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ABSTRACT
We consider the problem of designing a compact commu-
nication network that supports efficient routing in an Eu-
clidean plane. Our network design and routing scheme achieves
1+ε stretch, logarithmic diameter, and constant out degree.
This improves upon the best known result so far that re-
quires a logarithmic out-degree. Furthermore, our scheme is
asymptotically optimal in Euclidean metrics whose diameter
is polynomial.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed networks; G.2.2 [Discrete
Mathematics]: Graph Theory—Network problems, Graph
labeling .

General Terms
Algorithms, Theory.

Keywords
Compact Routing, Network Design.

1. INTRODUCTION
We study the problem of designing a communication net-

work and a compact routing scheme for two dimensional
Euclidean metrics 1. Given is a set V of n nodes situated on
a two-dimensional plane. Each node v ∈ V is defined by its
coordinates 〈vx, vy〉. For any two nodes u, v ∈ V , let ‖uv‖
denote the standard L2-norm distance, let D be the normal-

ized diameter
maxu 6=v ‖uv‖
minu 6=v ‖uv‖ . The problem of compact routing

on Euclidean metrics is a combined problem of designing a
network and a routing scheme on top of the network.

1We present the two dimensional case for clarity, our con-
struction can be extended to higher dimensional Euclidean
metrics
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• Network design. Every node u must choose a set of
out going neighbors. This induces a directed graph H
on the set V .

• Routing scheme. A routing scheme, RS, on the graph
H. The scheme allows any source node s that knows a
target t ∈ V and its coordinates 〈tx, ty〉, to route from
s to t.

1.1 Complexity measures
The complexity of a solution is based on the following

measures:

1. Degree(H) - The maximal out going degree of H.

2. Memory(RS) - The maximal number of bits used for
storing routing information in a single node. A routing
scheme is said to be compact if Memory(RS) = o(n).

3. Header(RS) - The maximal size of the header needed
by RS to route from any source s to any destination
t.

4. Stretch(RS) - The maximal ratio, over all pairs, of the
length of the routing path produced by RS by routing
from any source s to any target t and the distance ‖st‖.

5. Diameter(RS) - The maximal number of hops, over
all pairs, produced by RS by routing from any source
s to any destination t.

1.2 Our contribution
In this paper, we present a network H and a routing

scheme RS that for any ε > 0 has the complexity measures
below. The big O notations below indicate constant fac-
tors that depend on either ε or on the desired probabilistic
guarantee. We emphasize that our construction does not at-
tempt to optimize these constants, and prioritizes simplicity
over tight constants.

1. Degree(H) = O(1).

2. Memory(RS) = O(log D).

3. Header(RS) = O(log D).

4. Stretch(RS) = 1 + ε.

5. Diameter(RS) = O(log D) with high probability.



1.3 Related Work
The problem of compact routing using geometric coordi-

nates has been considered in a number of previous works.
By simply linking each node to its immediate neighbor in
every angle, say θ, one obtains a constant stretch θ-graph
spanner as in [12], whose degree is constant but the number
of hops may be Ω(n).

Combining constant stretch and low degree with low di-
ameter requires a more involved construction. The paper
of Hassin and Peleg [10] was the first to formally define the
problem and give a solution based on building a routing hi-
erarchy. Each node links in every angle θ to log D different
nodes at geometrically increasing distances. Their algorithm
achieves the following complexity measures. The stretch is
1 + ε, memory is O(log D), and diameter is O(log D). How-
ever the out degree of [10] is O(log D). Our work builds
upon the ideas of Hassin and Peleg’s hierarchical construc-
tion and improves their solution by bringing down the node
degree (any memory) to a constant. It is interesting to note
that, when restricted to nodes on a bidirected ring, Hassin
and Peleg’s network has the same topology as Chord [21].
In a similar manner, our network, when restricted to nodes
on a bidirected ring, has similarities to Viceroy [17].

Hassin and Peleg present an alternative construction based
on hierarchical tree covers [3] that has O(log n) diameter in-
stead of O(log D) and achieves a stretch factor strictly larger
than 1+

√
2. While the stretch cannot be arbitrarily close to

1, their construction has better asymptotic diameter when
D = Ω(2n), but in such a case simply storing the coordi-
nates of a node requires Ω(n) bits which makes the whole
scheme non compact.

Geometric routing was also studied in the context of mo-
bile ad hoc networks (MANETs) that are enhanced with
self-positioning devices such as GPSs. The model here is
somewhat different than ours. It assumes that each node
has a certain transmission range, and is linked directly to
all nodes within this range (Unit Disk Graph). The first
routing algorithm to guarantee delivery is face routing, due
to Kranakis et al. [14]. However, face routing has no bound
on the ratio between the cost of route and the minimal cost
path. Both Bose et al. [4] (CGF) and Karp and Kung [11]
(GPSR) propose an algorithm that combines greedy routing
with face routing. In the MANET model, these algorithms
guarantee delivery and for average case networks have ex-
pected cost O(d) between a source s and a destination t,
where d is the cost of minimal-cost path between s and t on
the unit disk graph. The first algorithm that gives worst case
guarantees is by Kuhn et al. [15]. They present a scheme in
which, if the minimal cost path has cost d, then delivery with
cost O(d2) is guaranteed, which is asymptotically optimal.
In a follow up paper [16], they combine their bounded face
routing with greedy routing to achieve a scheme that is both
worst case asymptotically optimal and average case efficient.
Due to the MANET model, all of the above algorithms have
worst case diameter Ω(n).

A closely related problem is that of building sparse, low
diameter geometric spanners, which are directed spanning
graphs over a set of points on the plane that contain low
stretch paths. Arya, Mount and Smid [1] construct a 1 + ε
stretch, O(log n) diameter, O(n) edge spanner for any set of
nodes in an Euclidean metric. There construction is built
with high probability and is asymptotically optimal. How-
ever, no compact decentralized routing algorithm is known

to route on the low stretch paths while requiring a non-
trivial number of bits per node.

The general problem of designing labels and compact rout-
ing tables for low stretch routing on arbitrary weighted graphs
is considered in [5, 24]. In these schemes the designer is al-
lowed to give nodes labels with a polylogarithmic number of
bits. The best labeled routing schemes for general weighted
graphs achieve stretch 2k − 1 for k ≥ 2 with O(n1/k log2 n)
bit routing tables and this is tight up to polylogarithmic fac-
tors [23, 24]. For comprehensive surveys on compact routing
and compact network data structures, see [7, 8].

Recently, Talwar [22] gave a stretch 1 + ε compact rout-
ing scheme with O((log D/k)k log2 D) bit routing tables for
graphs that induce a metric with doubling dimension k. A
metric has a doubling dimension of k if every ball of radius
2r can be covered by at most 2k balls of radius r, hence any
finite dimension Euclidean Metric has a constant doubling
dimension.

1.4 Applicability
Using geometric coordinates in general internets is made

relevant not only by the ubiquity of GPS devices, but also
by several recent techniques that embed internet nodes in
a coordinate space. One of the pioneering mechanisms to
predict network latency is based on the work of Ng and
Zhang [19]. They embed the Internet latencies into a vir-
tual geometric space (e.g., 3-D Euclidean) and characterize
the position of any node with coordinates. The computed
distances are used to predict the actual network distances.
Following [19] other schemes were developed to improve the
embedding of internet hosts into virtual geometric spaces,
e.g., [9], [25], [6], and [20].

Our work embraces this promising direction, which opens
new exciting opportunities. By utilizing geometric coordi-
nates, not only can the distances between nodes be predicted
accurately and efficiently, but in addition, the properties of
the Euclidean space may be used. Most importantly, Eu-
clidean spaces have a ‘sense of direction’ which allows to per-
form distance-preserving routing while maintaining a small
number of links. We believe this approach may improve the
design of overlay networks for various real-life systems.

Our work is also relevant to an on-going effort in de-
signing geometric routing networks for peer-to-peer (p2p)
applications, based on routing in “small worlds” [13]. 2

The goal in this domain is for a dynamic set of nodes to
jointly implement a shared data structure, such as a hash
table. In order to realize a shared structure distributively,
operations on data are routed among the nodes in order
to dispatch where the data resides. The p2p works con-
sider nodes dispersed uniformly on a Euclidean space (ei-
ther real or virtual) of one or two dimensions and route in a
distance-preserving manner. Chord [21] uses O(log n) links
per node, and achieves an expected diameter O(log n). Sym-
phony [18] uses a Kleinberg-like link distribution, achiev-
ing an expected diameter of O(log2 n/k) with k links per
node. The same complexity was achieved in [2] with a dif-
ferent Kleinberg-style randomized p2p network. Viceroy [17]
achieves O(log n) diameter with 5 links.

2It is only fair to note that the importance of Kleinberg’s
work lies completely outside the area of network design, and
its focus is on modelling real-life small-world networks. Our
work does not attempt to add to the understanding of social
networks.



Using our network design with nodes that are dispersed
uniformly on a uni-dimensional space matches the best com-
plexity measures so far, i.e., of Viceroy. In this respect, our
work extends all known p2p overlay network constructions
into an arbitrary density space, while preserving locality,
constant node degree, and logarithmic diameter.

As a special case, when considering the uniform “small
world” network model analyzed in [13], our results imply
that a constant number of carefully chosen long range links
can significantly reduce the delivery time to O(log n) hops,
while the scheme in [13] requires an expected O(log2 n) de-
livery time.

2. PRELIMINARIES
Consider a set V of n nodes situated on a two-dimensional

plane. Each node v ∈ V is defined by its coordinates 〈vx, vy〉.
For any two nodes u, v ∈ V , let ‖uv‖ denote the standard L2-
norm distance. For simplicity of presentation, assume that
the distances are normalized so that the minimal distance
between any pair of nodes is 1. Let D denote that maximal
distance between pairs of nodes.

We consider two density models. The first one, a uni-
form grid, is presented for intuition. The second is a general
plane, with arbitrary node densities.

We fix a parameter k, and set an angle α = 2π/k. The
construction will use three sector angles θ1, θ2, θ3, where α =
θ1 ≤ θ2 ≤ θ3, and three overshoot parameters o1, o2, o3,
where 1 = o1 ≤ o2 ≤ o3. For the uniform grid, we set
all sector angles to equal α and all overshoot parameters to
equal 1, i.e. θ1 = θ2 = θ3 = α and o1 = o2 = o3 = 1. We
will later redefine these constants for the general case.

For the following definitions denote the following index
sets: J = {1, 2, 3} and I = {0, 1, . . . , k − 1}.

Definition 2.1 (Ray of angle β). For any angle β,
let R(β) denote the ray from the origin with angle β from
the x axis.

Definition 2.2 (Sector i of angle θj). For any index
j ∈ J and sector i ∈ I, let Sj(i) denote the sector with angle
θj whose boundary rays are R(iα− 1

2
θj) and R(iα + 1

2
θj).

Definition 2.3 (u’s shifted sector i of angle θj). For
any node u ∈ V , index j ∈ J , and sector i ∈ I, define the
shifted sector Sj(u, i) as the sector Sj(i) shifted by ~u so that
u is the new origin.

Note that α = θ1 so {S1(u, i) | i ∈ I} forms a partition of
the plane. For any two nodes u, t ∈ V let i(u, t) denote the
index such that t ∈ S1(u, i(u, t)) (with ties broken in any
consistent manner).

Definition 2.4 (u’s ball of radius r). For a node u ∈
V and distance r ∈ R+, let B(u, r) = {v ∈ V s.t. ‖uv‖ ≤ r}
denote the ball around u of radius r.

In our construction every node u ∈ V has a range denoted
r(u) ∈ R+ (we will later define exactly how this range is
chosen). The range of a node induces several regions.

Definition 2.5 (u’s `-th region in sector i). For a
node u ∈ V with range r(u) = r, sector i ∈ I, and ` ∈
{0, 1, 2, 3, 4, 5} we define the following regions:

r1(u, i, `) = S1(u, i) ∩B(u, r(` + 1)/6) \B(u, r`/6)

In addition for ` = 6 we define:

r1(u, i, 6) = S1(u, i) \B(u, r)

Definition 2.6 (u’s `-th padded region in sector i).
In the uniform density model, define r3(u, i, `) = r1(u, i, `)
as node u’s `-th padded region in sector i.

For the general case, we will later on redefine the padded
region r3(u, i, `) as a function of S3(u, i), B(u, ·), r(u) and
o3. Denote L̄ = {0, 1, 2, 3, 4, 5} and L = L̄ ∪ {6}. Note that
{r1(u, i, `) | i ∈ I, ` ∈ L̄} forms a partition of B(u, r(u)).
For any two nodes u, t such that t ∈ B(u, r(u)) let `(u, t)
denote the index such that t ∈ r1(u, i(u, t), `(u, t)) (with
ties broken in any consistent manner). See Figure 1 for a
pictorial example of the definitions above.

node u
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r(u)

S1(u,3)

r 1
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Figure 1: Node u and its division into regions.

We now define areas that depend on the current node u
and the destination node t:

Definition 2.7 (j-th pad area of u and t). For any
two nodes u, t ∈ V , and index j ∈ J denote sj(u, t) as
sj(u, t) = Sj(u, i(u, t)) ∩ B(u, oj‖ut‖) as the j-th pad area
of u and t.

See Figure 2 for an example of s1(u, t) and s2(u, t). The
pad areas have a central role in keeping the stretch low, our
routing scheme always routes from u, towards destination t,
to a node inside s3(u, t).

Definition 2.8 (halving area of u and t). For any
two nodes u, t ∈ V such that t ∈ B(u, r(u)) let i = i(u, t)
and ` = `(u, t) then denote h(u, t) as

h(u, t) = s3(u, t) ∩
⋃

κ∈{−1,0,1}

r3(u, i, ` + κ)

as the halving area of u and t.



o1|ut|

o2|ut|

θ1

θ2
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t
s1(u,t)
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Figure 2: The inner area is s1(u, t) and the outer area
is s2(u, t).

The halving areas are used in our routing scheme to route
to a node that decreases the distance to the target by half.

Finally, designate a parameter ρ > 3 that determines the
high probability bounds that are desired.

3. THE NETWORK
Every node u ∈ V chooses a range, denoted r(u), to be

equal to D2−`, where ` is chosen uniformly and indepen-
dently from {0, 1, . . . , dlog2 De}. We begin with an overview
of the edge selection and routing scheme.

3.1 Network and Routing overview
In this section we present a high level overview of the net-

work design and routing scheme. Routing towards a target
t is done in three main stages: range adjustment, distance
halving, and local routing.

1. Range adjustment. The goal of this stage is to reach a
node u such that t ∈ B(u, r(u)). This is done using the
up links. These links connect a node with range r to
the closest node with range 2r in every sector S3(u, i).

Since node-ranges form a geometric series, this stage
ends in at most log D hops. It is also possible that
the network is too sparse and no appropriate up link
is found in the vicinity of the target. In such a case
routing proceeds directly to the third stage.

2. Distance halving. This stage begins with a node u such
that t ∈ B(u, r(u)). Using the down links, a node u′

with half the range is found and the invariant t ∈
B(u′, r(u′)) is maintained. The stage ends when a
node does not have an appropriate distance halving
link in the desired vicinity of the target.

3. Local routing. The final stage begins in an area that
contains the target and only ρ log2 D other nodes. There
are two sub stages: the log sub stage and the closest
sub stage.

The log links connect to the log D closest node in ev-
ery sector S2(u, i). Using the log links, after at most
ρ log D hops an even sparser area with less than log D

nodes is reached. Taking care that routing does not
leave the sparse area incurs some technical details.

The second sub stage begins with an area that contains
the target and at most log D other nodes. Using the
closest links, the target is found after at most log D
hops. Again care must be taken not to leave the sparse
area.

In the following subsections, we will formally define for
each stage, the network design (the links that build the
graph H) and the routing scheme (the routing algorithm
used to reach the target node).

3.2 Range adjustment
Network design. Every node u with range r = r(u) chooses

the following up links for range adjustment:

• For all i ∈ I, choose up(i) as the closest node in S3(u, i)
with range 2r.

Note that some of the sectors may not contain a node with
the desired range, in such a case the appropriate link is set
to ⊥.
Routing scheme. At a node u, range adjustment routing is
done using the following rules:

• If t ∈ B(u, r(u)) then the range is good, and routing
proceeds to the distance halving stage.

• Otherwise, if up(i(u, t)) ∈ s3(u, t) then route using
up(i(u, t)).

• Otherwise, u and the target t are in a sparse area
s3(u, t), and routing proceeds to the local routing stage.

3.3 Distance halving
Network design. Given a node u with range u(r) there are

7k links of type down and 6k of type local chosen as follows,

• For all i ∈ I, and ` ∈ L choose down(i, `) as the closest
node in the padded region r3(u, i, `) with range r(u)/2.
If there exists such a node then this link will be called
non-sparse.

• For all i ∈ I, and ` ∈ L̄ choose local(i, `) as the closest
node in the region r1(u, i, `).

Note that some of the regions and padded regions may not
contain a node with the desired range or any node at all, in
such a case the appropriate link is set to ⊥.
Routing scheme. At a node u, distance halving is done using
the following rules:

• If exists i ∈ I and ` ∈ L such that down(i, `) ∈ h(u, t)
then use the down(i, `) link and continue with the dis-
tance halving stage.

• Otherwise, use local(i, `) such that i = i(u, t) and ` =
`(u, t) and begin the local routing stage.

3.4 Local routing
Network design. Every node u chooses the following log

links and closest links:

• For all i ∈ I, choose log(i) as the (log D)’th closest
node in S2(u, i).



• For all i ∈ I, choose closest(i) as the closest node in
S1(u, i).

Routing scheme. Local routing is performed in two sub
stages. The first sub stage uses the log links until a very
sparse area is reached. Finally, the second sub stage uses
the closest links in order to reach the target.

• Denote i = i(u, t).

• If log(i) ∈ s2(u, t) then use log(i).

• Otherwise use the closest(i) link (which is clearly in-
side s1(u, t)).

4. ANALYSIS FOR A UNIFORM GRID
In this section we present a simplified analysis for the

case in which the n nodes are located on a
√

n×
√

n lattice
with unit distances. Note that this simple network model is
similar to the one studied in [13].

Recall that for the case of a uniform grid, we set α = θ1 =
θ2 = θ3, and 1 = o1 = o2 = o3 and hence s1(·) = s2(·) =
s3(·), and r1(·) = r3(·). The following complexity measures
are a direct result of our scheme.

Lemma 4.1. The network and routing scheme have the
following properties:

1. Degree(H) = O(1).

2. Memory(RS) = O(log D).

3. Header(RS) = O(log D).

Proof. For the degree, there are k links of type up, 7k
of type down, 6k of type local, k of type log, and k of type
closest. As for local memory and header size, they designate
grid coordinates, a pair of values between 1 and D. Hence,
each memory entry of an out going link and every packet
header is of size O(log D).

Note that, on a grid, D =
√

2n and thus O(log D) = O(log n).
For the uniform grid model note that every hop in every

stage from u to v towards the destination t maintains the
invariant v ∈ s1(u, t). Therefore, the stretch analysis can be
derived by Lemma 3.6 of Hassin and Peleg [10].

Lemma 4.2. [10] Let P be a path leading to t. If each
hop (u → v) ∈ P has ‖uv‖ ≤ ‖ut‖ and ∠tuv ≤ α then the
stretch of the path is at most 1

1−2 sin α/2
.

Corollary 4.3. The routing scheme has

Stretch(RS) ≤ 1

1− 2 sin α/2
,

and for an appropriate choice of α = α(ε), this is bounded
by 1 + ε.

In order to analyze the diameter we begin by showing
that every hop in the distance halving stage really cuts the
distance by half.

Lemma 4.4. Given a target t, if u routes using a non-
sparse link in the distance halving stage to node v then t ∈
B(v, r(v)).

Proof. Since u performs a distance halving step then
t ∈ B(u, r(u)) hence ‖ut‖ ≤ r(u). Denote i = i(u, t) and ` =
`(u, t). In the uniform model due to the definition of s1(·) =
s3(·) then v ∈ h(u, t) implies v ∈ r1(u, i, `) ∪ r1(u, i, `− 1).

The farthest distance between two nodes v, t in any r1(u, i, `)∪
r1(u, i, `−1) is maximized when ` = 5, node v is at distance
(2/3)r(u) from u at one corner of r1(u, i, 4) and node t at
distance r(u) from u at the opposite corner of r1(u, i, 5).
In such a case the remaining distance ‖v, t‖, normalized to
r(u) = 1, is √

1 + (2/3)2 − 2(2/3) cos θ3

which is smaller than 1/2 when k > 14.

Lemma 4.5. With high probability the routing scheme
has

Diameter(RS) = O(log n) .

Proof. The range adjustment stage takes at most O(log n)
hops until a node u is found such that t ∈ B(u, r(u)), this is
due to the fact that each time an up link is used the range
is doubled.

Then, from Lemma 4.4 each time a down link is used the
distance halving stage reduces the level by one and main-
tains the invariant t ∈ B(u, r(u)). Thus distance halving
takes at most O(log n) steps.

Consider the case that a local link is used and denote
i = i(u, t) and ` = `(u, t). The appropriate halving area
h(u, t) does not have a node of the requested level and hence
the local link in r1(u, i, `) ∩ s1(u, t) is used. We claim that
with high probability r1(u, i, `) ∩ s1(u, t) contains at most
ρ log2 n nodes. The probability that any region r1(u, i, `) ∩
s1(u, t) with more than ρ log2 n nodes does not contain an
appropriate link is at most(

1− 1

log n

)ρ log2 n

≤ n−ρ .

The same analysis shows that if routing proceeds directly
from range adjustment to local routing then the probability
that the area s3(u, t) contains more than ρ log2 n is at most
n−ρ.

For each of the n2 pairs there are is one s3(u, t) sector
to consider and at most one r1(u, i(u, t), `(u, t)) ∩ s1(u, t)
padded region to consider. The lemma follows from the
union bound by setting ρ > 3.

Once a local link is used the third stage begins. The first
substage uses the log links towards the target. Since the
distance is w.h.p. ρ log2 n this stage will end after at most
O(log n) hops when the distance is closer than log n. Now
the second substage starts using the closest links. This stage
ends after at most O(log n) hops.

5. ANALYSIS FOR GENERAL EUCLIDIAN
METRICS

The degree, memory consumption and header size com-
plexity in general metrics remain the same as in Lemma 4.1.

The main difficulty in the general case is bounding the
diameter of the routing scheme. We overcome this difficulty
by redefining the angles θ2, θ3, overshoot parameters o2, o3,
region r3(u, i, `), and restricting k to be k > 200.



For simplicity, we present a design in which the down links
cut the distance by a factor of 1

2
. Simple extensions to our

scheme can lower k by a constant factor at the cost of slightly
increasing the constants in the O(log D) diameter bound.
However, we emphasize again that we do not attempt to
tighten the constants in this exposition.

The parameters θ1 = α and o1 = 1 remain unchanged.
Consider the last sub-stage of the local routing stage which
uses closest links. This sub-stage begins from a node u
such that u’s appropriate log link is not inside s2(u, t), thus
s2(u, t) has less than log D nodes. At this final sub-stage, a
node searches for the next hop of type closest in the sector of
angle θ1 containing the target. Our aim is for this sub-stage
to take O(log D) hops. In a non uniform Euclidean space,
this requires a delicate construction. Special care needs to
be taken in order to ensure that routing does not leave the
sparse area s2(u, t). Otherwise, routing with closest links
could lead to a node outside s2(u, t) and in general networks
there is no bound on the densities in its vicinity and hence
no bound on the number of hops. Our solution is to redefine
θ2 = 7α/2 and o2 = 1 + 2 sin(α/2) which in turn increases
the area s2(u, t). For this choice of parameters we prove
that routing inside this area towards the target using closest
links will always remain inside the initial sparse area s2(u, t)
that contains only O(log D) nodes. Since the distance to the
target always decreases this implies that the last sub-stage
takes at most O(log D) hops.

Lemma 5.1. Fix an initial node u, target t, and area
s2(u, v). For any intermediate node, if v ∈ s2(u, t) then
s1(v, t) ⊂ s2(u, t).

Proof. The parameters θ2 = 7α/2 and o2 = 1+2 sin(α/2)
were chosen specifically so that for k > 200, and any t we
have B(t, (o2 − 1)‖ut‖) ⊂ s2(u, t). See Figure 3. Indeed, we
know that t ∈ s1(u, t), and the shortest distance from t to
any point on the boundary of s2(u, t) is at least

‖ut‖ sin

(
θ2 − θ1

2

)
= ‖ut‖ sin(5α/4) .

For α ≤ 2π/200, we have sin(5α/4) ≥ 2 sin(α/2).

o1|ut|

o2|ut|

θ1
θ2u

t

vθ1

(o2-o1)|ut|

p

Figure 3: Nodes u, t, v, p and regions for Lemma 5.1.

Now consider any node v ∈ s2(u, t) and point p on the
curved boundary of s1(v, t). Since ‖vp‖ = ‖vt‖ and ∠tvp ≤
α, then from the cosine law and the identity sin(x

2
) =

√
1−cos(x)

2

the distance between point p and node t is at most√
d2 + d2 − d22 cos(α) = d

√
2(1− cos(α)) ≤ d 2 sin(α/2)

where d = ‖vt‖. Hence ‖pt‖ is at a most (o2−1)‖vt‖. Given
‖vt‖ ≤ ‖ut‖ it follows that p ∈ B(t, (o2 − 1)‖ut‖) and thus
p ∈ s2(u, t). This proves the lemma since v ∈ s2(u, t) and
both s2(u, t) and s1(v, t) are convex areas.

We now proceed in redefining θ3, o3, and r3(·). Using the
same arguments as in Lemma 4.5 the log routing sub-stage
begins w.h.p. either (from the distance halving stage) in a
region h(u, t) that contains at most ρ log2 D nodes, or (from
the range adjustment stage) in a sector s3(u, t) that contains
at most ρ log2 D nodes. We must show two things about the
log routing sub-stage:

1. Routing with log links towards the target always re-
mains inside the original sparse area, either h(u, t) or
s3(u, t).

2. It takes at most O(log D) hops until an area s2(u
′, t)

is reached with less than log D nodes (and from there
the closest links can be used).

In order to prove (1.) we need to ensure that for every
intermediate node v in this sub-stage, routing to the next
hop in an angle θ2 from t, at distance at most ‖vt‖o2 from
v will reach a node that is still inside the original sparse
area. The sparse area can either be s3(u, t) or h(u, t). We
guarantee staying inside the sparse area by redefining θ3 =
12α and o3 = 1 + 2 sin(2α). See Table 1 for a summery of
the values.

Table 1: Overshoot and angle values
overshoot value
o1 1
o2 1 + 2 sin(α/2)
o3 1 + 2 sin(2α)

angle value
θ1 α
θ2 7α/2
θ3 12α

Finally, we need to redefine r3(·) as follows.

Definition 5.2 (u’s `-th padded region in sector i).
For a node u ∈ V with range r(u) = r, sector i ∈ I, and
index ` ∈ L̄ redefine r3(u, i, `) as

r3(u, i, `) = CH(S3(u, i) ∩B(u, o3r(` + 1)/6) \B(u, r`/6))

Where CH(A) is the Convex Hull of the set A.

See Figure 4 for an example of a padded region.
With these parameters and definitions we prove the fol-

lowing.

Lemma 5.3. Fix an initial node u and target t. For
any intermediate node, if v ∈ h(u, t) and ‖vt‖ ≤ ‖ut‖ then
s2(v, t) ⊂ h(u, t).

Similarly, if v ∈ s3(u, t) and ‖vt‖ ≤ ‖ut‖ then s2(v, t) ⊂
s3(u, t).

Proof sketch. The proof is similar to Lemma 5.1. De-
note i = i(u, t) and ` = `(u, t). The parameters θ3 = 12α
and o3 = 1 + 2 sin(2α) were chosen specifically so that for
k > 200, and for any u, t ∈ V :

B(t, (o3 − 1)‖ut‖) ⊂ h(u, t) .



(1/6)r(u)
(2/6)r(u)

(2/6)(o3)r(u)

r3(u,i,1)

r1(u,i,1)

u
θ1

θ3

Figure 4: Example of the region r1(u, i, `) and the
padded region r3(u, i, `) for ` = 1.

It is easy to show that the upper and lower boundary lines
of h(u, t) are far enough. We now show that the side rays
are also far.

The shortest distance from t to any point on the two
boundary rays of h(u, t) is at least

‖ut‖ sin

(
θ3 − θ2

2

)
= ‖ut‖ sin(17α/4) .

For α ≤ 2π/200, we have

sin(17α/4) ≥ 2 sin(2α) .

Hence B(t, (o3 − 1)‖ut‖) ⊂ h(u, t).
Now consider any node v ∈ h(u, t) such that ‖vt‖ ≤ ‖ut‖

and point p on the curved boundary of s2(v, t). Thus ∠pvt ≤
θ2, and ‖vp‖ = o2‖vt‖, by the cosine law on the triangle pvt,

the point p is at a distance at most ‖vt‖
√

1 + o2
2 − 2o2cosθ2

from t and ‖vt‖ ≤ ‖ut‖. For α ≤ 2π/200, we have

2 sin(2α) ≥
√

1 + o2
2 − 2o2 cos θ2 .

So p ∈ B(t, (o3 − 1)‖ut‖) and thus p ∈ h(u, t). This proves
the lemma since both h(u, t) and s2(v, t) are convex areas.

The proof that if v ∈ s3(u, t) and ‖vt‖ ≤ ‖ut‖ then
s2(v, t) ⊂ s3(u, t) is done in a similar manner.

We still need to prove that it takes at most O(log D) hops
of type log until an area s2(u, t) is reached with less than
log D nodes. A log step from a node u ‘skips’ log D nodes
within s2(u, t) that are closer to u than the target t. How-
ever, because of the angle of the sector, it is possible that
some skipped nodes are closer to t than the log link, and so
we cannot simply discount the skipped nodes. Showing that
within O(log D) hops the target is reached requires a more
subtle argument, which uses the stretch analysis below.

Theorem 5.4. In the general case, with o3 = 1+2 sin(2α),
the routing scheme has

Stretch(RS) =
o3

1−
√

1 + (o3)2 − 2o3 cos(13α/2)
,

and for an appropriate choice of α = α(ε), this is bounded
by 1 + ε.

Proof. Denote g(α) = o3

1−
√

1+(o3)2−2o3 cos(13α/2)
. Let P

denote the path taken by the routing algorithm from source
node s to destination node t. For any hop (u → v) ∈ P from
node u to a node v on the path P , denote cost(u, v) = ‖uv‖
the cost of the hop, and denote gain(u, v) = ‖ut‖ − ‖vt‖

the gain towards the target of the hop. Since for all stages
v ∈ s3(u, t) and k > 200 then the gain is always positive.

In order to show low stretch we will show that for any hop
(u → v) in P

cost(u, v)

gain(u, v)
≤ g(α) . (1)

This implies

cost(P ) =
∑

(u→v)∈P

cost(u, v) ≤ g(α)‖st‖

and choosing α = g−1(1 + ε) gives the desired stretch.
Let u be any node along P and v the next hop towards

destination t, then our routing scheme maintains the follow-
ing properties due to the fact that v ∈ s3(u, t):

1. The angle ∠tuv is at most θ3/2 + θ1/2 = 13α/2. Let
i = i(u, t), in our construction, t ∈ S1(u, i) and v
is always in S3(u, i) so ∠tuv is maximized when t is
on one ray of S1(u, i) and v is on the opposite ray of
S3(u, i).

2. The distance ‖uv‖ is at most o3‖ut‖. Note that this
distance is even smaller for some routing stages.

Denote d = ‖ut‖, c = ‖uv‖, and e = ‖vt‖. If c, d remain
fixed then increasing ∠tuv increases cost(u, v)/gain(u, v),
hence the maximum is obtained when ∠tuv = 13α/2. This
follows directly from the law of the cosines on ∠tuv.

We now look for a maximum of the function f(x) = x/(1−√
1 + x2 − 2x cos(13α/2) ) in the range 0 ≤ x ≤ o3. There

is minimum in the range and no other extreme points, hence
the maximum of f(c) is obtained when c = o3. Therefore,

cost(u, v)

gain(u, v)
=

c

d− e
≤ o3

1−
√

1 + (o3)2 − 2o3 cos(13α/2)
.

Bounding the diameter in the log sub stage requires also
a “dual” to Theorem 5.4.

Lemma 5.5. If a path from u towards t reaches node v
such that:

1. The angle β = ∠tuv is at least cos−1
(

1
1+ε

)
and at

most π/2.

2. The gain gain(u, v) = ‖ut‖ − ‖vt‖ is positive.

Then cost(u, v)/gain(u, v) > 1 + ε.

Proof. Denote as above d = ‖ut‖, c = ‖uv‖, and e =

‖vt‖ then cost(u,v)
gain(u,v)

= c
d−e

and we want to prove that c
d−e

>

1 + ε which is equivalent to proving e > d− c
1+ε

, using the
law of the cosine and gain positivity this is equivalent to
proving the following inequality

c2 + d2 − 2cd cos β >

(
d− c

1 + ε

)2

= d2 +
c2

(1 + ε)2
− 2cd

1 + ε

which is true if

c

(
1− 1

(1 + ε)2

)
> 2cd

(
cos β − 1

1 + ε

)
and this is true for any c if cos−1

(
1

1+ε

)
< β ≤ π/2 since

RHS is negative and LHT is positive.



Finally we can conclude the analysis of the log stage by
showing that routing with the log links takes O(log D) hops.

Lemma 5.6. The log sub stage takes at most O(log D)
hops.

Proof. We will show that for every hop, either the dis-
tance is cut by a constant factor, or there are log D − 1
nodes that will never be considered during the route. Sup-
pose node u uses its log link and moves to node w.

Since w ∈ s2(u, t) then by construction ∠tuw ≤ θ2. Now
there are two cases to consider. If ‖uw‖ ≥ ‖wt‖ then by

|ut|u t

w

x|uw|<|wt|

θ
2

|ux|<|uw|

Figure 5: Nodes in Lemma 5.6

Theorem 5.4, ‖uw‖ ≤ (1 + ε)(‖ut‖ − ‖wt‖), hence the dis-
tance has been shortened by a factor of at least 2+ε

1+ε
.

Otherwise, ‖uw‖ < ‖wt‖ and so ∠utw ≤ θ2. Therefore,
∠uwt ≥ π − 2θ2. Consider any node x ∈ s2(u, t) such that
‖ux‖ ≤ ‖uw‖ (see Figure 5). Then ∠uwx ≤ π/2, hence
∠xwt = ∠uwt− ∠uwx ≥ π/2− 2θ2.

Thus after visiting w, the routing scheme will never visit
any node x ∈ s2(u, t) such that ‖ux‖ ≤ ‖uw‖ because the
angle ∠xwt would contradict Lemma 5.5 for k > 200. Hence
all the log D − 1 nodes whose distance to u is smaller than
‖wt‖ will never be revisited. Therefore, each such log link
skips a disjoint set of log D nodes, and there could be at
most ρ log2 D/ log D such steps.

In a similar manner to Lemma 4.4 we show that for large
enough k, the distance is halved at each hop of the distance
halving stage.

Lemma 5.7. Given a target t, if u routes using a non-
sparse down link in the distance halving stage to node v then
t ∈ B(v, r(v)).

Proof sketch. Suppose t ∈ B(u, r(u)) and a non-sparse
down link v ∈ h(u, t) is used. Then the maximal distance
between v and t is obtained when v is at distance (2/3)r(v)
from u in one corner of r1(u, i, 4), and v is in the opposite
corner of r3(u, i, 5). In such a case ∠vut ≤ θ3/2 + θ1/2 =
13α/2 and the distance ‖vt‖, normalized to r(u), is at most√

(2/3)2 + (1 + 2 sin(2α))2 − 2(2/3)(1 + 2 sin(2α)) cos(13α/2)

which is smaller than 1
2

for any k > 200.

We conclude with the diameter analysis.

Theorem 5.8. For the general case, the routing scheme
has

Diameter(RS) = O(log D) .

Proof. The range adjustment stage takes at most log D
hops until it reaches either:

1. A sparse area h(u, t) containing less than ρ log2 D nodes,
or

2. A node u such that t ∈ B(u, r(u)).

In case 2, the distance halving stage commences. In this
stage, from Lemma 5.7 each non-sparse link that is used
cuts the range in half. Hence the invariant t ∈ B(v, r(v))
is maintained. Distance halving continues until a local link
is used, such that w.h.p. h(u, t) contains less than ρ log2 D
nodes.

The local routing stage begins with log routing either from
case 1 of the range adjustment stage or from the end of
the distance halving stage. In both cases w.h.p. the ar-
eas (either s3(u, t) or h(u, t)) will contain at most ρ log2 D
nodes. Due to Lemma 5.3 the route will remain inside the
sparse area, and from Lemma 5.6 the route will take at most
O(log D) hops until a node u whose log link is outside s2(u, t)
is reached.

Finally, the closest sub stage begins, and by Lemma 5.1,
routing will remain inside the sparse area that contains at
most log D nodes. The target will be reached in at most
log D hops since each hop decreases the distance and so
nodes will never be revisited.

6. CONCLUSIONS
In this extended abstract we addressed an open question

of Hassin and Peleg by showing that routing on the plane
requires constant out degree instead of logarithmic. In the
full paper we will extend our scheme to higher dimensional
Euclidean metrics. The complexity measures of our scheme
increase exponentially with the dimension. We will also
show how to slightly alter the network design so that rout-
ing can proceed in purely greedy manner. In addition us-
ing O(log D) links we show how to reduce the diameter to
O(log D/ log log D).

We plan to further investigate the applicability of geomet-
ric routing for P2P networks. Specifically we have initial
results for efficiently maintaining our scheme in a dynamic
network and a scheme for making the network more fault
tolerant.

Dynamism is also an issue for maintaining an Euclidean
spanner [1] in a centralized manner. In the full paper we will
show how our construction can be used to efficiently main-
tain a geometric spanner data structure against adversarial
join and leave events that are oblivious to our scheme’s ran-
domization. This partially addresses the open question of
Arya et al. [1].

From a practical point of view, the obvious open question
is how to reduce the constants to a value that would give
real world applicability.
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