
Massachusetts Institute of Technology Lecture 5
6.895: Advanced Distributed Algorithms February 27, 2006
Professor Nancy Lynch

Localization and Rigidity

Presenter: Tina Nolte
Readings:
Aspnes et al., A Theory of Network Localization
Connelly, R., Cornell University, rigidity theory manuscript, “Basic concepts”
Next time: Time synchronization papers

1 Network localization

Consider a connected network N in d-space, with n nodes, labelled 1 through n, located at fixed
positions p1, · · · , pn in R

d. Each node also has neighboring nodes; the neighbor relation is symmet-
ric. The first m nodes, labelled 1 through m, 0 < m < n, are special beacon nodes. (It does not
seem that the cases where m = 0 or m = n present any problems, however.)

We can represent this network as an undirected graph GN = (V,EN ), with vertices 1 through n,
and edges between vertices that are neighbors in the network.

Then, the network localization (nl) problem with distance info for network N is, given the network
graph, positions of beacons, and distances between neighbor pairs (δN (i, j) for i, j ∈ EN ), to
determine positions of all nodes in the network consistent with the distance constraints:

nlN (GN , δN , {p1, · · · , pm}) returns positions {p′m+1, · · · , p′n}.

The network localization solvability (nls) problem for network N asks whether there is exactly one set
of positions, namely {pm+1, · · · , pn}, for any particular nl problem above. nlsN (GN , δN , {p1, · · · , pm})
returns true if there is exactly one solution to the nl problem for the given inputs, and false other-
wise.

The generic network localization solvability problem for network N with nodes at positions {p1, · · · , pn}
asks if the nl problem is solvable at each point in an open neighborhood of {p1, · · · , pn} in R

nd.

Intuitively, this says that the problem is solvable not only for the given network, but also for slightly
perturbed versions. There are examples of network localization problems that are solvable, but not
generically solvable; these networks are degenerate, in a sense that will be made plain later.

In a little more detail, if coordinates of nodes in the network are algebraically independent, we
call the positions generic. A generic property of a graph is a property that is true of “most”
configurations of a graph, namely ones whose positions are generic. As we’ll see later, for many
graph properties we are interested in, the configurations for which the properties hold form an open
dense set in R

nd.

2 Rigidity

We can study the network localization solvability problem using concepts from rigidity theory.
Rigidity theory developed in civil engineering, math.
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2.1 Introductory concepts

We will be concerned with a modified form of a network graph, called a grounded network graph.
This graph for a network is the same as the graph described above, except that each beacon node
has an edge to each other beacon node, in addition to the other edges. Since the exact coordinates
are known for beacons, we can calculate the distance between each pair of beacon nodes. From this
point on, we will be dealing with grounded graphs.

We can model a network with a point formation.
Say we have point locations p1, · · · , pn, and a set of links between neighboring points, L.
Then Fp = ({p1, · · · , pn}, L) is a d-dimensional point formation, and:

1. Each pi is a point in R
d,

2. p =











p1

p2
...

pn











,

3. L is a set of k links such that L ⊆ {(i, j) unordered pairs |i 6= j ∧ i, j ∈ {1, · · · , n}},

4. ∀(i, j) ∈ L : length((i, j)) = |i − j|, the Euclidean distance between points pi and pj.

It’s a model for an n-node network in R
d, where points pi represent the positions of nodes in R

d, and
the links in L label pairs of nodes for which distances between them are known. These correspond
to edges in the grounded graph.

A formation Fp = ({p1, · · · , pn}, L) uniquely determines:

1. Undirected graph GFp = (V,L), V = {1, · · · , n},

2. Distance function δFp : L → R, where: ∀(i, j) ∈ L : δFp((i, j)) = length((i, j)).

A map T : R
d → R

d is distance preserving if: ∀p, q ∈ R
d : |T (p) − T (q)| = |p − q|.

Two n-point columns p and q in R
d are congruent if:

∃T : R
d → R

d : [T is a distance preserving map ∧ ∀i ∈ {1, · · · , n} : T (qi) = pi].

Two point formations Fp and Fq are congruent if:

1. GFp = GFq , and

2. Point columns p and q are congruent.

This is like saying that one formation can be turned into the other by taking the formation and
translating, rotating, or reflecting it as a whole. Notice that: Fp congruent to Fq ⇒ δFp = δFq .

It’s clear that GFp and δFp uniquely determines formation Fp at most up to congruence.
Global rigidity captures the case where a graph and distance function uniquely determine a forma-
tion exactly up to congruence.

Point formation Fp in d dimensions is globally rigid if:

∀Fq in d dimensions : [(GFp = GFq ∧ δFp = δFq ) ⇒ Fp is congruent to Fq].

Here’s a useful fact:
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Lemma 2.1 Any formation Fp whose graph GFp is complete is globally rigid.

The way to think about this is that there is no wiggle room.

A set of points {pi1 , · · · , pid+1
} in d dimensions is in general position if it does not lie in a proper

subspace. For example, in 2 dimensions, a set of 3 points are in general position if the points aren’t
collinear; in 3 dimensions, a set of 4 points are if they aren’t coplanar.

Lemma 2.2 (Lemma 1 in Aspnes) Let Fp be an n-point formation in R
d that contains d+1 points,

{pi1 , · · · , pid+1
}, in general position. Suppose GFp contains a complete graph on {pi1 , · · · , pid+1

}. If
the only n-point formation in R

d that contains these d + 1 points and has the same link set as Fp

is Fp, then Fp is globally rigid.

Proof sketch: Say there is some formation Fq that has the same graph and edge distances as Fp,
but isn’t congruent to Fp. As mentioned in Lemma 2.1, a formation whose graph is complete is
globally rigid, meaning its positions are unique, up to congruence. Any distance preserving map
that maps the complete graph of Fq into the complete graph of Fp also preserves the distances
between the other points in Fq as well, meaning that Fq is mapped into a formation with the
same graph and link distances as Fp, and contains a complete graph on points {p1, · · · , pm}, but is
different from Fp, a contradiction.

Network localization solvability as global rigidity testing

We can now recast network localization solvability in terms of global rigidity.

Network localization solvability for a network N , described with point formation Fp, given GFp , δFp ,
and beacon positions is written as: nlsFp(GFp , δFp , {p1, · · · , pm}), returning either true or false.
We drop the Fp parameter from nls if it is obvious.

We can restate a network localization solvability problem in terms of its point formation and global
rigidity:

Theorem 2.3 (Theorem 1 in Aspnes) In R
d, d = 2 or 3,

(1) nlsFp(GFp , δFp , {p1, · · · , pm}) ⇒ Fp globally rigid,
(2) [Fp globally rigid ∧ {p1, · · · , pm} contains d + 1 beacons in general position]

⇒ nlsFp(GFp , δFp , {p1, · · · , pm}).

Proof sketch: (1) If Fp were not globally rigid, it would be impossible to determine Fp up to
congruence, let along to determine it uniquely.
(2) If Fp is globally rigid, solvability reduces to making sure that distance preserving maps T :
R

d → R
d for which T (pi) = pi, i ∈ {1, · · ·m} also satisfy T (pi) = pi, for i ∈ {m + 1, · · · , n}. We

have seen in Lemma 2.2 that if {p1, · · · , pm} contains d+1 points in general position, then the only
T that leaves {p1, · · · , pm} the same is the identity map.
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Local Global

Formation rigid globally rigid
first-order rigid generically globally rigid

Graph generically rigid redundantly rigid
generically globally rigid

Figure 1: Different forms of rigidity we’ll discuss.

2.2 Rigidity

As seen in Theorem 2.3, under certain circumstances, solvability of network localization is equivalent
to global rigidity.

How do we check for global rigidity efficiently in general? For this, we first define rigidity (sometimes
called local rigidity), a weaker form of rigidity.
We’ll be introducing a number of different kinds of rigidity, both for point formations and for
graphs, local and global, generic, not generic (Figure 1).

What is rigidity? For a point formation, rigidity describes the intuition that there are no continuous
motions of the vertices satisfying distance constraints on edges, except for the trivial continuous
motions (translations and rotations) coming from congruences of all of R

d.

We say that analytic (or continuous) path Fp(t) is an analytic flex of Fp if:

1. Fp(0) = Fp, and

2. ∀t, 0 ≤ t ≤ 1 : (GFp , δFp) = (GFp(t)
, δFp(t)

).

Fp is rigid in R
d if: ∀Fp(t) : Fp(t) an analytic flex of Fp ⇒ Fp(t) congruent to Fp.

It turns out it is hard to characterize whether a formation is rigid.
Want a simple sufficient condition test that is easy to compute. Hence, we study a sort of “lin-
earized” version of rigidity, described with the tangent space of all possible formations with the
same distances for edges.
Consider a formation Fp with link set L and one of its analytic flexes, Fp(t). Since an analytic flex
preserves the distance constraints on links for all t ∈ [0, 1]:

∀(i, j) ∈ L : |pi(t) − pj(t)|
2 = (δFp(i, j))

2.

We can study the flex’s tangent space by taking the derivative of the above expression w.r.t. t, at
t = 0. Since distances between points sharing an edge aren’t changing, this derivative is equal to 0:

∀(i, j) ∈ L : 2(|pi − pj|)(|p
′

i − p′j|) = 0.

A vector p′ satisfying this set of equations is called a first-order (or infinitesimal) flex.

Notice that first-order flexes will always contain translations and rotations; these are the trivial
flexes.

A formation Fp is called first-order rigid if every first-order flex is trivial. Notice that first-order
rigid formations don’t have to be globally rigid (see Figure 2).
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Figure 2: (2D) Two first-order rigid and rigid (see Theorem 2.5), but not globally rigid, formations.
They demonstrate flip ambiguity.

We can use linear algebra to determine if a formation is first-order rigid. Namely, we recast the
equations above as matrices. First, the distance equation:

∀(i, j) ∈ L : (pi(t) − pj(t))
T (pi(t) − pj(t)) = (δFp(i, j))

2.

The derivative constraints can be rewritten as:

∀(i, j) ∈ L : (pi − pj)
T (p′i − p′j) = 0.

The rigidity matrix for Fp with n vertices in R
d, R(Fp), is an |L| × dn matrix, with rows indexed

by edges in L, and columns indexed by vertices, such that the entry in a row corresponding to link
(i, j) ∈ L is pi − pj in column i, pj − pi in column j, and 0 otherwise.

The entire system can be written as:
R(Fp)p

′ = 0.

(If you were to do the expansion, this is obvious, but running through the expansion is tedious.)

Now, whether a formation only has trivial flexes can be expressed as a question about rank of the
rigidity matrix:

Theorem 2.4 (Theorem 2 in Aspnes) Consider a formation Fp with at least d nodes in d-space.
The following are equivalent:

1. Fp is first-order rigid.

2. rank R(Fp) = dn −

(

d + 1
2

)

.

An algebraic geometry proof of this property can be found in the Connelly manuscript.

An n-point formation in d-dimensions has rank at most dn −

(

d + 1
2

)

(number of coordinates

minus the dimension of the trivial flexes). If this inequality is an equality, then the trivial flexes
are the only first-order flexes.

Part (a) of the following theorem is not easy to prove (look in the Connelly paper for details), but
is a useful observation:

Theorem 2.5 Consider a formation Fp. Then:
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Figure 3: (2D.) Rigid, but not first-order rigid, formation (arrow indicates the non-trivial in-
finitesimal flex). Also example of a generically rigid graph (see Theorem 2.8). (Also example of a
rigid formation in R

2 that is not rigid in R
3.)

1. If Fp is first-order rigid, then Fp is also rigid.

2. If Fp is rigid, it is not necessarily the case that Fp is first-order rigid (see Figure 3).

In the prior statements we have been concerned with rigidity of point formations. However, it turns
out that it is convenient (and sometimes easier) to talk about rigidity properties of unweighted
graphs, capturing just connectivity information. The idea here is that the unweighted graph of a
formation can be generically rigid, in the sense that any nondegenerate formation with that graph
is first-order rigid.

Graph G is generically rigid if the set {Fp|G = GFp ∧ Fp first-order rigid in R
d} is dense.

With some topology and algebraic geometry, it is possible to prove the following (see Connelly
manuscript for details):

Theorem 2.6 Let G be any graph with n ≥ d vertices in d-space. Then the set {Fp|G = GFp ∧
Fp first-order rigid in R

d} is either an open dense subset of R
nd or is empty.

Using the above theorem, having one first-order rigid formation for a graph is enough to show that
the graph is generically rigid:

Theorem 2.7 (Theorem 3 in Aspnes, simplified) Let G be any graph in d-space. The following
are equivalent:

1. ∃Fp|G = GFp ∧ Fp is first-order rigid in d-space.

2. G is generically rigid.

Another way of saying this is that if a graph has a single first-order rigid formation, then all its
generic formations are rigid; if we force a formation to be generic, then rigidity is a property of
the connectivity (not the geometry) of the formation. This suggests to us that there might be a
combinatorial way to decide the generic rigidity of a graph.

In fact, there is, for 2-space:

Theorem 2.8 (Laman, and theorem 4 in Aspnes) An n-node graph G is generically rigid in R
2 iff

∃E ⊆ L : |E| = 2n − 3 ∧ ∀E ′ ⊂ E : |E′| ≤ 2n′ − 3, where n′ is the number of vertices which are
endpoints of edges in E ′.
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Figure 4: Laman counterexample in R
3 (not generically rigid).

These conditions are checkable in time O(n2). Result holds only for d = 2, and no comparable
results are known for d = 3 (see Figure 4).

Some interesting things to note:

Theorem 2.9 Consider formations Fp and their graphs GFp . Then:

1. ∃Fp such that Fp is rigid, but GFp is not generically rigid (Figure 5).

2. ∃G,Fp such that G = GFp and G is generically rigid, but Fp is not first-order rigid (see Figure
6). (Fp is then said to be in special position.)

Figure 5: Globally rigid formation, non generically rigid graph.

Figure 6: (2D.) Generically rigid graph, flexible formation. Also generically globally rigid graph
(see Theorem 2.11).

2.3 Global rigidity

We’ve looked at (local) rigidity. However, global rigidity is more than just “no continuous defor-
mation”. There can be discontinuous flexes, etc. We can extend our study of first-order rigidity
and generic rigidity to that of generic global rigidity.
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Formation Fp is generically globally rigid if every sufficiently small perturbation q of p results in a
globally rigid Fq.

The following links first-order rigidity and generic global rigidity of formations. Any non-degenerate
generically globally rigid formation is first-order rigid (though the converse is not true):

Theorem 2.10 (Averaging, theorem 5 in Aspnes) Consider a non-degenerate formation Fp with
nontrivial flex q′. Formations Fp+tq′ and Fp−tq′ , for all t > 0, have the same edge lengths, but are
not congruent.

This says that all first-order flexible formations have arbitrarily close formations in their rigidity
neighborhoods that are not in the rigidity neighborhoods of each other (see Figure 7).

Figure 7: (2D.) First-order flexible formation with arbitrarily close formations that “snap” to each
other.

As before, we want to examine properties of graphs, rather than formations.

A graph G = (V,L) is generically globally rigid in R
d if there is an open dense subset of points p

at which Fp is a globally rigid formation with link set L.

Again, we can characterize some properties of generically globally rigid graphs in a combinatorial
way.

A generically rigid graph is redundantly rigid in R
d if the removal of any one edge results in a

graph that is also generically rigid in R
d. The graph has to be generically redundantly rigid to

ensure generic global rigidity. A graph that is not redundantly rigid can suffer from what is called
a discontinuous flex ambiguity (see Figure 8).

Figure 8: (2D.) Generically rigid 3-connected graph that is not redundantly rigid. Rigid, but not
globally rigid, formations demonstrate discontinuous flex ambiguity.

A graph is k-connected if it remains connected after removal of any set of < k vertices. The
k-connectivity of a complete graph is n − 1. For more than d + 1 vertices in dimension d, we
need at least d + 1-connectivity to avoid reflection of one component through a mirror placed on a
disconnecting set of size d (referred to as a flip ambiguity) (see Figure 2).
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For 2-space, we then have the following characterization of generically globally rigid graphs:

Theorem 2.11 (Theorem 6 in Aspnes) A graph G with n ≥ 4 vertices is generically globally rigid
in R

2 iff it is 3-connected and redundantly rigid in R
2.

Tests for both 3-connectivity and redundant rigidity in R
2 are known. Hence, we have tests for

generic network solvability in 2D.

Robust quads, which we’ve seen before, are an example of a generically globally rigid graph (see
Figure 9).

Figure 9: Robust quadrilateral.

Note also that collaborative multilateration’s correctness follows from this result. Consider a com-
plete graph on the beacons. The constructed tree is 3-connected, and redundantly rigid, guaran-
teeing the graph is generically globally rigid.

Also, in 2-space, the existence of one generically globally rigid formation implies the graph is
generically globally rigid. In 3-space, however, it is an open question whether this holds.

We don’t have a generalization of the above theorem to 3-space, but we can extend it as a necessary,
but not sufficient, condition:

Theorem 2.12 (Theorem 7 in Aspnes) If a graph with more than d + 1 vertices is generically
globally rigid in d-space, then G is redundantly rigid and at least d + 1 connected. In all d ≥ 3,
there are redundantly rigid and at least d + 1 connected graphs that are not generically globally
rigid (in 3-space, the complete bipartite graph K5,5 is one such example).

It’s good to note that there are generically globally rigid graphs with flexible formations. Such
formations will be in special position (Figure 6 again).

2.4 Inductive construction of generically globally rigid graphs

We have sufficient conditions and inductive constructions for generically globally rigid graphs in
all dimensional spaces. The construction inserts new nodes of degree d + 1 into existing gener-
ically globally rigid formations to create larger generically globally rigid formations. This is a
generalization of the term trilateration in the case of 2-space:

Lemma 2.13 (Lemma 2 in Aspnes) Given a generically globally rigid point formation Fp and a
new point p0 linked to d + 1 nodes p1, · · · , pd+1 that are non-collinear in 2-space (or non-coplanar
in 3-space, etc.), then the extended formation Fp+p0 is generically globally rigid.
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Proof sketch: We’ll consider the proof in 2-dimensions, though the same argument will work in all
dimensions, starting with the two points of intersection for all d spheres.

We start with three non-collinear points pa, pb, and pc, and the distance from p0 to each of these
points. The distances from pa and pb define two intersections of corresponding circles centered at
pa and pb. The distance from the third point pc to these two solutions are different, since the three
points were non-collinear. Therefore, there is a unique position for p0 given the three distances (see
Figure 10).

Figure 10: Finding unique position.

Now consider a second formation Fq+q0 with the same edge lengths. We know that the generically
globally rigid formation Fp is contained in this extended formation, and hence the location of its
nodes is unique up to congruence. The unique congruence T defined by the points of attachment
induces a position T (p0). Since the constructed point was unique, we know that T (p0) = q0 and
the two extended formations are congruent, giving that the extended formation is globally rigid.

Global rigidity holds for small perturbations of general position points, so the extended formation
is generically globally rigid.

Now, we can see a practical connection to the generic solvability problem. For example, in 2-D,
this means that we can start with a globally rigid formation on m ≥ 3 beacons, the complete
graph. We can then sequentially add new nodes as pm+1, · · · , pn, each with 3 edges to distinct
nodes in the existing formation to make a new formation. If all sets of points used in extensions
are non-collinear, the new formation will be generically globally rigid.

Referring back to robust quads, this lemma explains why their pasting within connected overlap
graphs is something that results in a globally rigid formation. Two robust quads can uniquely
localize wrt each other if they share three nodes; these three nodes can be seen as forming the
initial d + 1 nodes in some trilateration graph, etc.

More generally, a trilateration extension in dimension d of a graph (not formation) G = (V,E), |V | ≥
d + 1, produces a new graph G′ = (V ∪ {v}, E ∪ {(v, w1), · · · , (v, wd+1)}), where v /∈ V,wi ∈ V . A
trilaterative ordering for dimension d and graph G is an ordering of the vertices 1, · · · , n such that
the complete graph on the initial ≥ d + 1 vertices is in G and for every vertex j > d + 1, there are
at least d + 1 edges to vertices earlier in the sequence. Graphs that have a trilaterative ordering in
dimension d are called trilateration graphs in dimension d.

Theorem 2.14 (Theorem 8 in Aspnes) Trilateration graphs in dimension d are generically globally
rigid in dimension d.
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Proof sketch: Any point formation for the complete graph on d + 1 vertices in general position
is generically globally rigid in dimension d. We repeatedly apply the previous lemma to add each
point along the trilaterative ordering to get larger generically globally rigid formations with non-
collinear/non-coplanar/etc. nodes. We can add additional edges beyond the d + 1 needed, without
violating generic global rigidity. We repeatedly do this. Since the points were in general position,
we get that the graph is generically globally rigid.

Trilateration graphs are another way to see that the collaborative multilateration tree Nancy pre-
sented earlier is globally rigid; construct the graph from the beacons, up.

However, there are graphs that are generically globally rigid, but are not trilateration graphs (see
Figure 11).

Figure 11: (2D.) Generically globally rigid graph, but not trilateration graph.

3 Complexity of localization

Now we move from the question of solvability of network localization to that of graph realization,
the associated search problem. Graph realization is defined as the problem of assigning coordinates
to vertices of a weighted graph G such that the edge weight of every edge (i, j) is equal to the
distance between vertices i and j. We’ll start by looking at localization of trilateration graphs,
which can be done in poly time, and then we’ll see that is a special case.

3.1 Trilateration graphs

Given a trilateration graph with realizable edge weights, it is realizable (we can assign coordinates)
in a poly number of trilaterations. If we know an initial complete graph on d + 1 vertices, we can
localize one of the nodes of this graph at the origin, another on the positive x-axis, and the remaining
node at a positive y-coordinate. At each trilateration step, we calculate the unique position of the
node being localized. Positions for all nodes will be calculated within O(|V |) trilaterations. If

we don’t know an intial complete graph, we can guess it in

(

n
3

)

tries. A guess is correct if it

succeeds in localizing all nodes in a linear number of steps. All together, this still leaves us with a
polynomial number of steps.

3.2 NP-hardness

We saw that we could efficiently realize a trilateration graph. Here we show that was a special case.
We’re in 2D.
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Theorem 3.1 (Section V-A of Aspnes) Graph realization is NP-hard, even if it is known the graph
is globally rigid and has a realization, and we restrict ourselves to 2-D.

Proof sketch: This will be done via a reduction with set-partition-search. We first show set-
partition-search is NP-hard. We then describe wheel graphs and our reduction from set-partition-
search to graph realization.

Given a set of numbers S with a set-partition, set-partition search finds the set partition. This is
NP-hard. If you had an algo A for the search problem, you could use it to answer the question of
whether a set-partition exists at all, which is NP-hard. Just run the algo for the amount of time
equal to the running time of the algo on a valid input of the size. If it doesn’t terminate, S has no
set-partition. If it does, there is.

A wheel graph Wn is a graph with n vertices such that one vertex is in the center of a circle (the
hub), with the remaining vertices on the circle perimeter. Each vertex on the circle is called a
rim node, and is connected to the hub via a spoke. If we remove two rim vertices, the graph stays
connected via the hub. If we remove the hub and a rim vertex, the rest of the graph is connected
via the other vertices. Hence, the graph is 3-connected. It’s also redundantly rigid, making it
generically globally rigid.

Now for the main result. Say we have an algo that takes a realizable globally rigid weighted graph
and outputs the unique realization. We describe how to translate a set-partition-search problem
into graph realizability. Consider a set of n positive rational numbers S = {s1, · · · , sn}, for which a
set-partition exists, scaled so that Σn

i=1si ≤ π/2. We label the hub 0, and the rim nodes 1 through
n, where there is an edge from i to i + 1 (with an edge from n to 1).

Each spoke has positive weight r. The weight of the rim edge between spoke i and i+1 is 2r sin(si/2).
This weighted graph has a realization in the plane. Since S has a set-partition, we can form a cycle
of chords in 2-D. Note it’s not necessarily the case that spokes are sequential on the rim; it’s better
to think of them arranged as a fan. Given a realization, we can determine the angle and sign
(whether it is clockwise or counterclockwise) between spoke i and i + 1. The positives si’s are one
partition, and the negative ones are the other partition (see Figure 12).

Figure 12: Example of set partition realization.
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3.3 Sensor networks

OK, so localization is NP-hard in general. But what if we have some restrictions typical of sensor
nets? In sensor networks with a concept of relatively fixed communication radius, we can represent
the network using unit disk graphs. A unit disk graph is one where there is an edge between a pair
of nodes if they are within some radius distance parameter r of each other.

The unit disk graph reconstruction decision problem asks if a particular graph with given edge
lengths can be realized as a unit disk graph with a given disk radius (2-D). It turns out this
problem is also NP-hard. This can be used to show that there is no efficient algo for localization in
sparse sensor nets (unless P=NP). Turns out there is also no efficient randomized algo for sparse
sensor nets that have unique reconstructions (unless RP-NP). These results still hold in cases where
approximations to locations are allowed (within εr of the correct, for ε a constant).


