
Massachusetts Institute of Technology Lecture 14a
6.895: Advanced Distributed Algorithms April 5, 2006
Professor Nancy Lynch

Link-reversal algorithms, cont’d

Readings:
Gafni, Bertsekas: Distributed algorithms for generating loop-free routes in networks with frequently
changing topology.
Busch, Surapaneni, Tirthapura: Analysis of link reversal algorithms for mobile ad hoc networks.
Park, Corson TORA paper.
Rao et al. Geographical routing without location info.
Fonseca et al. Beacon vector routing.
Fang et al. GLIDER: Gradient Landmark-based distributed routing.

Next time:
Fang et al. GLIDER: Gradient Landmark-based distributed routing.
Geographic routing:
Ko, Vaidya LAR paper
Ko, Vaidya multicast paper (skim only)
Kranakis, Singh, Urrutia
Bose et al. Routing with guaranteed delivery
Karp, Kung GPSR paper

1 Introduction

Last time I presented many of the Gafni-Bertsekas and Busch results on link-reversal routing
algorithms. I’ll finish that up now, and then we will go on to location-free routing.

2 Gafni-Bertsekas and Busch, cont’d

Recall the problem from last time: We are given an undirected graph network, with a distinguished
“destination” node d. The network may change over time. At any point in time, each edge is
oriented one way or the other. We assume that they start out forming a DAG, and the algorithms
all preserve this property. The goal is, given an arbitrary DAG, to gravitate to a destination-oriented
one, in which all paths lead to d.

GB have three algorithms: Full reversal (both abstract, in terms of links, and concrete, in terms of
heights of the form (α, u)), partial reversal, and a more general algorithm. Last time we discussed
the full reversal algorithm, in both forms, and the partial reversal algorithm in the abstract form
only.

I described this slightly incorrectly last time, so I will start by giving the corrected version. Then
we’ll finish with the concrete partial reversal algorithm and the general algorithm. I’ll just touch
on TORA briefly.

2 Lecture 14a: Link-reversal algorithms, cont’d

2.1 Abstract partial reversal algorithm

Here we’ll present the GB partial reversal algorithm.

Each node u 6= d maintains a list of its neighbors v that have reversed the connecting edge (u, v)
since the last time u fired. (Last time, I specified neighbors that have fired—but that isn’t the
same as saying that they reversed the edge, since not every edge need be reversed.) Initially, all
these lists are empty. Then at each step, some set of sinks fire.

For each such sink u:
If there exists at least one neighbor of u that isn’t on u’s current list, then u reverses the directions
of exactly the links (v, u) for which v isn’t on the list and empties the list. If there is no such
neighbor, that is, u’s list contains all of Nu, then u reverses all its incident edges. In either case,
every node v such that (v, u) gets reversed adds u to its list.

We have the same five claims as before:
Claim 1. If two nodes u and v both reverse in the same step, then u and v aren’t neighbors.
Proof as before.

Claim 2. At each stage, the graph is acyclic.
Proof: Now we can’t use the same argument as before, because we might not be reversing all the
edges, and hence might create a cycle. To prove this solely in terms of the abstract formulation,
we need some new invariant. (E.g., for any node u, none of its listed neighbors is reachable by a
directed path from any of its unlisted neighbors. Can this be proved by induction?
It remains to be done; it’s not in the paper.)

Claim 3. If the graph is connected, then the algorithm eventually terminates, ending up with
a DAG that is destination-oriented.
Proof: We did a proof, which proceeded by showing that if it doesn’t terminate, then all the nodes
must fire infinitely many times. That’s a contradiction because d never fires. QED Claim 3

Exercise: Can you get a time bound from this, by introducing a suitable metric?

The proof of Lemma 1 in BG is actually for their general algorithm. It requires a special hypothesis
(A.3, a sort of liveness property). We’ll talk about this more below. BST do prove termination
here, by proving time and work bounds; however, these are stated and proved in terms of the
concrete version, below. There are some funny issues about initialization, as you will see.

Claim 4: If a node starts out having a directed path to d, then it will never reverse the direc-
tion of its links.
Proof as before.

Claim 5: Any two executions of the abstract partial reversal algorithm in a connected network,
starting from the same global state (which includes not just link directions but also list information)
are “equivalent”: Each node performs the same number of reversals in both executions, and the
final state is the same.
Proof as before.

Lecture 14a: Link-reversal algorithms, cont’d 3

2.2 Concrete partial reversal algorithm

BG give a concrete version of this algorithm that is claimed to be the same as the abstract version.
I don’t think this is exactly true—there seem to be some issues involving initialization.

Here is the concrete partial reversal algorithm:
Associate with each node u, at each time, a height triple (αu, βu, u). Here, αu is a nonnegative
integer, βu any integer. Again, the triples are totally ordered, lexicographically. GB require that,
initially, all the αi values are 0 (but that doesn’t make sense if the algorithm is supposed to start
from arbitrary configurations). Edges are directed from higher to lower “heights” as before, which
prevents cycles.

Now each node u, when it “fires”, sets αu := minv∈Nu
αv + 1. (The full reversal algorothm used

the max here, instead.) Also, it sets βu to be smaller than βv for any v ∈ Nu such that αv is equal
to the new αu. (To be specific, and to make the algorithm deterministic, take the minimum such
value, −1.

Thus, for any neighbor for which the α’s themselves don’t resolve the order, orient the edge inwards
towards u. The effect is for node u to insert itself “as low as possible” in the order, ensuring that at
least one edge is directed outward, but otherwise, allowing everything possible to remain oriented
inward.

Does this actually implement the “list” description above? This is not obvious. We have to consider
3 cases to see that the two versions of the algorithm make the same decisions about link reversal
in both cases.

1. If the list is not full (is equal to Nu), then the concrete algorithm doesn’t reverse the links to
the listed neighbors.

2. If the list is not full, then the concrete algorithm does reverse the links to all neighbors not
on the list.

3. If the link is full, the concrete algorithm reverses all the links.

Consider Case 1:
The list consists of neighbors v that have reversed (u, v) to point towards u since u last fired.
Consider each such v. When it last reversed (u, v) to point towards u, it caused hv to be set > hu.
Thus, it must have set αv ≥ αu. Moreover, we claim that actually it set αv > αu: if they were set
equal, v would have set the tiebreaker βv to be < βu, which would make hv < hu. In fact, it must
be that αv = αu + 1—because v took u into account in performing its min calculation, taking the
min + 1.

Thus, when u fires, every neighbor v of u “in the list” has αv = αu + 1.

Also, no neighbor v can have αv < αu, since that would represent an outgoing edge from u, and u

is a sink when it fires. So, every neighbor v has αv ∈ {αu, αu + 1}.

We must argue (somehow) that, if a neighbor v isn’t in the list, then αv = αu when u fires. But
why is this true? It seems to require an inductive argument, starting from an initial state in which
all the αs are equal. This remains to be worked out.

Now, when u fires, it sets αu to α′

u = minv∈Nu
αv +1. Since we are assuming in Case 1 that the list

is not full, and each neighbor v not on the list has αv = αu, it must be that α′

u = αu + 1, which is
the same as the αv values for all the neighbors that are on the list. Then, u uses β to ensure that,

4 Lecture 14a: Link-reversal algorithms, cont’d

for every v with αv = α′

u, the edge (u, v) remains pointing inward towards u. That is, it doesn’t
reverse the edges from these nodes—the nodes on the list.

Consider case 2:
The reasoning in Case 1 also shows that (if the list isn’t full) u does in fact reverse the edges to all
the non-listed neighbors.

Consider case 3:
Assume the list is full, that is, all neighbors have reversed into u since u last fired. Then it seems
that all will have αv = αu + 1. Then when u fires, it sets α′

u = αu + 2, which does reverse all the
edges, as specified in the abstract algorithm.

It seems we could prove some useful invariants, with GB’s initial conditions, e.g.: If v ∈ Nu then
|αu − αv| ≤ 1.

Exercise: Prove carefully that the concrete partial-reversal algorithm correctly emulates the ab-
stract partial-reversal algorithm. You could use a simple simulation relation, and some simple
invariants.

Thus, it seems to me that the correctness of the correspondence between the concrete and abstract
partial link reversal algorithms depends on the particular kind of initialization used in BG—with
the α’s all initially equal. In fact, the behavior seems to be different if we remove this constraint
on the initialization: Consider this example (see the figure): Consider nodes d, u, v, w, with edges

v

w

ud

0

0

0 100

(d, u), (u, v), (u,w), (v, w). αd is initially 0, αu initially 100, αv and αw initially 0. Thus, the initial
edges are oriented from u towards d, w, and v, and (say) from v to w. w is a sink, so it fires,
computing αw = min+1 = 1. This reverses edge (v, w) but not edge (u,w) (since the list is empty,
this is different from what would happen in the abstract algorithm, where both edges should be
reversed). Then v is a sink, fires, computes αv = 2, reversing only one edge,... This goes on for
around 100 reversal steps. At each such step, the behavior of the concrete partial reversal algorithm
is different from that of the abstract one.

2.2.1 BST Analysis

They consider a version of the concrete algorithm in which the αs can be initialized arbitrarily.
They justify this on practical grounds—because of network connections and disconnections, we can’t
really ensure particular relationships among neighboring αs. This does seem to make practical sense,
and implies that BG missed something by relying on strong initialization assumptions. Really, what
is interesting is stabilization from some arbitrary state that might be reached in a changing network,
not just those that are reached in an unchanging one.

Lecture 14a: Link-reversal algorithms, cont’d 5

BST do not seem to notice that they are doing something different from BG here. In particular,
they claim (on page 212) equivalence between their concrete version and the list-based version, but
their “proof” is incomplete—and wrong.

However, if we consider just the concrete version of the algorithm, with their arbitrary initializion,
they do get some interesting results: Say b is the number of initially-bad nodes. They get an
O(ba∗ + b2) work and time bound, where a∗ = max(α)−min(α), the discrepancy between the min
and max values of α, in the initial state. They also show that this bound is tight for this algorithm,
by exhibiting a bad execution.

Their upper bound proof proceeds by classifying the bad nodes into layers again, this time based
on the shortest undirected path from the node to a good node. (Recall before we used the smallest
number of edges that have to be traversed in the wrong direction.)

They prove a lemma bounding how large a node’s level can get before it must become good:
Lemma 5.1: When a node u in level k becomes good, αu ≤ amax + k. (This refers to the max α

in the initial state.)
Proof: By induction on number of levels.

Since at each reversal, the α value of a node increases by at least 1, they get:
Corollary 5.2: A bad node reverses at most a∗ + b times before it becomes good. (b is the number
of bad nodes). So, the total work (and so the time) is O(ba∗ + b2).

They also show that these bounds are tight, by exhibiting graphs and initial settings that achieve
them. The construction for the work bound is a little intricate, depending on the details of the link
reversal rule. (Now the levels in the graph are arranged in pairs, where the number of reversals is
the same for two consecutive levels.) The construction for time uses the same trick as in the full
reversal case—inserting a clique with a lot of nodes at the last layer, where we know the nodes will
need to perform many reversals. Since it’s a clique, all the reversals must be done sequentially.

They conclude from all these results that the full reversal algorithm has better worst-case perfor-
mance, since it’s always O(b2)—regardless of initial state setting. Q: Why would you then bother
with the partial reversal algorithm?
A: It might very well be better on average.

2.3 The general class of algorithms

This is described only concretely, in terms of heights. It generalizes the full and partial reversal
algorithms. Instead of just integers, pairs, triples, etc., they now assume that the node heights are
chosen from some totally-ordered set A, with disjoint subsets Au for all the nodes u. Links are
directed according to the ordering of the heights (here, according to the ordering of A). Destination
d has (initially) the smallest label, and never changes it.

The entire system state at any point is assumed to consist of an assignment of heights (in A) to
all the nodes. The algorithm is assumed to be deterministic, in the sense that each node applies a
function gu when it fires—a function of the node u’s state and the state of its neighbors. A step
consists of one or more firings, by sink nodes.

They give three formal numbered assumptions:
(A.1) and (A.2) express the standard “safety” properties: Each node has a function gu, and each
step involves some sinks (at least one) applying their gu functions. Also, the gu functions are de-
fined to increase the height of the node applying the function (according to the ordering on A).

6 Lecture 14a: Link-reversal algorithms, cont’d

Property (A.3) is more complicated. In fact, I think it is stated incorrectly. It’s a sort of live-
ness property. What I think it’s supposed to mean is: If we consider any execution of the algorithm
subject to (A.1) and (A.2), in which some particular node u fires infinitely many times, then hu is
eventually larger than any particular element of A.
(What I think are some mistakes: they don’t specify that we are talking about an execution satis-
fying the previous constraints. Also, this seems to count the increases that u would see if it applied
gu at every step where u was a sink, rather than just the steps where it actually happens to fire.)

They show that the full reversal and partial reversal rules (the concrete versions) are special cases—
that is, they satisfy (A1)-(A3). For this generalization, they prove all the same claims we have
already talked about:
Claim 1. If two nodes u and v both reverse in the same step, then u and v aren’t neighbors.
Proof: As before, because both are sinks.

Claim 2. At each stage, the graph is acyclic.
Proof: This is because of the total ordering of heights.

Claim 3. If the graph is connected, then the algorithm eventually terminates, ending up with
a destination-oriented DAG.
Proof: A proof like the second one I gave last time works—the one that argues that, if an execution
doesn’t terminate, then all the nodes must fire infinitely many times. But now, instead of arguing
about lists and edge reversals, they argue about labels.

Thus, suppose that an execution doesn’t terminate with a destination-oriented graph. Then there
is always some sink, and so firing steps continue forever. Then there must be some particular node
u that fires infinitely many times. It must raise its height each time. That means, by (A.3), that it
raises its height beyond any A element, eventually. But, at each point where u fires, all of its edges
are incoming. Now that means that the heights of its neighbors are all greater than its own. That
in turn implies that all of u’s neighbors must fire infinitely many times. Continuing this argument
step by step in the (undirected) graph, we see that all nodes fire infinitely many times. But this
can’t happen for d, contradiction. QED Claim 3

Claim 4: If a node starts out having a directed path to d, then it will never reverse the direc-
tion of its links.
Proof as before.

Claim 5: Any two executions of the abstract partial reversal algorithm in a connected network,
starting from the same global state (which includes not just link directions but also list information)
are “equivalent”: Each node performs the same number of reversals in both executions, and the
final state is the same.
Proof as before.

BST has results for the general case:
They show that, for any arbitrary deterministic algorithm that fits the BG definitions, the time
and work bounds are Ω(b2). They use this to conclude that the full reversal algorithm is better, in
the worst case. The construction is a similar layer construction to the one for the partial reversal
algorithm, based on layers defined by minimum-length undirected paths to good nodes.

Lecture 14a: Link-reversal algorithms, cont’d 7

2.4 Advantages/disadvantages

Advantages:

• Basing the ordering on elements of a totally ordered set automatically prevents cycles.

• Since this method forms a DAG, not a tree, it can be used to maintain contingency routes in
addition to primary routes.

• Asynchrony allows flexibility in when a node makes its local adjustments, in response to
topology changes.

Practical implementation issues:

• The algorithm requires tight synchronization between neighbors, to make sure the link reversal
happens atomically at both ends (that is, that the increase becomes known to the neighbors
immediately). There is some work required to implement this atomicity.

• It would be nice to have a mechanism to allow resetting of large heights to low values.

Comparison with shortest-paths algorithms:

These algorithms don’t generate shortest paths, just some paths. However, they have multiple
routes; this allows some delay in responding to changes. Only nodes that lose all their paths
to d need participate in the link-reversal algorithms, which means less communication overhead
and more stability. They always guarantee loop-free routes (though not necessarily loop-free
communication—messages can still be chasing around changing routes).

3 Park, Corson TORA algorithm

3.1 Introduction

They propose a link-reversal routing algorithm for real mobile wireless networks. They claim all the
same advantages as GB: Adaptive, efficient, scalable, local responses to changes. They guarantee
loop-free routes always. They also provide multiple routes: this alleviates congestion, and also
means that many changes don’t require any reaction at all. They establish routes quickly. There
is low communication overhead; nodes maintain information only about neighbors. The reactions
to topological changes are local.

They claim it’s especially good for large, dense networks like typical mobile networks—presumably
because such networks will have lots of redundant paths to destinations.

Their work adds two notable features:

1. It’s designed to cope well with partitions, which they believe will be common in ad hoc net-
works. They argue that GB exhibits instability in portions of the network that get partitioned
from the destination:
Example: Two nodes may talk just to each other, separated from everyone else including
d. Then they will keep alternately increasing their labels forever, for no purpose. This is
communication-inefficient.

TORA improves on GB by adding partition-handling; the protocol detects the partition and
erases invalid routes.

8 Lecture 14a: Link-reversal algorithms, cont’d

2. It’s on-demand, creating routes only when needed. Thus, edges can be undirected, as well as
directed one way or the other; undirected means no routes pass through the edge. When new
routes are needed, they are reestablished quickly.

They assume synchronized clocks, but claim that the algorithm would also work (perhaps not
as well) with less synchronized clocks. They use clock values as parts of their height tuples, in
fact, as the highest-order, dominating component. Hence, the name “Temporally-Ordered Routing
Algorithm”.

3.2 Notation and assumptions

• G = (N,L), undirected.

• Nodes have ids.

• Bidirectional communication on all edges.

• Set L of links changes with time.

• Nodes may also fail (and recover?).

• Assume nodes know their neighbors (because of some lower-level protocol).

• They allow a delay in finding out about changes—they don’t require atomic agreement on
neighborhood changes as GB do.

• Assume all transmitted packets are received correctly and in order of transmission.

• Assume when u sends a message, it broadcasts to (received by) all neighbors in its set Nu.

3.3 Basic ideas

We focus on one destination d, as before. There are three functions: Creating, maintaining, erasing
routes.

• Creating routes: A node u initiates establishment of a route to d only if all its adjacent links
are undirected. In fact, route creation basically amounts to assigning directions to undirected
links.

• Maintaining routes: When directed portions of the graph deviate from being destination-
oriented, they do reversal steps to try to restore this property.

• Erasing routes: TORA attempts to detect partitions, and accommodate, by “clearing” all
the links in the portion disconnected from d—that is, making them undirected again.

How exactly they do this is not so easy to follow.

They use 3 kinds of control packets:
QRY, query, for creating routes,
UPD, update, for creating and maintaining routes,
CLR, clear, for erasing routes.

They claim that TORA is actually a member of GB’s general class.

Lecture 14a: Link-reversal algorithms, cont’d 9

TORA uses heights that consist of 3-part reference levels and 2-part increments. A sink node (local
min) may select a new reference level, higher than any previous reference level that already exists
anywhere in the network (a global max). It sets its height to a new height value containing that
reference level. We call this a generate step.

This can cause other nodes to become sinks. Any such node can execute a partial reversal, with
respect to their neighbors that already have the new reference level (don’t reverse the edges to these
nodes). This allows the new reference level to propagate through the network, but only extending
through sink nodes (which are nodes that have lost all their routes). Call this a propagate step.

Any node that was a source before this reaction started (all its edges were outgoing) has to also
adjust its height to make sure it remains a local maximum. For this purpose, it defines a higher
sub-level associated with the new reference level (so its edges to those neighbors having the new
reference level get directed outward). This new level is called a “reflected reference level”. Call this
a reflection step.

The reflected sublevels somehow get “reflected back” to the originator of the new level. If the
originator gets it back from all its neighbors, it has determined that no route to the destination
exists (a partition is detected). Then it can begin the protocol to erase the invalid routs. Call this
a detection step. There is no proof that this works.

3.4 Detailed description

3.4.1 Data types

The labels are 5-tuples: (τ, oid, r, δ, u), where: (τ, oid, r) represents the reference level, and (δ, u)
represents the increment.

Reference level:

• τ is a time (e.g., based on synchronized clocks).

• oid is the id of the node that originated this reference level.

• r is a bit used to divide the reference level into (just) two sublevels; used to distinguish
between the original reference level and its reflected version.

Increment:

• δ is an integer used to order nodes w.r.t. a common reference level; used in propagation of
the reference level (?).

• u is the id of the node itself, a tiebreaker.

• hu, u 6= d, height of node u, initially NULLu = (−,−,−,−, u).
• hd, height of destination, always ZERO = (0, 0, 0, 0, d).

Each node u also maintains hu,v, representing its best knowledge of hv for each neighbor v, ini-
tially NULLv = (−,−,−,−, v). Thus, they explicitly model the asychronous updating of the
neighborhood information, by modeling the local knowledge of the neighbor sets.

Also, node u maintains a link-state array with entry LSu,v for each link (u, v), that is, it monitors
the status of its own adjacent links.
LSu,v is:

10 Lecture 14a: Link-reversal algorithms, cont’d

• UP (directed inward) if both hu and hu,v are non-NULL and hu,v > hu.

• DN (outward), if both are non-NULL and hu,v < hu; or if hu is NULLu and hu,v is non-
NULL.

• UN , if hu,v = NULLv.

Thus, the NULL nodes are considered upstream—their edges are directed outward. (The NULL

values don’t seem to be explicitly ordered with respect to the other values...but the intuition seems
to be that they are higher than the other values.)

New links can be activated by setting initial defaults as above.

3.4.2 Creating new routes

This uses QRY and UPD packets.
QRY : No info (just the destination name)
UPD : Height (label) of the originator of this UPD packet.

Each node maintains:

• RR, a flag saying whether a route is required or not, initially 0.

• time at which last UPD packet was bcast.

• time at which each adjacent link became active.

Each node performs the following:

• If u has no directed links, RR = 0, and u wants a route:

– Bcast QRY; RR := 1.

• When node u receives QRY from v:

– If u has no outgoing links then:
—If RR = 0 then (not already looking for a route, flood the request): Bcast QRY; RR
:= 1.

– If u has at least one outgoing link then (have found a route):
—If hu = NULLu then set hu to minimum label of non-NULL neighbors, adding 1 to
the δ component.
—Bcast UPD(hu).

• When a link becomes active:

– If RR = 1 then: Bcast QRY (that is, include the new link in the flooded search).

• When node u receives UPD from v:

– Update hu,v.

Lecture 14a: Link-reversal algorithms, cont’d 11

– If RR = 1 (which implies hu = NULLu) then (have found a route):
—Choose a new height: Set hu to minimum label of non-NULL neighbors, adding 1 to
the δ component.
—RR := 0;
—Bcast UPD(hu).

– Update LSu,v.

Basically, they seem to be flooding QRY packets until they reach a node that has a route. Then
they update neighbors about latest heights.

3.4.3 Maintaining routes

Done only by nodes u with non-NULL heights. There are several activities:

• Become-NULL:
Precond: Node u has no directed links.
Effect: Set hu := NULLu.

• Generate: Node u detects a failure and defines a new reference level.
Precond: Node u has no outgoing links, due to a link failure, and has at least one incoming
link.
Effect: Choose a new hu, with reference level (t, u, 0), where t is the “time of the failure”,
and where δ = 0.

• Propagate: Node u propagates the highest of its neighbors’ reference numbers, but without
reversing the edges incoming from those neighbors.
Precond: Node u has no outgoing links, due to a link reversal following receipt of an UPD,
and some neighbors have different reference levels:
Effect: Choose a new hu, with the highest of the neighbors’ reference numbers, and with δ

chosen to be smaller than the δ of all neighbors with that reference number. (This keeps the
edges pointing inward, while propagating the highest reference number).

• Reflect : Node u generates the reflected version of a reference number shared by all of its
neighbors.
Precond: Node u has no outgoing links, due to a link reversal following receipt of an UPD,
and the neighbors all have the same reference level, with r = 0.
Effect: Choose a new hu, with the same reference number, but with r = 1, and with δ = 0.

• Detect : Node u detects a partition.
Precond: Node u has no outgoing links, due to a link reversal following receipt of an UPD, and
the neighbors all have the same reference level, with r = 1, and with oid = u. This reference
level originated by u has been reflected and propagated back (with the higher sublevel r = 1)
from all its nbrs. This is supposed to mean that a partition has been detected.
Effect: Set hu := NULLu, and start route-erasure (see below).

In all cases, the node does obvious basic maintenance stuff like updating LS, broadcasting UPD
backets whenever anything changes, and updating hu,v upon UPD receipt.

Whenever u loses an outgoing link that isn’t its last, it just does basic maintenance but doesn’t
introduce new reference levels.

12 Lecture 14a: Link-reversal algorithms, cont’d

3.4.4 Erasing routes

When node i detects a partition (case 4 above), it “cleans up”: sets its heights and neighbors’
heights to NULL, updates LS, and broadcasts a CLR packet, which contains the reflected reference
level.

When u receives CLR from v:
If the reference level in the CLR packet = u’s reference level, it cleans up as above.
If it does not match, u sets the height for each neighbor with the same reference-level as the CLR
packet to NULL and updates the LS entries correspondingly. (This helps clean up.) Also, in this
case, if u thus loses its last outgoing link, it can now do the Generate step of maintenance.

Summary: When a failure causes a node u to lose its last outgoing link, it will re-establish a
route in one pass of the set of nodes affected by the failure, if u is still connected to d. If not
connected, u will detect the partition in 2 passes and all invalid routes will be erased in 3 passes.

Exercise: Can you turn this into time bound results?

3.5 Effects of time errors

Clocks are used to establish temporal order of the link loss events. Logical clocks could also be
used to establish this order. What happens if the logical time order isn’t the same as the real time
order? They claim that the resulting algorithm is still in the BG general class. (Is this obvious?
Maybe because we preserve all event dependencies, it doesn’t matter...) Efficiency could be affected
somewhat. They conclude that it’s good to use clocks that are sufficiently synchronized so that the
time between failures is much greater than the clock error.

3.6 Conclusions

They have no simulation results. But, they do have a table of claimed worst-case analysis results,
for time and communication complexity of many algorithms. This deserves some study.

Possible improvements:

• Over time, the DAG may become less optimally directed than it was initially. (They claim
that initially, the δs give (approximately?) the minimum distance (in hops) to d, but this can
degrade with changes.)

• We could enhance the protocol by periodically propagating refresh packets outwards from
d, to reset the reference level to 0 (?) and restore the meaning of the δs to be the shortest
distances (“Periodic, destination-oriented route optimization”). Such a strategy could also
support correction of corrupted state information (self-stabilizing?). Refreshes should occur
at a low rate, in the background.

