, . . . , yn} = {p1, p2, . . . , pn}. In this context it is natural to say that the

network localization problem is generically solvable at {p1, p2, . . . , pn} if it is solvable at each point

in an open neighborhood of {p1, p2, . . . , pn}. In other words, the localization problem is solvable

at {p1, p2, . . . , pn} if there is an open neighborhood of {p1, p2, . . . , pn} on which f is an injective

function.
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B. Point Formations

To study the solvability of the network localization problem, we reformulate the problem in terms

of a “point formation”. As we shall see, the point formation relevant to the network localization

problem has associated with it the grounded graph of the network, ĜN, with the same vertices as

GN but with a slightly larger edge set which adds “links” or edges from every beacon to every

other. It is a property of ĜN rather than GN which proves to be central to the solvability of the

localization problem under consideration.

We begin by reviewing the point formation concept. By a d-dimensional point formation [18] at

p
∆
= column {p1, p2, . . . , pn}, written Fp, is meant a set of n points {p1, p2, . . . , pn} in IRd together

with a set L of k links, labelled (i, j), where i and j are distinct integers in {1, 2, . . . , n}; the length

of link (i, j) is the Euclidean distance between point pi and pj . The idea of a point formation is

essentially the same as the concept of a “framework” studied in mathematics [47], [57], [58] as well

as within the theory of structures in mechanical and civil engineering. For our purposes, a point

formation Fp = ({p1, p2, . . . , pn},L) provides a natural high-level model for an n-node network in

real 2 or 3 dimensional space. In this context, the points pi represent the positions of nodes (i.e.,

both beacons and ordinary nodes), in IRd and the links in L label those speci£c node pairs whose

inter-node distances are given. Thus for the network N, L would consist of all edges in ĜN, since

the distance between every pair of beacons is determined by their speci£ed positions.

Each point formation Fp uniquely determines a graph GFp
∆
= {V,L} with vertex set V

∆
=

{1, 2, . . . , n} and edge set L, as well as a distance function δ : L → IR whose value at (i, j) ∈ L is

the distance between pi and pj . Let us note that the distance function of Fp is the same as the distance

function of any point formation Fq with the same graph as Fp provided q is congruent to p in the

sense that there is a distance preserving map T : IRd → IRd such that T (qi) = pi, i ∈ {1, 2, . . . , n}.

In the next section, we will say that two point formations Fp and Fq are congruent if they have

the same graph and if q and p are congruent. It is clear that Fp is uniquely determined by its

graph and distance function at most up to a congruence transformation. A formation that is exactly

determined up to congruence by its graph and distance function is called “globally rigid.” More

precisely, a d-dimensional point formation Fp is said to be globally rigid if each d-dimensional

point formation Fq with the same graph and distance function as Fp is congruent to Fp. It is clear

that any formation whose graph is complete is globally rigid. The following simple generalizations
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of this fact in Lemma 1 provide suf£cient conditions for global rigidity that are especially relevant

to the network localization problem. In d dimensions, we say a set of points p1, . . . , pd+1 is in

general position if it does not lie in a proper subspace (i.e., three points in the plane do not lie on

a line, and four points in space do not lie in a plane).

Lemma 1:

Let Fp = ({p1, p2, . . . , pn},L) be an n-point formation in IR2 that contains three points pa, pb,

and pc in general position. Suppose that the graph of the formation GFp contains the complete

graph on {a, b, c}. If the only n-point formation in IR2 that contains these three points and has the

same link set as Fp is Fp itself, then Fp is globally rigid.

This property is a direct consequence of the fact that the identity on IR2 is the only distance

preserving map T : IR2 → IR2 that leaves pa, pb, and pc unchanged. A directly analogous property

holds in three dimensions. A proof of the lemma will not be given.

C. Solvability of the Network Localization Problem

With the previous de£nition of point formations, we can now restate the network localization

problem in terms of its associated point formation Fp. In the present context, the problem is to

determine Fp, given the graph and distance function of Fp as well as the beacon position vectors

p1, p2, . . . , pm. Solvability of the problem demands that Fp be globally rigid; for if Fp were not

globally rigid it would be impossible to determine Fp up to congruence, let alone to determine it

uniquely. Assuming Fp is globally rigid, solvability of the network localization problem reduces to

making sure that the group of transformations T that leaves the set {p1, p2, . . . , pm} unchanged –

namely distance preserving transformations T : IRd → IRd for which T (pi) = pi, i ∈ {1, 2, . . . , m}
– also leaves unchanged the set {pm+1, . . . , pn}. The easiest way to guarantee this in IR2 is to

require {p1, p2, . . . , pm} to contain three points pi1 , pi2 , pi3 in general position; for if this is so, then

the only distance preserving transformation that leaves {p1, p2, . . . , pm} unchanged is the identity

map on IR2. Similarly, if in IR3, {p1, p2, . . . , pm} contains at least four points in general position,

then T will again be an identity map, in this case on IR3. We summarize the main result for the

solvability of network localization as follows.

Theorem 1: Let N be a network in IRd, d = 2 or 3, consisting of m > 0 beacons located at

positions p1, p2, . . . , pm and n−m > 0 ordinary nodes located at positions pm+1, . . . , pn. Suppose
7



that for the case d = 2 there are at least three beacons in general position. Similarly, for the case

d = 3 suppose there are at least four beacons positioned at points in general position. Let Fp denote

the point formation whose points are at p1, p2, . . . , pn and whose links are those labelled by all

neighbor pairs and all beacon pairs in N. Then for both d = 2 and d = 3 the network localization

problem is solvable if and only if Fp is globally rigid.

III. RIGIDITY AND GLOBAL RIGIDITY

In the previous section, we have established that under certain mild conditions, the solvability

of the network localization problem is equivalent to the “global rigidity” of point formation. In

this section we review results from rigidity theory which allow us to check for “global rigidity”

ef£ciently. For a reader who is familiar with rigidity theory or not interested in the technical details,

he/she can read just Theorem 4 (which gives an ef£ciently checkable condition for rigidity), the

de£nition of redundant rigidity (which means rigid after removal of any one edge), and Theorem 6.

Then the reader can proceed to next section.

As we have already stated, a d-dimensional point formation Fp is globally rigid if each d-

dimensional point formation Fq with the same graph and distance function as Fp is congruent to

Fp. In order to clearly present properties of global rigidity, we need several other mathematical

concepts whose roots can be found in the rich classical theory of rigid structures.

A. Rigidity

Let Fp be a d-dimensional point formation, with the distance function measuring all edges in

L, δ : IRnd → IRk. We are interested in all possible formations with the same distances, that is, in

δ−1(δ(p)). This is a smooth manifold in IRnd [47] and we want to know whether it contains only

points congruent to p. Our best tool for studying this manifold is through its tangent space and the

matrix equation de£ning this tangent space with a linearized version of the distance constraints.

For each edge (i, j) ∈ L, the distance equation (pi − pj)
T (pi − pj) = δ(i, j)2 generates the

corresponding linear equation

(pi − pj)
T (ṗi − ṗj) = 0

in the unknown vector (ṗ1, ṗ2, . . . , ṗn). If a vector satis£es all these equations, then it lies in the

tangent space. This entire system is written as a matrix equation:
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R(Fp)ṗ = 0, (1)

where ṗ = column (ṗ1, ṗ2, . . . , ṗn), and R(Fp) is the specially structured k × dn array called the

rigidity matrix of the formation. In structural engineering and mathematics, the solutions ṗ are

called £rst-order ¤exes (in£nitesimal ¤exes, or virtual velocities) [47], [57], [58].

The tangent vectors to the congruences of the space IRd generate a subspace of trivial solutions,

called the trivial ¤exes. In the plane, provided that we have at least two distinct points, this space

has dimension 3, generated by two translations and the tangent vector to a rotation about the origin.

In 3-space, if we have three non-collinear points, this space has dimension 6, generated by three

translations along the axes and the derivatives of three rotations about the three axes though the

origin.

De£nition 1: If the trivial ¤exes are the entire space of £rst-order ¤exes, the formation is £rst-

order rigid.

In short, provided we have at least three vertices [47], [58]:

Theorem 2: Assume Fp is a formation with at least d nodes in d-space,

rank R(Fp) ≤

⎧⎪⎨
⎪⎩

2n − 3 if d = 2

3n − 6 if d = 3.

The formation Fp in the plane is £rst-order rigid if and only if rank R(Fp) = 2n−3. The formation

Fp in 3-space is £rst-order rigid if and only if rank R(Fp) = 3n − 6.

It is easy to see from the form of the rigidity matrix that the entries in R(Fp) are polynomial

(actually linear) functions of p. Because of this, the values of p for which the rank of R(Fp) is

below its maximum value form a proper algebraic set in IRdn. This observation lies at the roots of

the following equivalences [57], [58]:

Theorem 3: Given a formation graph G with n ≥ 2 vertices in the plane (resp. n ≥ 3 vertices

in 3-space) the following are equivalent:

1) for some formation Fp with this graph, rank R(Fp) = 2n− 3 (resp. rank R(Fp) = 3n− 6 in

3-space);

2) for all q ∈ IR2n in an open neighborhood of p, the formation Fq on the graph G is £rst-order

rigid in the plane (resp. q ∈ IR3n, Fq is £rst-order rigid in 3-space);
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3) for all q in an open dense subset of IR2n, the formation Fq on the same graph G is £rst-order

rigid in the plane (resp. open dense subset of IR3n, Fq is £rst-order rigid in 3-space).

When property 3) holds, we say that the graph G of Fp is generically rigid in the space. It is well

known that £rst-order rigidity implies all of the other standard forms of rigidity for a formation,

but the converse can fail [19], [47], [57]. For readers thinking of other concepts of rigidity, we

point out that if one of these alternative forms of rigidity holds for a non-empty open set, then all

of the properties in Theorem 3 hold [47], [57].

For the plane we have a strong combinatorial characterization of the generically rigid graphs.

We note that this leads to a fast (O(|V |2) algorithm for generic rigidity testing [27].

Theorem 4 (Laman [38]): A graph G = (V,L) with n vertices is generically rigid in IR2 if and

only if L contains a subset E consisting of 2n− 3 edges with the property that for any nonempty

subset E ′ ⊂ E, the number of edges in E ′ cannot exceed 2n′−3 where n′ is the number of vertices

of G which are endpoints of edges in E ′.

There is no comparable complete result for 3-space, and no known polynomial time algorithm,

though there are useful partial results [57], [58].

B. Conditions for Global Rigidity

We are interested in the stronger concept of generic global rigidity. This concept is intimately

related with £rst-order rigidity. If the formation Fp is not £rst-order rigid, there is a non-trivial

£rst-order ¤ex ṗ that does not come from a congruence. This is enough to guarantee that a small

perturbation will create a formation that is not globally rigid.

Theorem 5 (Averaging Theorem [57], [58]): Given a non-degenerate formation Fp with a non-

trivial ¤ex q̇, the formations Fp+tq̇ and Fp−tq̇ on the same graph, for all t > 0, have the same edge

lengths for all links but are not congruent.

We say that a formation Fq is generically globally rigid if every suf£ciently small perturbation

q of p creates a globally rigid formation Fq. The result above shows that any non-degenerate

generically globally rigid formation Fp must be £rst-order rigid. However, as Fig. 1 illustrates, the

converse is not true.

An graph G = {V ,L} with n vertices is generically globally rigid in IRd if there is an open

dense set of points p ∈ IRdn at which Fp is a globally rigid formation with link set L. In the plane,
10



(a)

d c

c

b b

(b)

a

d

a

Fig. 1. Two £rst-order rigid formations with the same graph and the same distance values.

a recent result gives a complete characterization of generically globally rigid graphs. To introduce

the result, we £rst review the de£nitions of k-connectivity and redundant rigidity.

A graph G is k-connected if it remains connected upon removal of any set of < k vertices.

The k-connectivity of a complete graph with n vertices is de£ned to be n − 1. A simple mental

check also con£rms that for more than d+1 vertices in dimension d, we need at least d+1 vertex

connectivity, to avoid a re¤ection of one component through a mirror placed on a disconnecting

set of size d.

A graph G is redundantly rigid in IRd if the removal of any single edge results in a graph that is

also generically rigid in IRd. Fig. 2 shows a graph that is not redundantly rigid. As Fig. 3 suggests,

we need the graph to be generically redundantly rigid to ensure generic global rigidity.

b

a

b

ca c c’ a’

a’

b’

c’

b’

Fig. 2. An example from [27] showing a rigid 3-connected graph with two realizations in the plane. If edge (a, a′) is removed,

triangle a′b′c′ swings along a path until the distance (a, a′) is the same as it originally was.

Theorem 6 ( [33]): A graph G with n ≥ 4 vertices is generically globally rigid in IR2 if and

only if it is 3-connected and redundantly rigid in IR2.
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a

d

e

c

b

Fig. 3. A globally rigid formation in the plane.

Notice that to actually carry out a test to decide whether or not a given graph G is generically

globally rigid in IR2, one must establish that it is both 3-connected and redundantly rigid in IR2.

Various tests for 3-connectivity are known, and we refer the reader to [32], [40] for details including

measures of the complexity of the tests involved. Tests for redundant rigidity in IR2 have been

derived [27] based on variants of Laman’s theorem [38].

Since these properties are also required for even a non-empty open set of globally rigid formations

in the plane, we can see that the existence of one generically globally rigid formation Fp implies

the graph is generically globally rigid. In 3-space, whether having one generically globally rigid

formation is enough to show that the graph is generically globally rigid is an open question [13].

As with generic rigidity, we do not have a generalization of Theorem 6 to higher dimensions.

However, it extends as a necessary but not suf£cient condition.

Theorem 7 ( [13], [27]): If a graph G with more than d+1 vertices is generically globally rigid

in d-space, then G is redundantly rigid and at least d+1 connected. In all dimensions d ≥ 3, there

are redundantly rigid and at least d + 1 connected graphs that are not generically globally rigid.

IV. INDUCTIVE CONSTRUCTION OF GENERICALLY GLOBALLY RIGID GRAPHS

It is possible to derive useful suf£cient conditions and inductive constructions for generically

globally rigid graphs (i.e., solvable) in spaces of all dimensions [13], [19]. Such constructions can

be useful in identifying and constructing uniquely localizable networks.

One simple construction inserts new nodes of degree d+1 into existing generically globally rigid

formations to create larger generically globally rigid formations. Since we will use this construction
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later, we give some formal de£nitions using the term ‘trilateration’ from the plane as a general

term.

Lemma 2: Given a generically globally rigid point formation Fp, and a new point p0 linked

to d + 1 nodes p1, ...pd+1 of Fp, in general position, then the extended point formation F̄p+p0 is

generically globally rigid.

Proof: Consider any location for the distances in F̄p+p0 . We show that the location of p0 is

unique, given these prior locations.

We £rst give the proof in R
2, where Fp has three non-collinear points pa, pb, pc. We have the

distances from p0 to these three points. The distances from the £rst two points, pa, pb, de£ne two

intersections of corresponding circles centered at pa and pb. The distances from any third point pc

to these two solutions are different, since pc is not on the line through pa, pb. Therefore there is a

unique position for p0 for the given distance to pc.

The same argument works in all dimensions, starting with the two points of intersection for d

spheres with centers in general position.

Now, consider a second formation F̄p+q0 with the same link lengths as F̄p+p0 . Since the generically

globally rigid formation Fp is contained in this second extended formation, the location of its nodes

is unique, up to congruence. The unique congruence T de£ned by the d+1 general position points

of attachment induces a position T (p0) that satis£es our construction. Since the constructed point

was unique, we conclude that T (p0) = q0 and the two extended formations are congruent. We

conclude that the extended formation is globally rigid.

The general position property used is stable under small perturbations of p. Therefore the global

rigidity holds for all small perturbations and the extended formation is generically globally rigid.

For the network setting in 2 dimensions, we can start with the globally rigid formation on m ≥ 3

beacons as Fpm . We can then sequentially add new nodes as points pm+1, . . . , pn, each along with 3

edges to distinct nodes in the preceding formation, to extend the preceding formation. Provided that

all sets of points which will be used in extensions are in general position, we create a generically

globally rigid formation F̄p with n points. This process can be worded in terms of generically

globally rigid graphs.

De£nition 2: A trilateration extension in dimension d of a graph G = (V,E), where |V | ≥ d+1
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produces a new graph G
′ = (V ∪ {v}, E ∪ {(v, w1), . . . , (v, wd+1)}), where v /∈ V , and wi ∈ V .

De£nition 3: A trilaterative ordering in dimension d for a graph G is an ordering of the vertices

1, . . . , d+1, d+2, . . . n such that Kd+1, the complete graph on the initial vertices, is in G, and from

every vertex j > d+1, there are at least d+1 edges to vertices earlier in the sequence. Graphs for

which a trilaterative ordering exists in dimension d are called trilateration graphs in dimension d.

Theorem 8: Trilateration graphs in dimension d are generically globally rigid in dimension d.

Proof: Any formation on the complete graph on d+1 vertices is generically globally rigid if the

points are in general position. We take such a formation. We can then apply Lemma 2 to add each

point along the trilaterative ordering, with its guaranteed d + 1 edges, to create a larger generically

globally rigid formation with all points in general position. We can then add any additional edges

beyond the d + 1 needed, without changing the generic global rigidity of the extended formation.

Repeated application of this leads to a generically globally rigid formation on the whole graph.

Since the conditions of being in general position apply to an open dense subset of the space, we

conclude that the graph is generically globally rigid.

A trilateration graph G may have more than one trilaterative ordering and even more than one

seed — the initial complete graph Kd+1. We will look at algorithmic aspects of trilateration graphs

in the next section.

V. COMPUTATIONAL COMPLEXITY OF LOCALIZATION

We have seen in preceding sections that global rigidity is a necessary condition for the solvability

of network localization. We will now move from the decision problem of solvability to an associated

search problem, graph realization.

Speci£cally, we de£ne the graph realization problem as the problem of assigning coordinates to

vertices of a weighted graph G, so that the edge weight of every edge (i, j) equals the distance

between the points assigned to vertices i and j. Note that a given graph may not be realizable under

a particular set of edge weights. In the context of network localization, the graphs under study are

the grounded graphs associated with network point formations.

A. Realizing Globally Rigid Graphs

Although global rigidity testing in the plane is computable in polynomial time, Saxe has shown

that testing the realizability of weighted graphs is NP-hard [50]. Below, we will argue that realizing
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a graph is still hard, even if it is known that the graph is globally rigid and that it has a realization.

The objective of this subsection is to build intuitive results. In the next subsection we will conduct

a formal reduction and discuss the implications. Note that we will restrict ourselves to the plane

in this section.

Recall that the SET-PARTITION-SEARCH problem is the following: Given a set of numbers S,

£nd a partition of S as A ∪ S − A so that the sums of the numbers in the two sets are equal. We

£rst prove a useful NP-hardness result for the SET-PARTITION-SEARCH problem.

Claim 1: Given a set S for which the existence of a set partition is guaranteed, the problem of

£nding a set partition is still NP-hard.

Proof: Assume that algorithm A solves set-partition-search. Let S be a set of numbers for

which it is unknown whether there is a set-partition. Run A on input S for time t equal to the

running time of A on a valid input of size |S|.
If A has not terminated, then S has no set-partition. If A has terminated, then S has a set-

partition if and only the output of A is a set-partition of S. Since set-partition is NP-complete,

set-partition-search is NP-hard.

We now show another result which will prove to be useful. Fig. 4 shows a particular realization

of the wheel graph W6.

Fig. 4. Wheel graph W6.

Claim 2: The wheel graph Wn is globally rigid.

Proof: We will refer to nodes in the cycle, Cn−1, as rim nodes, the central node as the hub,

an edge between the hub and a rim node as a spoke, and an edge between two rim nodes as a rim

edge.
15



If we remove two rim vertices, the graph remains connected through the hub. If we remove the

hub and one rim vertex, the graph remains a connected path on the remaining vertices. Therefore

removing two vertices does not disconnect the graph, and it is 3-connected.

As Lemma 2.1 of [6] observes, a wheel is a minimally redundantly rigid graph for the plane.

By Theorem 6, it is generically globally rigid.

We now analyze the complexity of realization of globally rigid graphs. A realistic formulation

of the realization problem requires that the edge lengths be noisy measurements of underlying

edge lengths subject to bounded errors. Note that with probability 1, these error-corrupted edge

lengths will not correspond to realizable weights. In this case, the realization problem becomes

an approximation problem; namely, £nding an assignment of coordinates for the graph vertices so

that the resulting discrepancies with the noisy weights are below a tolerance parameter. Below, we

use a reduction from set partition to show that realization of globally rigid weighted graphs with

realizable i.e., exact, edge weights is still hard. To construct the reduction, we use real numbers,

which could potentially be irrational. The formal proof in the next subsection does not need to use

real numbers.

Assume we have an algorithm A that takes as input a realizable globally rigid weighted graph and

outputs the unique realization. Consider a set of n positive rational numbers S = {s1, s2, . . . , sn},

for which a set-partition exists, scaled without loss of generality such that
∑n

i=1 si = π/2. Let us

now label the nodes of Wn+1 as follows: we label the hub 0, and the rim nodes 1 through n, where

there is an edge from i to i + 1 for i ∈ {1, 2, . . . , n − 1} and from n to 1. We will refer to the

spoke from 0 to i as spokei.

Let us now construct a weighted version of Wn+1. Let the weight of each spoke be r, where r

is a positive rational number. Let the weight of the rim edge between node i and node i + 1 for

i ∈ {1, 2, . . . , n−1} be 2r sin(si/2), and let the weight of the rim edge between node n and node 1

be 2r sin(sn/2). We now argue that this weighted version of Wn+1, call it W
′
n+1, has a realization

in the plane.

If we imagine si as the modulus of the angle between spokei and spokei+1 for i ∈ {1, 2, . . . , n−1}
and sn as the modulus of the angle between spoken and spoke1 in a realization of Wn+1, we can

determine a set of edge weights. Fix the weight of each spoke to be r, where r is a positive real

number. Then the weight of the rim edge between node i and node i+1 for i ∈ {1, 2, . . . , n−1} must
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be 2r sin(si/2), and the weight of the rim edge between node n and node 1 must be 2r sin(sn/2).

Since S has a set partition, we can form a cycle of these chords in the plane. Therefore the wheel

graph with these edge weights, W
′
n+1 has a realization.

Note that despite the fact that the spokes might be inserted sequentially, it is not true that the

ends of the spokes on the circumference necessarily occur sequentially as one moves continuously

around the rim. The graph will in general fold up, like a folding fan. In addition, note that the

upper bound on the sum of the si ensures that in progressing through the cycle, there can be no net

rotation around the hub, i.e., the angles corresponding to clockwise rotation and those to counter

clockwise rotation do not differ by some nonzero multiple of 2π.

Suppose we have an ef£cient algorithm A for graph realization. We run the algorithm on

the realizable globally rigid weighted graph W
′
n+1 to obtain a realization. From this realization,

determine whether it is clockwise or counter-clockwise to rotate spokei to spokei+1 for i ∈
{1, . . . , n − 1} and from spoken to spoke1. By construction, the set of angles corresponding to

clockwise rotation and that of counter-clockwise rotation form a set-partition of S.

This procedure solves set-partition-search with one call to a graph realization algorithm and

polynomial time additional computation. Since set-partition-search is NP-hard, realizable globally

rigid weighted graph realization in the plane is NP-hard.

B. Localization complexity for unit disk graphs

The preceding subsection considers arbitrary globally rigid graphs. However, the construction

relies on a “folding fan” construction in which pairs of nodes close to each other in the unique

realization may possibly not have an edge between them. We consider a special class of graphs

called unit disk graphs, where an distance measurement is present between any pair of sensors if

they are within some disk radius parameter r of each other. We will show that even when limited

to this idealized class of graph, localization is still NP-hard. To avoid precision issues involving

irrational distances, below we assume that the input to the problem is presented with the distances

squared. If we make the further assumption that all sensors have integer coordinates, all distances

will be integers as well.

We consider a decision version of the localization problem, which we call UNIT DISK GRAPH

RECONSTRUCTION. This problem essentially asks if a particular graph with given edge lengths

can be physically realized as a unit disk graph with a given disk radius in two dimensions. A
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similar result is obtained by Breu and Kirkpatrick in [9]. Our objective in this paper is to further

connect to network localization.

The input is a graph G where each edge uv of G is labeled with an integer �2
uv, the square of

its length, together with an integer r2 that is the square of the radius of a unit disk. The output

is “yes” or “no” depending on whether there exists a set of points in R2 such that the distance

between u and v is �uv whenever uv is an edge in G and exceeds r whenever uv is not an edge

in G.

Our main result is that UNIT DISK GRAPH RECONSTRUCTION is NP-hard, based on a

reduction from the NP-hard problem CIRCUIT SATISFIABILITY [23]. The constructed graph for

a circuit with m wires has O(m2) vertices and O(m2) edges, and the number of solutions to the

resulting localization problem is equal to the number of satisfying assignments for the circuit. In

each solution to the localization problem, the points can be placed at integer coordinates, and the

entire graph £ts in an O(m)-by-O(m) rectangle, where the constants hidden by the asymptotic

notation are small. The construction also permits a constant fraction of the nodes to be placed at

known locations.

Formally, we show:

Theorem 9: There is a polynomial-time reduction from CIRCUIT SATISFIABILITY to UNIT

DISK GRAPH RECONSTRUCTION, in which there is a one-to-one correspondence between

satisfying assignments to the circuit and solutions to the resulting localization problem.

The proof of Theorem 9 depends on a sequence of constructions of logical gates and is given

in [4]. An application of the theorem to sparse networks shows that localization is hard. By sparse

networks, we mean networks where the number of known distance pairs grows only linearly in the

number of nodes. Sparse networks are of great importance, because in the limit as a network with

bounded communication range and £xed sensor density grows, the number of known distance pairs

grows only linearly in the number of nodes.

Corollary 1: There is no ef£cient algorithm that solves the localization problem for sparse sensor

networks in the worst case unless P=NP.

Proof: Suppose that we have a polynomial-time algorithm that takes as input the distances

between sensors from an actual placement in R2, and recovers the original position of the sensors

(relative to each other, or to an appropriate set of beacons). Such an algorithm can be used to
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solve UNIT DISK GRAPH RECONSTRUCTION by applying it to an instance of the problem

(that may or may not have a solution). After reaching its polynomial time bound, the algorithm

will either have returned a solution or not. In the £rst case, we can check if the solution returned is

consistent with the distance constraints in the UNIT DISK GRAPH RECONSTRUCTION instance

in polynomial time, and accept if and only if the check succeeds. In the second case, we can

reject the instance. In both cases we have returned the correct answer for UNIT DISK GRAPH

RECONSTRUCTION.

It might appear that this result depends on the possibility of ambiguous reconstructions, where

the position of some points is not fully determined by the known distances. However, if we allow

randomized reconstruction algorithms, a similar result holds even for graphs that have unique

reconstructions. Below RP denotes the class of randomized polynomial-time algorithms [24].

Corollary 2: There is no ef£cient randomized algorithm that solves the localization problem for

sparse sensor networks that have unique reconstructions unless RP=NP.

Proof: The proof of this claim is by use of the well-known construction of Valiant and Vazirani,

which gives a randomized Turing reduction from 3SAT to UNIQUE SATISFIABILITY [52]. The

essential idea of this reduction is that randomly £xing some of the inputs to the 3SAT problem

reduces the number of potential solutions, and repeating the process eventually produces a 3SAT

instance with a unique solution with high probability.

Finally, because the graph constructed in the proof of Theorem 9 uses only points with integer

coordinates, even an approximate solution that positions each point to within a distance ε < 1/2 of

its correct location can be used to £nd the exact locations of all points by rounding each coordinate

to the nearest integer. Since the construction uses a £xed value for the unit disk radius r (the natural

scale factor for the problem), we have

Corollary 3: The results of Corollary 1 and Corollary 2 continue to hold even for algorithms

that return an approximate location for each point, provided the approximate location is within ε · r
of the correct location, where ε is a £xed constant.

What we do not know at present is whether these results continue to hold for solutions that have

large positional errors but that give edge lengths close to those in the input. Our suspicion is that

edge-length errors accumulate at most polynomially across the graph, but we have not yet carried

out the error analysis necessary to prove this. If our suspicion is correct, we would have:
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Conjecture 1: The results of Corollary 1 and Corollary 2 continue to hold even for algorithms

that return an approximate location for each point, provided the relative error in edge length for

each edge is bounded by ε/nc for some £xed constant c.

C. Global/Distributed Optimization for Localization

The preceding subsections have shown that the computational complexity of network localization

is likely to be high. In practice, one way to solve the general localization problem is to formulate

it as an optimization problem. Speci£cally, realization of a graph G = (V,E) with edge weight

function δ(i, j) can be formulated as a global optimization over vectors of points {x1, x2, . . . , x|V |}
of the following form,

minimize
∑

(i,j)∈E

(δ(i, j)− ‖ xi − xj ‖)2 .

This formulation of the problem has been used by biologists studying molecular conforma-

tion [14]. Because such optimization is computationally expensive, strategies such as divide-and-

conquer [28] and objective function smoothing [42] have been proposed. Recently, in [7], Biswas

and Ye show that network localization in unit disk graphs can be formulated as a semide£nite

programming problem and thus can be ef£ciently solved. A condition of their algorithm, however, is

that the graphs are densely connected. More speci£cally, their algorithm requires that Ω(n2) pairs of

nodes know their relative distances, where n is the number of sensor nodes in the network. However,

as we see from the preceding section, for a general network, it is enough for the localization process

to have a unique solution when certain O(n) pairs of nodes know their distances.

In the context of network localization, distributed optimization algorithms may be desirable. In

this case, algorithms such as [28] may be applied by dividing the global network into small globally

rigid sub-components [34] (clusters) to reduce overall complexity. Each cluster computes its relative

localization using some optimization technique. Then the global localization can be achieved by

merging the localizations of individual components. With these algorithms, a tradeoff will likely

emerge between the advantage of small cluster size and the disadvantage of having to reconcile a

large number of localized clusters.
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D. Realizing Trilateration Graphs

Although realization of general globally rigid graphs is hard, we have already seen a class

of globally rigid graphs that are computationally ef£cient to realize. In what follows, we de£ne

trilateration to be the operation whereby a node with known distances to three other nodes in

general position determines its own position in terms of the positions of those three neighbors. We

assume that this operation is ef£ciently computable.

Theorem 10: A trilateration graph G = (V,E) with realizable edge weights is realizable in a

polynomial number of trilaterations.

Proof: There is a sequence of trilateration extensions that result in G when applied to K3.

If we know a seed of G, then we can do the following: Localize one of the nodes of the seed

at the origin, another on the positive x-axis, and the remaining node at a position with a positive

y coordinate. At each step, we can calculate positions for all unlocalized nodes with edges to

three localized nodes. Because G is a trilateration graph, we are guaranteed to be able to calculate

positions for all nodes with at most |V | − 3 trilaterations.

If we do not know any seed of G, we can guess it in at most
(

n
3

)
tries, which is polynomial.

A guess is correct if and only if the above procedure succeeds in localizing all nodes in a linear

number of steps. Hence, we can realize a trilateration graph in a polynomial number of steps.

As we shall see, there are scenarios in which it is reasonable to assume that we know a seed of

the trilateration graph, and in these cases, the linear algorithm will be applicable.

VI. LOCALIZATION IN RANDOM GEOMETRIC GRAPHS IN THE PLANE

In previous sections, we presented theory for localization of general networks. In this section, we

specialize to the setting of sensor networks with a large number of randomly distributed sensors

and explore the average case behavior of a speci£c localization algorithm. An abstraction that

corresponds well to this setting is the random geometric graph.

A. De£nition and Properties of Random Geometric Graphs

We de£ne random geometric graphs in terms of point formations.

De£nition 4: Given n ∈ N and r ∈ [0, 1], the random geometric graphs Gn(r) are the graphs

associated with two dimensional point formations F� with all links of length less than r, where
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p = {p1, p2, . . . , pn} is a set of points in [0, 1]2 generated by a two dimensional Poisson point

process of intensity n.

The parameters of the model, n and r, correspond respectively to the physical parameters of

sensor density and sensing radius.

We next review some useful properties of the connectivity of Gn(r). Note that the results we

present in this section are asymptotic and that because of this, we neglect collinearity as a low

probability phenomenon.

As in the case of the Erdös-Rényi random graph model [8], there is a phase transition in the

random geometric graph model at which the graph becomes connected with high probability [3].

Penrose [45] generalizes this to k-connectivity with the result that if Gn(r) has a minimum vertex

degree of k then with high probability Gn(r) is k-connected.

Since it is was proved in [39] for some r ∈ O(
√

log n
n

), Gn(r) has a minimum vertex degree of

k for k ∈ O(1) with high probability, r ∈ O(
√

log n
n

) can also ensure k-connectivity.

B. Global Rigidity of Random Geometric Graphs

Recalling that 3-connectivity is a necessary condition for global rigidity, and using a recent

result that 6-connectivity is suf£cient for global rigidity in the plane [33], we conclude that Gn(r)

is globally rigid with high probability for some r ∈ O(
√

log n
n

).

Next we have the following interesting result:

Theorem 11: If G = (V,E) is 2-connected, then the graph G
2 = (V,E ∪ E2), where E2 is the

set of edges between endpoints of paths consisting of two edges in G, is globally rigid.

Proof:

Let G = (V,E) be 2-connected. Take any two nodes u and v in V . Since there are at least two

node-disjoint paths from u to v, they lie on a cycle. Let us denote the cycle of n nodes by Cn. We

will show that C2
n is globally rigid, and from this, it follows that the distance between every pair

of nodes in V is £xed in G
2, i.e., G

2 is globally rigid.

By a result from [6], every globally rigid graph has a globally rigid subgraph that can be obtained

from K4 by a sequence of node addition operations. The node addition operation preserves global

rigidity, and in it, a new node v is added by replacing an existing edge (u,w) by edges (u, v)

and (v, w), and adding an edge (v, z) for some z 
= u, v. We show that C2
n is globally rigid by
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constructing a class of globally rigid graphs C ′
n which are spanning subgraphs of C2

n, as illustrated

in Fig. 5.
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Fig. 5. In the top row are the globally rigid C′
n graphs, n = 4, 5, 6, 7. The dotted edge connects a newly added node n to node

n − 2. Note that C′
n is a spanning subgraph of C2

n.

Starting from K4, we label the nodes 1 . . . 4 and add nodes sequentially. In the n− 4th step, we

insert a node n by adding an edge (n, n − 2), and subdividing the edge (n − 1, 1) by replacing

it with (n − 1, n) and (n, 1). The resulting graph C ′
n is globally rigid. It is easy to see that C ′

n

is a spanning subgraph of C2
n for all n ≥ 4. Since adding edges to a globally rigid graph cannot

result in a non-globally rigid graph, C2
n is globally rigid. Hence, if G is biconnected, the distance

between all pairs of nodes is £xed in G2, and G2 is globally rigid.

For random geometric graphs, the preceding theorem means that Gn(2r) is globally rigid with

at least the probability that Gn(r) is 2-connected.

For some large n and δ ∈ (0, 1), let ri denote the smallest radius at which Gn(r) becomes

i-connected with probability 1 − δ and let rg denote the radius at which it becomes globally rigid

with probability 1 − δ. Note that r2 ≤ r3 ≤ rg ≤ r6 and that rg ≤ 2r2. This behavior is illustrated

in Fig. 6.
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Fig. 6. Probability that Gn(r) is k-connected. Dotted line represents the probability that Gn(r) is globally rigid.

C. Realization of Random Geometric Graphs

We now explore conditions for Gn(r) to yield an ef£cient realization computation 1.

Theorem 12: If limn→∞ nr2

log n
> 8, with high probability, Gn(r) is a trilateration graph.

Proof: Partition [0, 1]2 into cn
log n

square cells of equal size where 8 log n/nr2 < c < 1. That

such a c exists is assured by the theorem hypothesis. Note that with high probability, every cell

contains at least three nodes. This is because if A is the area of a square, the probability it contains

no nodes, one node, or two nodes is e−nA, nAe−nA and (1/2)(nA)2e−nA. When A = logn/cn, the

sum of these three probabilities goes to zero as n goes to in£nity. Additionally, since r > 2
√

2
√

log n
n

,

every node has edges between itself and all nodes in its own cell and those adjacent cells sharing

a corner or edge with its cell.

Starting from some cell we label as 0, we iteratively label every cell in [0, 1]2. In step i ∈
{1, . . . ,

√
cn

log n
}, we label with i every unlabelled cell that adjoins a cell labelled i−1 horizontally,

vertically, or diagonally. We will refer to the union of all cells with the same label i as a layer, Li.

We now iteratively label all n nodes in the grid such that each node has a unique label. In step

−1, we choose three nodes in L0 and label them 1, 2, and 3. In step 0, we label the rest of the

1with respect to a particular algorithm
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nodes in L0 sequentially with numbers greater than 3. In step i, we label sequentially all nodes in

Li with numbers larger than every label in Li−1.

Every node in L0 with a label greater than three has edges to 1, 2, and 3. By construction, a

node labelled m in Li, i > 0 has edges to at least three nodes in Li−1 with labels less than m.

Thus we have a trilaterative ordering from De£nition 3, and Gn(r) is a trilateration graph.

An intuitive argument that perhaps yields more insight into the previous result is the following.

In the limit of large n, assume that nodes 1, 2, and 3 can be considered to occur at a single point

p0. If every node in Gn(r) is connected to three other nodes closer than itself to p0, then Gn(r) has

a trilaterative ordering. Since p0 can be in any direction from an arbitrary point, this is assured in

the event that every node has three neighbors in any 120◦ sector of the circle with radius r about

it, or at least nine neighbors. Denoting by rt the radius at which Gn(r) has probability 1 − δ of

being a trilateration graph, we suspect that rt approaches r9 from above in the limit of large n.

These results immediately yield insight into the complexity of realizing Gn(r).

Theorem 13: For some r ∈ O(
√

log n
n

), if the positions of three nodes with edges to each other

are known, then with high probability, a realization of Gn(r) is computable in linear time.

Proof: By the proof of Theorem 12, the three nodes with known positions form the seed of a

spanning trilateration graph G with high probability. By Theorem 10, the positions of all nodes in

G can be computed in linear time. Since Gn(r) is spanned by G, it can be realized in linear time.

D. Localization in Random Sensor Networks

We now study a simple localization protocol for random sensor networks we call ITP in Fig. 7.

Theorem 13 allows us to analyze the effectiveness of our procedure.

De£nition 5: A random sensornet Sn(r) is a sensornet of n sensors with sensing radius r placed

at random on [0, 1]2 by a two-dimensional Poisson point process. A beacon is a sensor that knows

its position.

One could de£ne a random sensornet in terms of a uniform distribution over [0, 1]2, but we do

not consider this case.

The following results are summarized in Table I.
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� Sensors have two modes: localized and unlocalized

� Sensors determine distance from heard transmitter

� All sensors are pre-placed and plugged-in

Localized mode:

Broadcast position

Unlocalized mode:

Listen for broadcast

if broadcast from (x,y) heard

Determine distance to (x,y)

if three broadcasts heard

Determine position

Switch to localized mode

Fig. 7. The iterative trilateration protocol (ITP).

Claim 3: For some r ∈ O(
√

log n
n

), with high probability, all sensors in Sn(r) will have deter-

mined their positions with ITP by O(
√

n
log n

) time if three beacons are placed anywhere in [0, 1]2

so that they are in sensing range of each other.

Proof: We set r and partition [0, 1]2 into square cells as in the proof of Theorem 12. We will

now show that we can have an entire grid cell within range of the three beacons. Let the beacons

lie at points P1, P2, and P3. We know that d(Pi, Pj) ≤ r, for i 
= j. Consider the smallest circle C

enclosing the three beacons. Assume the center of C is Pc.

Consider the case that P1, P2, and P3 are all are on C. We can bound the radius R of C as

follows. Consider the angles of the three sectors P1PcP2, P2PcP3, and P3PcP1. At least one of

them, say P1PcP2, is at least 120◦. Thus to guarantee that d(P1, P2) ≤ r, we have that R ≤ r/
√

3.

Draw a circle C ′ centered at Pc with radius (1−1/
√

3)r. Using the triangle inequality we have that

the distance from Pi to any point inside C ′ is less than or equal to (1/
√

3)r + (1 − 1/
√

3)r = r.

The case that only two of P1, P2, and P3 are on C is similar since we have R <= 1/2r.

Thus we have a circular area of Θ(r2) wholly within range of the three beacons. We offset the

grid partition such that an entire cell is within this area and thus localized in the £rst time-step.
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We label this cell 0 and proceed with labelling the remaining cells as in the proof of Theorem 12.

We say that a layer is localized when all sensors in that layer have determined their positions.

Assuming ITP broadcast, distance calculation, and trilateration take place in constant time, L0 will

be localized in a single constant-time step because all nodes contained therein are connected to

the three beacons. Additionally, given Li localized, ITP will localize Li+1 in a single constant-time

step. Therefore, all layers will be localized in at most O(
√

n
log n

) steps and our claim is established.

Claim 4: For some r ∈ O(
√

log n
n

), with high probability, all sensors in Sn(r) can determine

their positions with ITP and will have done so by expected time of at most O(
√

log n) if beacons

are placed on [0, 1]2 by a Poisson point process of intensity O(n/ log n).

Proof: We set r and partition [0, 1]2 into square cells of area A as in the proof of Theorem 12.

The Poisson point process places beacons into each cell at a rate λ ∝ nA/ log n ∈ O(1). Therefore,

the probability that a cell contains at least three beacons is a constant p which is independent of n.

The probability that all cells contains less than three beacons is qO(n/logn), where q = 1 − p, so

some cell contains at least three beacons with high probability, and consequently, all sensors can

localize as in claim 3.

We now bound the expected time it takes for every sensor to localize given some cell contains

three beacons. We say a cell is localized if every sensor it contains has determined its position. In a

single constant-time step, ITP localizes a cell if it contains three beacons or if any of its neighbors

are localized. Because of this, in what follows we will refer to discretized time rather than steps.

The probability that a cell does not localize by time k is the probability that all cells within a

square of cells with side 2k + 1 contain fewer than three beacons, q(2k+1)2 . The probability that

the last cell to localize does so after a certain time is less than the probability that at least one of

the cells localizes after that time. More formally, where ti is the time at which square i localizes,

since the total number of cells is O( n
log n

), the following is true,

Pr[max(ti) > k] ≤ min(1, O(
n

log n
)qO(k2)).

Since the time to localize is a positive random variable, we can use the upper tail probabilities

to determine its expected value,

E[max(ti)] ≤
∞∑

k=0

min(1, O(
n

log n
)qO(k2)).
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Observing that for some k0 ∈ O(
√

log n − log log n),

O(
n

log n
)qO(k2) > 1 ⇐⇒ k < k0,

we see that

E[max(ti)] ≤ O(
√

log n) + O(
n

log n
)

∞∑
k=k0

qO(k2).

In calculations we will not include here, it can be shown that O( n
log n

)
∑∞

k=k0
qO(k2) ∈ O(1).

We have thus shown that with high probability, all sensors will localize in expected time at most

O(
√

log n).

Claim 5: For some r ∈ O(
√

log n
n

), with high probability, all sensors in Sn(r) can determine

their positions and will have determined their positions by O(1) time if beacons are placed on

[0, 1]2 by a Poisson point process of intensity O(n).

Proof: If r ∈ O(
√

log n
n

), the Poisson point process places beacons in the sensing region of a

sensor at rate λ ∝ nr2 ∝ log n. Since we expect O(log n) beacons connected to every sensor, with

high probability, we will have O(1) i.e., at least three beacons connected to every sensor, and all

sensors will localize in O(1) time with high probability.

beacons sensing radius E[tloc]

O(1) O(
√

log n
n ) O(

√
n

log n )

O( n
log n ) O(

√
log n

n ) O(
√

log n)

O(n) O(
√

log n
n ) O(1)

TABLE I

LOCALIZATION IN VARIOUS BEACON PLACEMENT SCHEMES.

VII. SIMULATION STUDY OF LOCALIZATION IN RANDOM NETWORKS IN 3-SPACE

We simulate random geometric graphs in 3-space by generating points randomly in [0, 1]3, placing

four beacons in the center of the unit cube within sensing range of each other. We then simulate
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ITP by localizing nodes in computational rounds in which we determine positions for all nodes

connected to four nodes with known position. We terminate the simulation when a round does

not determine the position of any node. Note that that while these simulations are in 3-space, the

theory of the previous section for 2-space is indicative of the 3-space results. In our £rst simulation,

for three values of r, we track the percentage of nodes whose positions can be determined. We

observe in Fig. 8 an increasingly sharp phase transition in the percentage of localizable nodes as

we increase n.
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Fig. 8. Percentage of nodes localizable with 4-beacon ITP.

In our second simulation, we calculate the smallest radius at which the percentage of localizable

nodes is greater than 95%. We see in Fig. 9 behavior similar to the analytical results of the plane

in the preceding section. Note that the analytical asymptotic result of the plane more accurately

models actual behavior as n increases. The difference for small n is explained by the contribution

of logarithmic terms in the localization probability that becomes signi£cant when n is small.
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Fig. 9. Trilateration graph phase transition radius in Gn(r).
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Our last simulations investigate the number of computational rounds necessary to localize all

nodes that can be localized. In Fig. 10, we observe for n = 2000 that the percentage of localized

nodes at a given step increases dramatically with modest increases in sensing radius. Note that

below the phase transition, at r = 0.1, the procedure fails to localize practically any nodes and

completes in four steps. For r straddling the phase transition, Fig. 11 plots the number of steps

before completion. The spike is due to a sudden increase in connectedness above the phase transition

at which the radius is minimal for total localizability.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5  10  15  20

pe
rc

en
ta

ge
 lo

ca
liz

ed
 n

od
es

step

r = 0.1
r = 0.13
r = 0.16
r = 0.19
r = 0.22

Fig. 10. Time-evolution of the number of localized nodes.
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Fig. 11. Required steps for algorithm completion.

VIII. RELATED WORK

Network localization is an active research £eld, e.g., [1], [5], [10]–[12], [17], [20], [25], [26], [30],

[35], [43], [44], [46], [48], [49], [51], [53], [54], [56]. The previous approaches can be classi£ed

into two types: coarse-grained and £ne-grained. The focus of this paper is £ne-grained localization.
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As we discussed in the Introduction, the previous approaches are mainly heuristics, and this paper

provides the £rst theoretical analysis of network localization.

A related problem called molecular conformation has been studied in the chemistry community,

e.g., [2], [28], [42]. However, the focus of these studies is on 3-space. Also, since the structure of

a molecule is given, they do not consider the network construction process.

One major building block of our analysis is rigidity theory and computational geometry. Rigidity

has been long studied in mathematics and structural engineering (see for example [38], [57], [29],

[47], [58]) and has a surprising number of applications in many areas. We formally analyzed the

performance of network localization in networks of randomly placed nodes. Even though some

researchers have studied random graphs in sensor networks, e.g., [15], [16], [21], [37], the focus is

mainly on routing but not on localization. In [15], Dı́az, Petit and Serna analyzed the performance

of localization for optical sensor networks. However, their analysis is for the case in which a sensor

can derive its position from a single beacon.

IX. CONCLUSION AND FUTURE WORK

The unique localization of networks from distance measurements shares a number of features

with work in several other active £elds of study: rigidity and global rigidity in frameworks; the

coordination formations of automonous agents; and geometric constraints in CAD. In this paper, we

have drawn on techniques and results from the £rst two £elds, also combined in some previous joint

work [19], as well as speci£c results on global rigidity [13], [33]. With these concepts, we were

able to lay a coherent solid foundation for the underlying problem of when a network is uniquely

localizable, for almost all con£gurations of the points. Speci£cally, we constructed a formation

and then a graph for each network such that the localization problem for the network is uniquely

solvable, almost always, if and only if the corresponding graph is generically globally rigid. From

these connections, we drew speci£c results and showed that the trilateration networks are uniquely

localizable for almost all initial locations.

It should be noted that as stated, the localization problem with precise distance is not in general

numerically well posed since even if it is solvable with the given data, it may be unsolvable with data

arbitrarily “close” to that which is given. In practical terms, this means that special attention must be

paid to the computation process and to assessing the signi£cance of “approximate solutions.” It also

means that only graphs which are generically globally rigid are capable of having computationally
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stable solutions for given data sets. This con£rms our choice of conceptual framework for this

problem. However, we comment that even approximate solutions are hard to compute due to the

hardness of the localization problem.

Speci£cally, we have shown that the localization problem is NP-hard in the worst case for sparse

graphs unless P=NP or RP=NP, if certain mild forms of approximation are permitted. This worst-

case result for sparse graphs stands in contrast to results that show that localization is possible

for dense graphs [7] or with high probability for random geometric graphs. The open questions

that remain are where the boundary lies between our negative result and these positive results. In

particular:

• Is there an ef£cient algorithm for approximate localization in sparse graphs, either by permitting

moderate errors on distances or by permitting the algorithm to misplace some small fraction

of the sensors?

• Given that the dif£culty of the problem appears to be strongly affected by the density of nodes

(and the resulting number of known distance pairs), what minimum density is necessary to

allow localization in the worst case?

• How are these results affected by more natural assumptions about communications ranges,

allowing different maximum distances between adjacent nodes or the possibility of placing

small numbers of high-range beacons?

• How does the dimension (e.g., in the plane or in 3-space) affect the problem?

Answers to any of these questions would be an important step toward producing practical

localization algorithms.

One potential direction to resolve the computational complexity issue is to introduce other

modalities. In particular, other work such as [44] approaches network localization with angles,

bearings and headings in addition to some distance constraints. Drawing on more general work

on geometric constraints such as angles and directions in CAD, we have further generic global

uniqueness results that can give new insights where certain patterns of angles or headings are

used [19], as well as insights into the complexity of general patterns of angle constraints. This will

be explored further in a future paper.
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