
Massachusetts Institute of Technology Lecture 6
6.895: Advanced Distributed Algorithms February 27, 2006
Professor Nancy Lynch

Time Synchronization

Readings:
Elson, Girod, Estrin. Fine-grained network time synchronization using reference broadcasts.
Karp, Elson, Papadimitriou, Shenker. Global synchronization in sensornets.

These notes cover the first of two lectures on the topic of time synchronization. In particular, this
lecture describes a system for time synchronization known as Reference Broadcast Synchronization,
or RBS for short.

Section 1 presents the motivations behind RBS, discusses applications for which time synchroniza-
tion is essential, and brings up shortcomings of prior approaches. Section 2 describes the major
sources of clock synchronization error which RBS is intended to minimize or avoid. Section 3 dives
into detail about how the RBS approach works. Finally, section 4 presents techniques and models
for improving RBS, based on the paper by Karp et. al.

1 Introduction

A notion of time is necessary for the correct and efficient operation of many sensornet applications.
Today we discuss an algorithm called Reference Broadcast Synchronization (RBS ) for giving nodes
a common sense of time, which is particularly well suited to the characteristics and constraints of
a sensornet.

We first discuss some applications of time sync in a sensornet. Consider the following.

1. Set up TDMA In TDMA, nodes are assigned time slots when they can broadcast, such that
no other nodes are assigned the same slot. But for this to work, all nodes need to know when
the slots start, and so their clocks need to be aligned.

2. Data fusion Sensors timestamp some readings, then convergecast their readings to a central
node, merging the data along the way. For the merging to make sense, the timestamps need
to be consistent.

3. Measure time of flight of sound This is compared against another signal like RF, in order to
do ranging. The sender and receiver of the sound signal can use a clock to measure its travel
time.

4. Compute velocity of target This is used by sensors to track a target. Each sensor records
when it saw the target, then the sensors exchange their time readings, divide this into their
distance, and compute the target’s velocity.

5. Distribute a beam forming array A group of nodes can cooperate to act as one giant sender
or receiver antenna. One example is the array of radio telescopes NASA uses. But the nodes
need synchronized clocks to match up the signals they receive.



2 Lecture 6: Time Synchronization

6. Cryptography, logging, debugging These are more traditional applications, which also apply
in the wired setting.

We observe the following properties of these applications.

1. Some applications, like TDMA, need very accurate time sync between nodes, on the order of
microseconds.

2. Often, nodes don’t need to know the actual time, just their relative time. That is, when my
clock is x, what is your clock?

3. Nodes don’t need to know the correct time all the time, only when certain interesting events,
like a target passing by, occur.

RBS is a time sync algorithm specifically adapted to meet these needs. RBS can sync nodes to
within 1.5-6 microseconds of each other. Instead of having every node compute a global clock value,
RBS gives nodes a way to translate their clock values to another node’s time values. Also, RBS
doesn’t require the nodes to keep their clocks in sync all the time, which saves energy by letting
nodes sleep most of the time. Instead, after an interesting event occurs, the nodes run RBS, and
then they can infer the time of the earlier event.

Not only do most traditional time sync algorithms, e.g. Network Time Protocol, not meet these
requirements, we simply can’t run many of them in a sensornet. Traditional algorithms might
require nodes to send too many messages, draining their battery. They might need an external
time source, like GPS, which is too large and energy intensive to put on small sensors. They might
also require an infrastructure, such as a spanning broadcast tree, which is difficult to construct or
maintain in a radio network due to its ad hoc or dynamic nature.

What makes RBS work so well? It rests on cleverly exploiting the broadcast nature of communi-
cation in a radio network. To see this, we first look at what causes error in a clock sync algorithm.

2 Sources of Clock Sync Error

Most traditional clock sync algorithms work as follows. Imagine a server and a client node, and
the client trying to sync to the server. The server sends messages to the client, who echos them

Figure 1: Example of round trip time averaging



Lecture 6: Time Synchronization 3

as soon as he receives them. This produces a round trip time for each message the server sends.
By dividing these by 2 and averaging them, the nodes can infer the message delay from server to
client, δ. Now, the server sends the client the server’s current time t, and the client sets his clock
to t + δ. See Figure 1.

This scheme only works well if the message delay from server to client is fairly constant. Otherwise,
if we estimate the delay to be δ̂, but the actual delay in the final message from the server to the
client is δ which is very different from δ̂, the client will have a poor estimate of the server’s time.
What can cause variations, i.e. uncertainty, in the message delay? There are 4 primary causes.

1. Send time The server must form the message, timestamp it, then transfer the message to
its network interface. The uncertainty here comes from delays in the operating system, e.g.
context switches or processing time.

2. Access time The message must be sent over the air. The uncertainty here is waiting to access
the medium, e.g. for the channel to become clear, or for the sender’s TDMA slot to arrive.

3. Propagation time The message travels over the air from the sender to the receiver, at about
the speed of light. The uncertainty in this step is on the order of nanoseconds, so negligible
compared to the accuracy requirement.

4. Receive time The receiver must receive the message and timestamp it. This is also subject to
operating system uncertainties.

Figure 2: Causes of clock sync error

Of these, the biggest uncertainties come from the first and second steps. For example, access time
depends on network traffic load, and can be highly variable. Send time depends on the load at
the sender. Propagation time is actually negligible. Also, receive time uncertainty can be reduced
substantially, by having the operating system timestamp the message as soon as the interrupt
announcing the message reception occurs.

We call the last two sources of uncertainty the receiver uncertainty. It was shown by experiments
that the difference between different receivers’ uncertainty follows a Gaussian distribution. For one
implementation on Berkeley Motes, the distribution had mean 0, and standard deviation 11.1 µsec.



4 Lecture 6: Time Synchronization

3 Reference Broadcast Synchronization (Elson et. al)

The goal of RBS is to remove the first two sources of uncertainty, and deal only with receiver
uncertainty, which is both smaller, and follows a nice distribution.

To do this, we leverage the broadcast nature of (single hop) radio networks. Consider one broadcast

domain, i.e. a sender node and a set of nodes which can all hear the sender and hear each other.

Notice that when the sender broadcasts, all the nodes in the broadcast domain hear the message
at nearly the same time. Thus, the reception of a message from the sender can serve as a reference

point in time for all the receivers.

RBS uses this reference point to synchronize all the receivers with each other. Contrast this with
traditional time sync algorithms which try to sync the receiver with the sender.

For example, consider two receivers p1 and p2. The sender broadcasts a message m. p1 receives m

when its clock is t1, and p2 receives m when its clock is t2. We know that t1 and t2 occur at nearly
the same real time. Therefore, the difference between p1 and p2’s clocks is t2 − t1. So, when p1’s
clock says x, p2’s clock says x + t2 − t1. Thus, p1 has a way to translate his clock readings into p2

clock readings. The process can simply be flipped for p2 translating to p1.

Figure 3: Use of reference message to discover clock offset

3.1 Step 1: Estimating Offsets

The basic RBS algorithm assumes that every node pi has a clock which at real time t, has the value
t+ βi. That is, the node has some physical timer which runs at the same rate as real time, but the
value of the timer has offset βi from the real time. Later, we handle the case where the clock has
an offset from real time, and also doesn’t run at the same rate as real time.

Our goal is that given any two nodes pi and pj , pi can translate its clock value to pj’s clock value.
That is, pi can compute βj − βi. We call the latter value βj,i.

Let p1, . . . , pn be part of a broadcast domain. We do the following.

1. The sender broadcasts s reference messages, all uniquely identifiable. Let ti,j be the value of
pi’s clock when it receives the j’th message.

2. Each node pi sends its readings ti,j, j ∈ {1, . . . , s} to all the other nodes.

3. A node pi computes its offset from pj, j ∈ {1, . . . , n}, as βi,j = 1
s

∑s
k=1(tj,k−ti,k). To translate

its clock value to pj’s, pi simply adds βi,j to its own clock value.



Lecture 6: Time Synchronization 5

We say the synchronization accuracy between pi and pj is how close βi,j is to the actual offset
between pi and pj’s clocks, βi − βj .

The reason for sending s messages instead of just one is that it improves accuracy. Indeed, each
tj,k − ti,k has some error, which we saw was the receiver error, with a Gaussian distribution with
mean 0. So, by averaging these for many k, the error is decreased. In practice, when s was set
to 30, the accuracy between i and j was improved from 11 µsec to 1.6 µsec when there were 2
receivers. When there were 20 receivers, the worst accuracy between any pair of them, called the
group dispersion, was 5.6 µsec.

3.2 Step 2: Estimating Clock Skew

We assumed above that clocks have no skew. That is, their rate of increase is equal to real time.
In reality, the crystal oscillators used in the nodes’ timers can deviate by 1 part in 106 to 104. This
means that in one second of real time, a node’s clock offset can change by 1 to 100 µsecs. Since we
require µsecond precision, then we must compensate for the skew.

For simplicity, we assume that the rate of increase of each node pi’s clock is a constant αi close
to 1. So, at real time t, pi’s clock reads αit + βi. Now, when pi’s clock value reads ti, then pj’s
clock will read αi,jti +βi,j, for some constants αi,j , βi,j . The goal is for each node to compute these
constants.

To do this, imagine two nodes p1 and p2 which receive a series of s reference messages. Let t1,k

and t2,k be the value of p1 and p2’s clock when they receives the k’th message, and let βk
1,2 be

the k’th offset value p1 computes. That is, βk
1,2 = t2,k − t1,k. Now, create a set of s data points,

(t1,k, β
k
1,2), k = 1, . . . , s. Let f̂1,2 = α1,2x + β1,2 be the least squares linear regression of these data

points. That is f̂ is the linear function which best fits the data points with respect to root mean
square error. Then, node p1 will use function f1,2 to translate from its clock readings to p2’s.

Figure 4: Correcting for skew

Now, we can modify the above RBS algorithm to take care of skew and offset, simply by having
each pair of nodes pi and pj in a broadcast domain compute αi,j and βi,j .



6 Lecture 6: Time Synchronization

3.3 Post-Facto Synchronization

As we mentioned, for many sensornet applications, nodes don’t need timing information all the
time. We would like to turn off the nodes until they wake up to record some event, then afterwards,
post-facto the event, synchronize their clocks and timestamp the event.

RBS can be used to retroactively timestamps events. We simply have nodes record the events
they observe with their local clock value. Then, after all the observations are done, the nodes
synchronize their clocks using the RBS algorithm, to compute the translation coefficients αi,j and
βi,j . Now, any node pi can use these values to convert its timestamped values to pj’s timestamped
values.

Note that post-facto synchronization can’t be done with algorithms like NTP, because NTP requires
that nodes synchronize their clocks all the time, and therefore be constantly awake.

3.4 Performance Results

RBS performs extremely well in practice, and meets the needs of µsec precision required by ranging
and TDMA protocols. For example, an implementation of RBS in user mode on an Ipaq using
802.11 MAC achieves mean clock error of 6.29 µsec under light traffic load, compared to 51.18
µsec for NTP on the same platform. Under heavy traffic, RBS had error 8.44 µsec, while NTP’s
error exploded to 1542.27 µsec. Note that this tolerance of heavy traffic load is a particularly
desirable characteristic of RBS. In sensornet applications, data may be highly bursty. Thus, using
time synchronization methods that succumb to high traffic loads (like NTP) introduces inaccuracy
precisely when accuracy is most needed!

Furthermore, when the Ipaq was tweaked so that RBS ran in kernel mode, and RBS packets
were timestamped by the network interface, instead of passing them up to be timestamped by the
operating system, RBS achieved a error of 1.85 ± 1.28µsec, which is nearly the precision of the
Ipaq’s hardware clock.

3.5 Multihop RBS

Up till now we’ve only considered RBS in one broadcast domain, where a set of receivers can all
hear one sender. But RBS also works when we have a multihop network where some receivers can’t
hear some senders. For simplicity, assume once again that the nodes’ clocks have no skew. That
is, all the coefficients αi = 1. It’s not hard to handle clocks with skew, but we won’t discuss that
today.

To run RBS in a multihop network, we make use of gateway nodes, such as node p2 in Figure 5.
Suppose we want to translate between p1 and p3’s clocks. Since there’s no sender which p1 and p3

can both hear, the single hop RBS algorithm described above won’t work. However, receiver p2

can hear both senders pa and pb. If p2 informs p1 of p2’s offset from p3, p1 has all the tools it needs
to translate into p3’s time.

Let β1,2 be the offset from node p1 to p2, and β2,3 be the offset from p2 to p3. Then, p1 can compute
p3’s clock as L3 = L1 + β1,2 + β2,3.

In general, for any two nodes pi and pj, which are connected by a path pi = pi1 , pi2 , . . . , piu = pj in
the communication graph, we can translate between their clocks by first computing βpik

,pik+1
, for

all k = 1, . . . , n− 1, using the one hop RBS protocol, then write Lj = Li +
∑u−1

k=1 βpik
,pik+1

.



Lecture 6: Time Synchronization 7

Figure 5: Multihop RBS

Multihop RBS works well in practice. As we increase the number of hops, the synchronization
accuracy between faraway nodes degrades. If the mean error for two single hop nodes is ε, then
the mean error for two n hop nodes is in expectation

√
nε, due to the cancellation of positive and

negative error on the path.

To do multihop translation, we can in fact use several paths between pi and pj. This might lead
to smaller and lower variance error because the errors along different paths could cancel out even
more. This is the subject of the next paper.

4 Improving Multihop RBS (Karp et. al)

Consider a multihop network. Let p1 and p2 be two nodes, and P1 and P2 be two different paths
between p1 and p2. RBS allows us to translate p1’s clock value to p2’s using either path. However,
there is no guarantee of consistency. That is, there is no guarantee that we get the same translation
from path P1 and P2. A second problem is the following. There is random error in the translation
along every hop of the path we pick, and each such error is characterized by a probability distribution
with some variance. However, the two different paths may have different variances, and the current
RBS scheme doesn’t guarantee picking the path with minimum variance. We want to address these
two problems. We first present a theoretical model for how RBS operates.

4.1 A Theoretical Model for RBS

In the following discussion, we assume that there is no clock skew, so that the translation between
two nodes’ clocks is simply an offset. Karp also gives algorithms for dealing with clock skew, but
we won’t discuss those today.

Intuitively, RBS works by sending signals which are heard by a set of nodes at approximately the
same time. To model this, let P = {p1, . . . , pn} represent a set of n nodes (we also call these
receivers), and S = {s1, . . . , sm} a set of signals. Form a bipartite graph with the pi’s as the left
vertex set, and the sk’s as the right vertex set. Draw an edge between pi and sk if pi heard the
signal sk, as shown in Figure 6. We call the set of edges E.

For k = 1, . . . ,m, let Uk denote the real time when signal sk was sent. Let Ti represent node pi’s
clock offset from real time. That is, at real time t, pi’s clock reads t + Ti. Let eik be a random



8 Lecture 6: Time Synchronization

Figure 6: Modeling RBS as a bipartite graph

variable with mean 0 and variance Vik, which is the error in pi’s reception of sk. Lastly, let yik

represent pi’s clock value when it received sk. Therefore, yik = Uk + Ti + eik.

We first present an algorithm for computing a minimum-variance estimate of Ti − Tj, for every
pi, pj . It turns out that this method also ensures that the estimates are consistent. That is, if we
compute βi,j = Ti − Tj , then βi,j + βj,k = βi,k, for any i, j, k.

Later, we present an algorithm for computing a maximum-likelihood joint estimate for the Ti’s.
That is, given a set of observations {yik}, we compute the set of values {Ti} which are most likely
to have given rise to the observations. These Ti’s automatically define a set of consistent βi,j values.

Notice that, as per discussion in class, since this algorithm is a gloabl optimization problem, it
makes the most sense to imagine this being run as a centralized algorithm. After collecting data
on the yik’s from all nodes, a central node can efficiently run this algorithm to find the minimum-
variance estimates. Efficient decentralized algorithms may exist, but they are not mentioned in the
paper.

4.2 Minimum Variance Pairwise Synchronization

Let G = (P ∪ S,E) be the bipartite graph described in the previous section, and let p1 and p2 be
any two nodes. We begin by characterizing the set of all unbiased estimators of Ti−Tj , that is, all
random variables X such that E[X] = Ti − Tj . Then, out of this set, we pick the estimator with
minimum variance.

Consider a path of the form pi1 , sk1 , pi2 , sk2 , . . . , skt
, pit+1 , where pi1 = p1 and pit+1 = p2, such that

each pair (pij , skj
) and (skj

, pij+1) are adjacent in G. We can use this path to estimate T1 − T2,
by computing yi1,k1 − yi2,k1 + yi2,k2 − . . . − yit+1,kt

. Since yik = Uk + Ti + eik, this simpifies to
T1− T2 + ei1,k1 − ei2,k1 + ei2,k2 − . . .− eit+1,kt

, which is unbiased because all eik have expectation 0.

Clearly, there may be many paths between the two nodes. We are free to select any possible path.
All paths are equally valid, but are not equally good. However, notice that we can select more than
one path (as shown in Figure 7) to compute the estimator. In fact, we can select any weighted

combination of paths between p1 and p2, such that the weights sum to 1. This allows us to get a
substantially improved estimator.



Lecture 6: Time Synchronization 9

Figure 7: Multiple paths between destination nodes

Each individual path Pi with weight wi, is a flow of weight wi from p1 to p2. Thus, their sum is
also a flow from p1 to p2, and has weight

∑
i wi = 1. Now, let {fik} represent the flow of weight

1 produced by the weighted combination of the paths. That is, {fik} is an assignment of a real
number to each edge (i, k) ∈ E, such that the numbers satisfy the conditions for a flow of weight 1.
Then, the estimate of T1 − T2 produced by the paths is

∑
ik fikyik, where fik is positive if it goes

from pi to sk, and negative in the other direction. The variance of estimator {fik} is
∑

ik f2
ikVik.

Let F represent the set of all flows of weight 1 from p1 to p2. What we want to do is find a flow
F = {fik} ∈ F which minimizes the variance.

It is possible to solve this optimization problem directly, using augmenting flows. The paper gives
a polynomial time approximation scheme for this. However, it turns out that finding the minimum-
variance flow is equivalent to solving a certain problem about electrical networks, for which there
are exact algorithms. We now describe this connection.

Consider the following model for an electrical network. Let H be a graph, such that each edge e of
the network has resistance Re. Now, choose two nodes u and v in H, and inject one unit of current

at u, and extract one unit of current at v. At every other node, the net current is 0. For each edge
e, let ce be the current along edge e. For each node w, let p(w) be the electical potential at node w.
The currents and potentials must satisfy Kirchoff’s first and second circuit laws. Now, the effective

resistance of H is defined as the potential difference p(u)− p(v).

We define C to be the set of all current flows, such that 1 unit of current is injected at u, and 1
unit extracted at v, and such that the flow satisfies Kirchoff’s first circuit law: the current going
into and out of each node is 0. We represent a particular such flow by {cik}.
It turns out, by a minimum action principle in physics, that the effective resistance between u and
v is equal to

min
{cik}∈C

∑

(i,k)∈E

c2
ikRik

Compare this to the formula for the minimum variance of an unbiased estimator for T1 − T2 which
we derived earlier

min
{fik}∈F

∑

ik

f2
ikVik

We see that the formulas are identical except for variable names. Thus, we can use a solution to
the effective resistance as a solution for the minimum variance estimator. To do this, create an



10 Lecture 6: Time Synchronization

electrical network with node set P ∪ S and edge set E, such that the resistance along edge (i, k) is
Vik. Then, inject one unit of current at p1 and remove one unit at p2. Now, we want to compute
the effective resistance between p1 and p2. This is done via nodal analysis, which is a way of using
Kirchoff’s two laws to produce a system of linear equations, the solution of which gives the currents
and potentials in the network. We will not discuss the method here. We simply note that the
currents in the network computed by nodal analysis define a flow F of weight 1 between p1 and p2

in G, and we can use F to compute both an unbiased estimator for T1−T2 and the variance of the
estimator, via the formulas given earlier.

Lastly, it turns out that currents and potentials in an electrical network satisfy the following
superposition principle. Let e1 and e2 be two current vectors, giving for each node, the amount of
current injected at the node. Let cik(e) and pi(e) be the current flow along edge (i, k), and the
potential at node i, resp., when the current vector is e. Then we have1

cik(e1 + e2) = cik(e1) + cik(e2)

pi(e1 + e2)− pj(e1 + e2) = ((pi(e1)− pj(e1)) + (pi(e2)− pj(e2))

Let Aij be the minimum variance unbiased estimator of Ti − Tj . Then, using the superposition
principle, we can show that for any i, j, k ∈ P , we have Aij + Ajk = Aik. That is, the minimum
variance unbiased estimators are also consistent.

4.3 Maximum Likelihood Offset Assignments

Instead of computing Ti − Tj for each pair pi, pj , we can also try to compute the Ti’s individually.
Notice that if we do this, then the set of differences {Ti − Tj}i,j are guaranteed to be consistent.

To compute the Ti’s, we assume that the eik’s are all independent Gaussian variables with variance
Vik (notice that we didn’t need to assume the eik’s were Guassian in in the minimum variance
formulation). Then, since yik = Uk + Ti + eik, the probability of observing a particular value yik is

1√
2πVik

e
(yik−Uk−Ti)

2

2Vik , and the probability of observing the set of values {yik} is

∏

ik

1√
2πVik

e
(yik−Uk−Ti)

2

2Vik (1)

Now, we let the Uk’s and Ti’s be the independent variables. Also, set Cik = 1
Vik

. To find the values
of the Uk’s and Ti’s which minimizes the above expression, we differentiate equation 1 with respect
to the Uk’s and Ti’s, to obtain, for each k

∑

i

Cik(Uk + Ti) =
∑

i

Cikyik (2)

and for each i

∑

k

Cik(Uk + Ti) =
∑

k

Cikyik (3)

1Note that for consistency with the flow notation, I changed the notation for currents and potentials from the

Karp paper.



Lecture 6: Time Synchronization 11

To solve this system of linear equations, we can use the following iterative method. In each iteration,
for each k, we compute

Uk ←
∑

i Cik(yik − Ti)∑
i Cik

Then, for each i, we compute

Ti ←
∑

k Cik(yik − Uk)∑
k Cik

Each iteration of the above procedure reduces the value of

∑

i

∑

k

(yik − Uk − Ti)
2

so that eventually the method converges to a solution of equations 2 and 3.

4.4 General Contributions

The Karp paper presents many ideas, and makes many interesting claims. Unfortunately, the
paper does not really present any proofs for such claims. The general big-picture idea to take
away from the Karp paper is that RBS-style clock synchronization can be improved dramatically
by using multiple paths to compute an estimator. For example, consider an LxL grid of nodes. In
traditional RBS without multipath techniques, the variance along a path will be O(L). However,
by using the techniques from this paper, we can improve this to O(log L). Clearly, the improvments
can be significant.


