
Massachusetts Institute of Technology Lecture 13
6.895: Advanced Distributed Algorithms April 3, 2006
Professor Nancy Lynch

Point-to-point routing

Readings:
Point-to-point message routing:
Perkins, Royer: Ad hoc on-demend distance-vector routing (AODV).
Chen, Murphy: Enabling disconnected transitive communication in mobile ad hoc networks.
Link-reversal algorithms:
Gafni, Bertsekas: Distributed algorithms for generating loop-free routes in networks with frequently
changing topology.
Busch, Surapaneni, Tirthapura: Analysis of lin reversal algorithms for mobile ad hoc networks.

Next time: Park, Corson TORA paper.
Rao et al. Geographical routing without location info.
Fang et al. GLIDER: Gradient Landmark-based distributed routing.
Fonseca et al. Beacon vector routing.

1 Introduction

We are studying the problem of routing a message from a particular source to a named destination,
in a mobile ad hoc network. The main problem is that we don’t initially know where that named
node is. Also, the network may be changing, due to failures, new nodes joining, and mobility.

Last time we studied Dynamic Source Routing (DSR). Today, we’ll talk about Ad-Hoc On-Demand
Distance Vector Routing (AODV), and (briefly) a little paper proposing a variation that tries to
take advantage of mobility. Then, we will study a particular strategy that traces back to the 80s,
work by Gafni and Bertsekas: link-reversal algorithms. We’ll see how this idea has evolved into
algorithms like TORA that have been proposed for wireless networks.

Next time, we’ll move on to what is sometimes called “location-free routing”, by which they mean
routing without explicit use of geographical information. Instead, these methods use some kind of
substitute for geography.

Next week, we will move to approaches that actually use real location information, such as Geocast-
ing, location-aided routing (LAR), compass routing, etc. After Patriot’s Day, we will also consider
a related problem: Keeping track of the geographical locations of particular nodes (“location ser-
vices”).

2 AODV

2.1 Introduction

AODV can be considered a response to DSR and DSDV (an older, simpler algorithm), arguably
two of the most important ad hoc routing protocols around the time this paper was published.

Both DSR and DSDV have advantages:



2 Lecture 13: Point-to-point routing

1. DSDV doesn’t bloat packets. Source routing algorithms, on the other hand, put the whole route
in packets, adding to their size, increasing the chance of collisions, and reducing throughput.

2. DSR discovers routes only as needed. As an on-demand protocol, storage space isn’t wasted
on little-trafficed nodes, and control traffic overhead is reduced.

Both DSR and DSDV also have disadvantages (just swap and invert the statements above):

1. DSR bloats packets.

2. DSDV discovers routes even if they are not needed.

AODV, in a sense, is trying to combine these advantages while avoiding the disad-

vantages. Notice that the core of DSR’s advantage is that it’s on-demand. The core of DSDV’s
advantage is that it’s distance vector based. AODV, therefore, is an on-demand version of a dis-
tance vector algorithm. Nodes maintain distance-vector based routing tables, and route messages
according to these tables. The tables are populated on an on-demand fashion; next hops are only
added as routes are needed, and eventually timeout if not used or detected as broken.

AODV then gives us the best of both worlds...not to mention that the combination of on-demand
and distance vector approaches reduces local storage space requirements even lower than DSR, as
only next hop entries are needed for each active destination, rather than the whole route. This
combination (no bloat, small local storage, less control traffic) makes AODV more scalable than
DSR and DSDV.

2.2 Assumptions

The assumptions are basically the same as for DSR:

• The network is connected.

• Nodes are willing to “participate fully”.

• Mobility is slower than routing.

• Nodes are in promicuous receive mode.

However, unlike DSR, the network is not assumed to be small. AODV is intended to be scalable.

2.3 Basic Operation

Consider the network in Figure 1. Say that S wants to talk to D and does not have an entry for
D in its routing table. S initiates route discovery by locally broadcasting a route request (RREQ),
which contains the following info: <source addr, source seq, bcast id, dest addr, dest seq, hops>.
The source addr and bcast id uniquely identify this RREQ.

When a node receives this RREQ:

1. If it has already seen this RREQ then ignore it. (You know you’ve seen it before if it the
same source/bcast id as something you’ve seen before.)

2. If you have “relevant” information then “reply”. (Both to be explained soon.)



Lecture 13: Point-to-point routing 3

S

D

A

B

C

Figure 1. Sample network.

3. Else, increment hop count, rebroadcast and record the following:
a. who forwarded RREQ to you
b. its source
c. its destination
d. expiration time

What does “Relevant” information mean (option 2)? If you are the destination, or have a better
route with the same destination sequence number, or a route with a better destination sequence
number, then you have useful information and should reply.

We will discuss what it means to reply in a second. For now, assume no node knows any route to
D. As the RREQ propagates through the network, the information nodes record about whom they
received it from sets up a bunch of temporary reverse pointers (temporary because after expiration
time they are discarded). See Figure 2.

How does a node with relevant information reply to an RREQ? It generates a route reply (RREP)
of the following format: < source addr, dest addr, dest seq, hops, lifetime>.
This is then passed back along the reverse pointers.

These RREP’s are somewhat seperated from RREQs. (Note, they have no broadcast ID). The
basic rule is that for a given <source, dest> pair, you pass an RREP along the reverse pointer for
this pair if and only if you haven’t already passed along such an RREP for a larger destination
sequence number, or the same sequence number with the same or better hop count. This implies
book-keeping about RREPs handled for each <source,dest> pair.

Also, this assumes a single reverse link for a given <source, dest> pair; this is reasonable, since
if you have a reverse link that didn’t time out, then you are on active path between source and
destination. If the source was to send out a new RREQ for this dest, this means the current route
was broken, so you should throw out this information and accept the new RREQ (and accompanying
reverse pointer).

As the RREP passes back (in a unicast fashion), nodes that handle it set up the appropriate forward
pointers in their routing table entry for D. See Figure 3.



4 Lecture 13: Point-to-point routing

Path of nonignored RREQ message.

Temporary reverse pointers set up upon 
receiving RREQ.S

D

A

B

C

Figure 2. Path discovery.

Each routing table entry is indexed on destination, and holds:

1. Next Hop.

2. Number of Hops.

3. Destination sequence number.

4. Active neighbors (the nodes upstream from you, used for local connectivity management).

5. Expiration time.

Entries 2 and 3 are used if new routes are heard; they are used to update the routing table.

2.4 Local Connectivity Management

Let’s shake things up, by having node D move. See Figure 4.

Now, assume A goes looking for D. A will get RREPs from S,B, and D. It will accept D’s, of
course, because it has a better distance sequence number. HOWEVER, B hear’s D’s RREP. This
RREP has a better destination sequence number (and hop count) so B changes its routing table
entry. See Figure 5.

How does C determine its path is broken? Active neighbors are upstream neighbors for this route
(those with reverse pointers to you). You are expected to send a HELLO message every so often
to these active neighbors. If active neighbors don’t hear such a HELLO for a long enough amount
of time (a system parameter) they assume you’re long gone, and propagate back a special RREP
with infinite hop count and one greater destination sequence number. The effect: Anyone who has
not found a more recent route to the destination will remove it from their table. See Figure 6.

If D, on the other hand, had moved far away then C’s infinite RREP would have propagated all
the way back to S, forcing them to rediscover from scratch.



Lecture 13: Point-to-point routing 5

Path RREP follows back to source.

Unused reverse pointers, which eventually timeout.

Forward pointers added to local routing tables.
S

D

A

B

C

Figure 3. Path discovery continued.

2.5 Simulation Results

They evaluated AODV by running it on an event-driven, packet-level simulator named PARSEC.
However, it was not very realistic (they over-simplified the physical layer):

1. Strict range cut-off.

2. Perfect physical carrier sensing with BEB.

3. Collision always detected (losing both messages), if two neighbors broadcast at the same time.

NS-2, for example, is more realistic. It implements 802.11 DCF on top of a radio model that
simulates SNR at any point.

First, they experiment with some parameters; this was not that interesting. Then, they ran some
experiments with 50, 100, 500, and 1000 nodes. These last two are very large compared to most
MANET simulations, and serves as a proof of concept of scalability.

For small node numbers, they got very high ”goodput”, or, roughly, the good bits minus the bad.
They had around 98% for 50-100 nodes. For more nodes got around 72%. At this point up to 25%
of messages were lost to collisions. Collisions are a very important factor with routing protocols.

For some real world AODV results, consider the following experiment and results:

• Approximately 40 people carrying laptops, and moving randomly.

• Playing fields, 225 x 365m.

• Traffic generation: 1200 bite packets, 5.5 packets per stream, 3 seconds between packets, 15
seconds between streams (the numbers were derived from a military application prototype).

• Around 425 bytes per second (modest).



6 Lecture 13: Point-to-point routing

D

S A

B

C
D

Figure 4. Route to D changes.

• Compare to 64 byte packets with delay of 20 msecs between.

• MESSAGE DELIVERY RATIO: 50%.

• Best Latency compared to others tested (ODMRP, APRL, STARA).

• Second best hop count.

• Smallest amount of overhead.

This seems to indicate that fluctuating links are a concern; you might think you are somebody’s
neighbor because you got a msg, but the link quality was bad. Also, control traffic is important
to consider. If you are too aggressive in trying to find good routes, you can actually make things
worse.

3 Distributed Transitive Communication

Previous routing algorithms we discussed assumed a connected network that stayed connected–
only the topology of the connection changed. This paper (Chen/Murphy) wants to assume a more
sparse model. The network is not always fully connected. Two nodes are never guarenteed to be
transitively connected at any instant.

Instead, imagine nodes in clusters, with clusters intermittently connected. The kinds of applications
that are okay in this setting have highly asynchronous communication (think minutes and hours
delay, not milliseconds and seconds). (Don’t use this to run a ssh connection, for example.) This
can be fine to update two military camps about a change in the battleplan for a battle coming up
in a few days.

3.1 Basic Idea

The basic idea is simple: try to pass a message to a node in your cluster that is “closest” to
the intended destination. Figuring out who is “closest” (utility) is the whole trick, and might



Lecture 13: Point-to-point routing 7

D

S A

B

C

Figure 5. A looks for D; B hears better route.

RREP

R
R

E
P

require application-layer information. Also, we will use a low-level routing protocol, like DSR, to
communicate within clusters. Accordingly, they consider this middleware.

Summary: if you have a message to pass on, broadcast a probe to your connected component,
and recipients will test their utility for that destination. If high enough, they will respond (both
broadcasting and response uses low-level protocol like DSR or AODV), and pass message on to
person with best utility.

Basic Algorithm for a node S with a message m to send to D:

FindNextHop(message m)

while(true)

delay(RDI)

broadcast(<m.dest, m.timeOut, m.weights, m.utilityComp,

threshold>).

delay(ResponseTimeOut)

myUtility = localUtility(m)

if \exists response x s.t. x.utility > myUtility then

send(x,m)

break.

Here are some other important pieces:

• If you RECEIVE a PROBE you “calculate utility” (to be explained soon), and if better than
probe threshold, respond to probe originator through unicast.

• If receive a RESPONSE to PROBE, store it for consideration later.

• If you RECEIVE a MESSAGE then if you are destination, pass it to the application, else call
FindNextHop for message.



8 Lecture 13: Point-to-point routing

D

S A

B

C

Figure 6. C detects break, clears entry, propagates RREP.

RREP w/ infinite hop count

3.2 Utility

They defined the following potential utility metrics:
(History-based:)

1) Most Recently Noticed – higher utility if destination noticed more recently.
2) Most Frequently Noticed – higher utility if destination noticed more often.

(Future-based:)
3) Future Plans – assumes the application will tell you the next time it expects to see a certain

host (i.e. by reading a calendar app).
(Status-based:)

4) Power – more power, better utility.
5) Rediscovery Interval – smaller RDI means better chance of discovery of destination or someone

closer. The actual equations are in paper, and not that interesting. In some cases (i.e. power) they
are arguably not well-defined.

The receiver uses the “Weights” component of a probe to figure out how much weight to give each
of these metrics in the sum it calculates. IN ADDITION to these five, they give the sender of the
probe the ability to send its own utility calculation function to take advantage of special, scenario
specific information. If there is a utilityComp function in the probe, we use that, else we use
weighted sum of the five presented before.

There are a couple details. Choosing RDI is important. If it is too BIG, you miss potential
connections, but if it is too SMALL, you create too much traffic. Their solution is to double RDI
after each successful probe. If a new node is discovered, drop back to initial.

How do they ”discover new nodes”? They use hello messages. If a hello reveals a new neighbor:
a) reset RDI, and
b) set a boolean flag in your next HELLO to 1.

If receive a HELLO with flag = 1, do the two steps above.
In order to avoid an infinite loop of RDI resets, we must ignore the next cycle of HELLOs after a
reset.



Lecture 13: Point-to-point routing 9

4 Link Reversal Algorithms

Link state and distance vector algorithms are too expensive to maintain, in the face of network
changes as in mobile ad hoc networks. Dynamic source routing (DSR) is less expensive, since it
operates on-demand, but it still costs communication to flood packets to find a route. It is also
somewhat hard to maintain in a large network, since it requires finding an entire route ahead of
time.

Now we will see another idea, dating back to 1981, which maintains loop-free routes in the face
of network changes, while executing only local operations. The routes are not guaranteed to be
optimal. However, they are always loop-free.

4.1 Overview

The technique was first presented in the classical 1981 paper by Gafni and Bertsekas. It has been
studied and analyzed since then, perhaps most interestingly by Busch et al., in SPAA 2003. It
has also been adapted and elaborated into proposals for practical mobile network routing, most
notably, TORA (Temporally-Ordered Routing Algorithm).

The setting considered is a mobile ad hoc network (in 1981, this was called a “packet radio net-
work”). The network is assumed to be subject to change as described earlier. We construct an
undirected graph, representing a bidirectional neighbor relationship: Nodes must be able to figure
out if they are neighbors at any particular time, and a node that transmits should be heard by all
its current neighbors.

These are rather strong assumptions for a real network. In particular, this is saying that network
changes amount to atomic steps, in which the required communications are guaranteed, and in
which both endpoints of an edge simultaneously become aware of the correct status of the edge.
Q: How can we achieve these assumptions in a real network? (They have some comments at end
of paper about using an agreement protocol to do this.)

However, it seems like the algorithms still make some sense with other versions of these assumptions,
e.g., that the network eventually, or periodically, stabilizes so that changes stop and the correct
information is known everywhere. The TORA algorithm, in fact, uses weaker assumptions, allowing
a discrepancy in time between when two nodes learn they are, or are not, neighbors. For now, for
studying Gafni-Bertsekas and Busch, we will accept the stronger assumptions.

In the scenario considered, all the nodes in the dynamic network want to establish and maintain
routes to a single destination node d. They do this by examining their neighbors’ states and
applying a simple function to their own states (we assume they can do this atomically). The result
is that, at all times, each edge is oriented in one direction or the other (TORA also allows some
edges to exist without being oriented). The orientations are arranged so that the entire structure
never has any directed cycles. That is, the graph with its directed edges forms a DAG (directed
acyclic graph). It need not be a tree—it can have multiple paths between the same two nodes. In
fact, the papers feature this possibility, saying that it can provide redundant routes for forwarding
messages.

The fact that the graph is always acyclic does not mean that all directed paths are always directed
toward the destination d. Some paths can lead nowhere—dead-ending in a sink node that isn’t the
destination d. The problem is, basically, to start with a DAG, and modify it by simple local rules
to end up with a new DAG in which all the edges are parts of routes directed towards d.



10 Lecture 13: Point-to-point routing

The algorithms in the papers are described in two ways. First, they are described in terms of
explicit link directions, guaranteed always to form a DAG, and explicit link reversals—changes in
direction of some of the links. The link reversal operation must be designed carefully so that it can
never create a cycle. For example, one trick that appears in GB is that, when a node performs a
reversal, it simultaneously makes all its adjacent edges outgoing. Clearly these new edges cannot
be part of any cycle, so such an operation cannot create a cycle. (Nobody had edges into this
node.) However, this trick doesn’t suffice to explain why all their algorithms guarantee acyclicity.

Second, they describe them in more concrete terms, using heights associated with the nodes (not
the edges), hu with node u. Heights are chosen from some totally-ordered set, and, at any point
in time, all the heights are different. Link (u, v) is defined to be directed from u to v provided
that hu > hv . Think of a ball rolling downhill from u to v in the direction of the link, from higher
to lower height. Obviously, if unique heights are used to define orientations of edges, the digraph
must always be acyclic.

Now we will proceed to the algorithms, generally following GB but with some material extracted
from Busch et al. (BST) along the way, since BST present some of the same ideas with clearer
definitions and proofs. There are three algorithms in GB: Full reversal, partial reversal, and a
general height-based algorithm.

4.2 Gafni-Bertsekas algorithm assumptions

GB describe their three algorithms for a synchronous model, in which all the nodes take their steps
in synchronous rounds. Generally, they are considering the case where the network is stable, but
the digraph initially might not be directed toward d, that is, might not be “destination-oriented”.
In this case, their job is simply to reorient the edges (eventually) toward d.

The same algorithms also make sense in adaptive settings, where nodes and edges get added and
removed. You have to be careful with initialization conditions for this analysis; look at the Busch
paper. This analysis focuses on the stable case.

The following basic property of DAGs with a destination node d is useful:

Lemma: A DAG G is not destination-oriented iff it contains a sink node other than the desti-
nation d.
Proof: Obviously if it has such a sink node, it’s not destination-oriented.
Now suppose it it not destination-oriented. Then there is some node u from which there is no
path to d. If u is a sink we are done; otherwise, follow an outgoing edge from u. Keep following
such edges until we reach a sink. We must eventually reach one because there are only finitely
many nodes and we can’t have any loops in a DAG. The resulting sink isn’t d since we assumed G
contains no path from u to d. QED Lemma

4.3 The full reversal algorithm

This is BG’s simplest algorithm. It’s presented first abstractly, in terms of directed edges and
reversals, and then concretely, in terms of heights.



Lecture 13: Point-to-point routing 11

4.3.1 Abstract full reversal algorithm

Assume we have a DAG. At each step, if there are any nodes 6= d that are sinks (have no outgoing
edges), then one or more of these reverses the directions of all its incoming links. Sometimes we’ll
refer to a node reversing its links as “firing”.
Claim 1. If two nodes u and v both reverse in the same step, then u and v aren’t neighbors.
Proof: Obvious, since they are both sinks.

Claim 2. At each stage, the graph is acyclic.
Proof: We argued this above—more formally, we argue by induction on the number of steps. No
step can create a cycle, because at each step, each node u that fires reverses all its edges to point
outward. None of these edges can then be part of a cycle, since there are no edges into u. So the
step could not have created a cycle if none existed before.

Claim 3. If the graph is connected, then the algorithm eventually terminates, ending up with
a DAG that is destination-oriented (all paths lead to d).
Proof: (This is a new, easy proof, not in GB, though related arguments are used in Busch et al.
to prove an upper bound on the number of steps.) Define, for each node u, the “reversal distance”
rd(u) to be the minimum, over all undirected paths ρ from u to d, of the number of edges on path
ρ that are oriented in the wrong way (that you have to traverse backwards).
Define a metric for the entire state: rd = Σurd(u).
Clearly, in any state, rd ≤ b2, where b is the number of “bad” nodes—those that don’t have directed
paths to the route. That’s because we have to consider, in the sum, terms for only bad nodes u
(the other terms would be 0). For each such node, the smallest number of reversals is at most equal
to the number b of bad nodes—after traversing at most that many links, you would have to reach
a “good” node, which does have a directed path to d, and then there are no further reversals.
Now we argue that every step reduces this metric. Why? At each step, at least one node fires. If
more than one does, the effect is just as if they fired one at a time (since no two can be neighbors—
all must be sinks). So let’s just consider the case where a single node u fires.
This node u has rd(u) decreased by 1: Any path it followed before, it can still follow after the
reversal, but now one fewer edge has to be traversed in the wrong direction. Moreover, no other
node v has rd(v) increased: If a path from v went through u before, it had to traverse an edge in
and an edge out, first in the right direction and then in the wrong direction. After the reversal,
it still can follow the same path, with the same cost: now traversing the first edge in the wrong
direction and the second in the right direction.
It follows that after at most b2 steps, this terminates with a destination-oriented graph.

Claim 4: If a node starts out having a directed path to d, then it never fires.
Proof: We prove this by induction on the length k of the shortest directed path from a node v to
d. For length k = 0, we have v = d, and d never fires.
Now consider a node v with a (shortest) directed path of length k + 1, assuming the result for k.
The first node along that path in the direction of d has a shortest path of length at most k. So by
the inductive hypothesis, it never fires. However, then v can never become a sink, since it always
has an outgoing edge, so never fires.

Let’s look at an example, Figure 7. Note the order of reversal steps for it:
1. node 6 (only)
2. node 5
3. nodes 4 and 6



12 Lecture 13: Point-to-point routing

4. nodes 3 and 5
5. nodes 2, 4, and 6
6. nodes 1, 3, and 5
7. nodes 2, 4, and 6
8. nodes 3 and 5
9. nodes 4 and 6
10. node 5
11. node 6

Finally, another interesting result about this algorithm proved by GB:

Claim 5: Any two executions of the full reversal algorithm in a connected network, starting from
the same global state (here, this just means the link directions) are “equivalent”, in the sense that
(from the Busch paper):
Each node performs the same number of reversals in both executions, and the final state is the
same.
Proof: (This appears in the BG appendix, and is also proved in the Busch paper.) The basic idea
is that nodes that are enabled to fire in the same step aren’t neighbors, so the order in which they
perform their steps doesn’t matter. In fact, it’s all the same if they fire one per synchronous step.
So WLOG assume that two executions ρ and ρ′ from the same initial state both involve only one
firing per step.
Next, they consider “canonical form” executions, in which, at each step, only one fires, and more-
over, it’s a particular one—the one with the minimum index among those that are enabled to fire.
Then, starting from any execution with only one firing per step, they can play enough commu-
tativity games, reordering steps so they wind up with an equivalent “canonical form” execution.
So if they start with two different executions ρ and ρ′, they can put each in canonical form while
maintaining equivalence. However, from a given initial state, there is only one canonical form
execution—so ρ and ρ′ must also be equivalent.

Busch et al. upper bounds:

Recall above I showed that the number of steps is O(b2), where b is the initial number of bad nodes.
Busch et al. prove this. This turns out to be not just an upper bound on the number of steps
(time measure) but also, on the total number of reversals (work measure). It is basically the same
argument.

Busch et al. lower bounds:

They also give example graphs and initial settings for which the amount of work, and the amount
of time, are Ω(b2). There are two examples, because the one for work is simpler than the one for
time.



Lecture 13: Point-to-point routing 13

See Figure 8, for the basic setup. They divide the initial graph into “layers” numbered 1,2,3. The
nodes in layer k are those that have a path to d with k edges directed the wrong way, but no path
to d with only k−1 incorrectly-directed edges. All these nodes are bad nodes, in the initial digraph.

They prove the key Theorem 4.7, asserting that each node in layer Lk must fire k times before it
becomes a good node. To prove this, they consider an equivalent canonical execution in which, first,
every bad node, in every layer, fires once. The result keeps all the portions of the DAG internal to
all the layers the same as before, turns around the arrows beween d and Layer 1, but keeps all the
other between-layer arrows pointing the wrong way, as before. In particular, it turns all the nodes
in Layer 1 into good nodes, but all the others remain bad. Then they repeat the argument, thus
getting k firings for the Level k nodes. Since this holds for a canonical execution, it works in all
executions.

To get the work bound, see Figure 7. A series of “layers” each containing exactly one node, with the
edges pointed the wrong way, away from d. By Theorem 4.7, each node in Layer k must perform
k reversals; this gives the Ω(b2) bound on work.

For the lower bound on time, they use the digraph in Figure 9. Here, the last layer is big—it
contains half the nodes. They form a clique in the undirected graph, which are linearly ordered
in the initial digraph. Again BST uses Theorem 4.7 to see that all the nodes in the last layer
k = b/2 must fire at least (approximately) k times. But now, note that all these must be done
sequentially—since the nodes form a clique, no two can be sinks at the same time, so they cannot
fire concurrently.



14 Lecture 13: Point-to-point routing

4.3.2 Concrete full reversal algorithm

We have already managed to present a good portion of the algorithms. in BG and results in BST,
in terms of just the abstract version of the full reversal algorithm. But BG also have a concrete
version of this algorithm:
Associate with each node u, at each time, a pair (αu, u). Here, u is the node’s uid (and a tiebreaker),
and αu is a nonnegative integer sequence number. We assume that these pairs are totally ordered
lexicographically. Initially, the pair for u is (0, u). Call this pair the height of node u.

The concrete algorithm interprets these values as follows:
An edge (u, v) is said to be directed from u to v iff (αu, u) > (αv , v), that is, if the height hu of u
is greater than the height hv of v. Since these pairs are ordered lexicographically (and are globally
unique, because of the second components), this immediately implies absence of cycles. Such an
assignment of pairs can be defined initially (based on a topological sort of the DAG).

Now, each node u, to reverse its edges, simply sets αu to be maxv∈Nu
αv + 1.

They observe that this implementation faithfully emulates the abstract algorithm described earlier.
All the results I described above carry over to this version too, without any new proofs needed.

4.4 The partial reversal algorithm

4.4.1 Abstract partial reversal algorithm

This is another special case algorithm, a bit more complicated than the full reversal algorithm.
Again, only sinks can reverse links. Now, however, they needn’t reverse all their edges, only some
subset.

We have to be careful—we can’t allow an arbitrary subset, or we could create cycles where there
were none previously: consider nodes d, u, v, w, with directed edges (u, d), (u, v), (u,w), (v, w). This
has no cycles. We can see that w is a sink. If we could reverse just one of its edges—in particular,
(u,w)—we would get a cycle.

GB Partial reversal: Each node u 6= d maintains a list of its neighbors v that have “fired” since
the last time u fired. Initially, all these lists are empty. Then at each step, some set of sinks fire.
For each such sink u:
If there exists at least one neighbor of u that isn’t on u’s current list, then u reverses the directions
of exactly the links (v, u) for which v isn’t on the list and empties the list.
If there is no such neighbor, that is, u’s list contains all of Nu, then u reverses all its incident edges.
In either case, every node v such that (v, u) gets reversed adds u to its list.

We have the same claims as before:
Claim 1. If two nodes u and v both reverse in the same step, then u and v aren’t neighbors.
Same argument as before.

Claim 2. At each stage, the graph is acyclic.
Proof: Now we can’t use the same argument as before, because we might not be reversing all the
edges, and hence might create a cycle.
To prove this solely in terms of the abstract formulation, we need some new invariant. (E.g., for
any node u, none of its listed neighbors is reachable by a directed path from any of its unlisted
neighbors??? Can this be proved by induction. It seems so. Having this seems to allow a proof of



Lecture 13: Point-to-point routing 15

acyclicity. LTTR.)

Claim 3. If the graph is connected, then the algorithm eventually terminates, ending up with
a DAG that is destination-oriented.
Proof: The argument given above doesn’t work. The following proof of termination (without any
time bound) is new, though inspired by the proof of Lemma 1 in BG.
Suppose that an execution doesn’t terminate with a destination-oriented graph. Then there is
always some sink, and so firing steps continue forever. Then there must be some particular node u
that fires infinitely many times.
We know that, at each point where u fires, all of its edges are incoming. Consider three times when
u fires; we will show that in between times 1 and 3, every neighbor of u fires at least once. Consider
a particular neighbor v ∈ Nu.
Case 1: u reverses the edge to v at the second firing.
Then v must fire between u’s second and third firing in order to make u a sink again.
Case 2: u does not reverse the edge to v at the second firing.
Then v must be in u’s list at the beginning of the second firing. But u empties its list after its first
firing. So, to get onto u’s list by the second firing, v must fire between u’s first and second firings.

Thus, since u fires infinitely many times, so do all of its neighbors! Continuing this argument step
by step in the (undirected) graph, we can conclude that all the nodes fire infinitely many times.
But this can’t happen for d, a contradiction. QED Claim 3

Exercise: Can you get a time bound from this, by introducing a suitable metric?

The proof of Lemma 1 in BG is actually for their general algorithm. Also, it requires a spe-
cial hypothesis (A.3) (more on this below). BST do prove termination here, by proving time and
work bounds; however, these are stated and proved in terms of the concrete version, below. There
are also some funny issues about initialization, as you will see.

Claim 4: If a node starts out having a directed path to d, then it will never reverse the direc-
tion of its links.
Proof as before.

Claim 5: Any two executions of the abstract partial reversal algorithm in a connected network,
starting from the same global state (which includes not just link directions but also list information)
are “equivalent”: Each node performs the same number of reversals in both executions, and the
final state is the same.
Proof as before.


