
Massachusetts Institute of Technology Lecture 11
6.895: Advanced Distributed Algorithms March 20, 2006
Professor Nancy Lynch

Network-Wide Broadcast

Readings:
Bar-Yehuda et al. papers
Kowalski-Pelc
Kushelevits-Mansour
Livadas-Lynch

Next time:
Point-to-point message routing:
Johnson, Maltz: Dynamic Source Routing (DSR)
Perkins, Royer: Ad hoc on-demend distance-vector routing (AODV)
Hu, Johnson: Caching strategies for on-demand routing protocols
Chen, Murphy: Enabling disconnected transitive communication

1 Introduction

Continuing coverage of the problem of broadcasting a message from a known source i0 to all nodes
in a network.
Network is modelled as a connected undirected graph, in which there is an edge between two nodes
(they are neighbors) iff they can communicate directly via single-hop broadcast.

Use a strong collision model, which I called Model A: If two or more neighbors of a node transmit,
it sounds like silence.
Also introduced Model B, in which this situation can result either in silence, or one of the messages
being correctly delivered.

Last time, we covered only the first Bar-Yehuda paper: BGI-1:
1. Upper bound, randomized:
For any ε, a randomized protocol achieving bcast in O((D + log(n/ε)) log n) slots, with probability
at least 1− ε, where
D = max distance between source and any other node,
n = total number of nodes in the network.
Works for both Model A and Model B.

2. Lower bound, deterministic:
Any deterministic bcast protocol requires Ω(n) slots, even if diameter is constant.
But (caution) this holds just for Model B—with the weaker collision assumption.
So, they claim that they have shown an exponential gap between randomized and deterministic
protocol, in Model A, but this doesn’t show it—that has been shown (much more recently) by
Kowalski-Pelc.

2 Lecture 11: Network-Wide Broadcast

Today we will continue with the rest of the material, starting with the other Bar-Yehuda pa-
per: BGI-2:
3. Randomized algorithm that allows emulation of any algorithm that is designed for a single-hop
radio network with collision detection, in a multi-hop network with no CD, while keeping the costs
reasonably bounded.

4. Application of this to leader election.

Then Kowalski-Pelc, briefly:
5. Upper bound, deterministic:
Having pointed out that BGI-1’s lower bound proof is incorrect for the stated model A, they prove
that, in fact, in the particular counterexample networks used in BGI-1, there is a sublinear (log n)
algorithm, for model A.

6. Upper bound, deterministic:
They generalize the algorithm above to get sublinear time algorithms for all graphs of small max
distance D.
They prove this in two stages: first, for D = 2, and then for any case where D = o(loglogn).
The second of these is technical enough that we will cover the first only. It seems to contain the
key ideas.
Open question: Can we get a sublinear time deterministic algorithm for all graphs with sublinear
max-distance?

7. Lower bound, deterministic: (This is very hard.)
They construct a new class of graphs, of max distance 2, in which every deterministic bcasting
algorithm requires time Ω(n1/4) on these graphs.
When combined with known upper bounds for randomized algorithms (like that of BGI-1), this
yields the desired exponential gap between randomized and deterministic.

Kushelevits, Mansour
They focus on the randomized case.
8. Lower bound, randomized.
Then show an Ω(Dlog(n/D)) lower bound on the expected time to complete bcast, for randomized
algorithms.

2 Wrap-up on BGI-1

2.1 Randomized broadcast algorithm

Uses Decay subroutine.

I described the synchronization slightly incorrectly in class:
Each node executes Decay t times, but synchronized with other nodes’ executions of Decay.
That is, each node groups its slots into (synchronized) batches of k slots (that’s the time for one
execution of Decay).
After getting a message, waits for the next beginning of a batch of k.
(Last time I was confused about when they synchronize.)

Lecture 11: Network-Wide Broadcast 3

There is also some confusion in my notes, and in class, about two kinds of “truncation”.
Now I use “truncation” to express simply cutting off Decay after k rounds.
I use “stopping” vs. “non-stopping” to indicate the distinction between the real algorithm in which
each node runs Decay for t rounds and the version where they all run Decay forever.
In any case, I still can’t see how to paste together Lemma 2 and 3 to get Theorem 4. Maybe you
can help.

2.2 Linear lower bound, for deterministic case

We basically finished the lower bound too, but without pointing out exactly where the error ap-
peared in the proof, that is, where they needed to use Model B (with weaker collision assumptions)
rather than Model A.
Errata for BGI-1: from a web page indicated in KP02, by following a pointer to a useful 5-page
writeup.

2.2.1 Overview

Where is the error?
It’s buried in the proof of Lemma 7, which shows how to get from the Abstract model to the Hitting
Game.
This only appeared in the Appendix, and in too little detail to see the mistake.
The proof in BGI-1 is still (apparently) correct, for Model B.

An afterthought: Actually, they say they like Model B better than Model A anyway, since it
assumes less about the network.

Q: Does their randomized algorithm work in Model B? Seems so.

2.2.2 Technical details

The change in assumption about collision behavior causes changes in the three models in the paper:
the original, the Restricted, and the Abstract.

Definition 1 (p. 16): Change in Property 3:
Node guaranteed to receive a message if exactly one transmits, as before.
But may also receive if more than one transmit.

Definition 2 (p. 18) (Restricted protocols):
Same change here (but implicitly, since this model is defined only by restricting the activity of the
source and sink in the general model.

Definition 4 (p. 19) (Abstract protocols):
Change in Property 2: Again, add the possibility that a receiver might receive a message even
though more than one nbr transmitted.

They claim that the constructions that reduce to this point are still OK, with these changes.

4 Lecture 11: Network-Wide Broadcast

On the other hand, Lemma 7 works for the revised models, not the original.
Since the proof in BGI-1 didn’t include enough details to tell, they fill in more details in the errata
note.

Detailed Proof of Lemma 7 (for weaker collision assumptions):
Describes how to use a (worst-case) t-round (slot) bcast strategy for the abstract model to yield a
2t-move strategy for the Hitting Game.
Each round in the protocol is used to determine two moves of the game.
Referee answers in the game are then used to determine the outcome of the communication round
in the protocol.

The problem is that, the way the referee answers determine these outcomes has to be consis-
tent with what is allowed in the Abstract Model.

So, fix some abstract protocol A.
Then (recall), each node’s decision of whether to transmit is a function of:
—Its own id,
—Its S-indicator bit (saying if it’s in S or not), and
—The global history so far.
This decision is expressed as a predicate π.

Recall: history is a sequence of Pi, each of which is either the id of a unique node that trans-
mitted alone at slot i or ⊥.
Each round of the abstract protocol is turned into two moves in the game, which consist of two
sets—T 1

i and T 0
i , which I defined last time.

In that order.
Recall T 1

i = nodes that would send if they are in S, based on history so far; T 0
i = nodes that would

send if they are not in S, based on the history so far.

Now consider the Referee’s responses, defined as usual:
Win if M ∩ S is a singleton, respond x if M ∩ S̄ = {x}, otherwise ⊥.
If the game wins, we declare that abstract protocol A is also finished.

Otherwise, we need to specify the behavior at the round in question, in A—specifically, what
messages are delivered to whom.
The rule they use is:
–If the second referee answer (to the query for T 0

i) is a singleton {x}, that is, if T 0
i ∩ (̄S) = {x},

then deliver just the message from x.
Otherwise deliver nothing.

Now the key point: Is this delivery rule consistent with the requirements of the Abstract model?
The answer is no for Model A, but yes for Model B.

Why yes for Model B?
Case 1: We do deliver a message (from x) in A.
Show we are allowed to do this, according to the rules of the abstract protocol model.
The actual transmitters, in step i of A, are (T 1

i ∩S)∪ (T 0
i ∩ S̄), that is, the nodes who are in S and

whose rule says they would transmit if they are in S, plus the nodes that are not in S and whose

Lecture 11: Network-Wide Broadcast 5

rule says they would transmit if they are not in S.
Note that this set does contain x, because the second set in the union does.
However, x need not be the only transmitter.
But Model B allows this delivery anyway.

Case 2: We don’t deliver any message in A, and the broadcast is not completed.
Show we are allowed to do this, according to the rules of the abstract protocol model.
In this case, it must be that:
–T 1

i ∩ S is not a singleton (because the move for T 1
i would then have won the game), and

–T 0
i ∩ S̄ is not a singleton (because then the message would have been delivered).

So, the union (T 1
i ∩ S) ∪ (T 0

i ∩ S̄) is also not a singleton. (Think about it.)
Which means Model B allows us to not deliver a message.

OK, so we can translate the responses back into allowable message deliveries in A.
Now, note that, if a run of A completes within t rounds, the corresponding sequence of 2t Hitting
Game moves will win.
Thus, if A always finishes in t rounds, the corresponding sequence of Hitting Game moves always
(that is, for any S) finishes within 2t moves.
QED Lemma 7

3 BGI-2

This paper presents an efficient randomized emulation algorithm, to emulate any algorithm for
a single-hop network with collision detection on a multi-hop network with no collision detection.
Each step of the single-hop network is emulated by O((D + log(n

ε))log∆) rounds of the multi-hop
network, and succeeds with probability ≥ 1− ε.
They also show how to emulate polynomially many steps while maintaining a probability of failure
≤ ε.

Corollary: By emulating Willard’s leader election algorithm, they show an efficient randomized
algorithm for leader election in a multi-hop network.

3.1 Introduction

They aim to define different models for wireless networks, and show that, in a sense, they are all
equivalent.

The first model presented is the “single-hop” model. This is the model used by a single segment of
an Ethernet network. It has the following characteristics:

1. All processors share one channel.

2. Synchronous rounds (slots).

3. In each round:

• If 1 sends, all receive it.

• If 0 send, no one receives anything (of course).

6 Lecture 11: Network-Wide Broadcast

• If ¿1 send, all receive special collision notification c (Collision Detection (CD))

Next, they talk about the “multi-hop” model. This is similar to the networks we’ve been discussing
in this class. The essential characteristics are:

1. Arbitrary connected graph, as opposed to complete graph from single-hop.

2. Synchronous rounds.

3. In each round:

• Each processor can choose to be either a transmitter or receiver.

• A processor receives only if it’s a receiver.

• If it’s a receiver, then:

– If 1 nbr sends, it receives the msg.
– If ¿1 nbr sends, it may receive one of the msgs, detect the collision, or receive

nothing. Note that this is the same as Model 2 presented in BGI-1 and the errata.
Receivers cannot distinguish between the case where nothing was sent, and the case
where a collision simply resulted in silence.

4. Don’t require uids.

When designing protocols for multihop networks, it can be difficult to overcome the lack of CD and
the challenges of unknown topology. They suggest designing algorithms for the Ethernet model,
and then emulating them to get protocols for multihop. This may not be perfectly efficient, since
the emulation adds some overhead, but it may be simpler than trying to design a distributed
algorithm. Depending on the efficiency requirements of your application, this methodology may
well be perfectly acceptable.

The randomized emulation presented here runs in O((D + log n
ε)log∆) slots. Notice that this is the

time needed to emulate one round, and is essentially the same as the bound on the broadcast time
from BGI-1. The emulation scheme uses the two primitives from BGI-1: Decay and Broadcast.

Recall that Decay allows each processor to receive, with probability ¿ 1/2, a message sent by one
of its neighbors, regardless of the number of neighbors that want to send it a message.

Broadcast makes use of Decay, and behaves exactly as described in BGI-1. The only difference here
is that multiple sources may be transmitting at once. The bound given applies to the probability
that everyone receives SOME message.

3.2 The Emulation of a Single Round

The emulation procedure trys to emulate one round of the Ethernet model in multiple rounds of
the multi-hop model. The emulation proceeds in three phases:

1. Propagation: All initiators choose random tags and Broadcast the message they wish to send.
Everyone remembers the first message they receive (initiators always hear their own message
first)

Lecture 11: Network-Wide Broadcast 7

2. Detection: The goal of this phase is to implement an abstract CD mechanism. This phase
attempts to detect when there is more than 1 initiator. If there is more than one initiator,
there must be two different tags in the system, since each message was associated with a
randomly chosen tag. Moreover, somewhere, two different tags must appear at neighboring
nodes. Basically, the nodes then compare tags with their neighbors. They do this by system-
atically considering successive bits of the tags. Each check takes 2log∆ rounds. For the i-th
bit of the tag, all nodes which have a 1 for that bit become transmitters, using the Decay
primitive. All other nodes become receivers. If any node actually receives a message (ie,
functioned as a receiver when some other node was transmitting), then the two nodes have
different tags, and a collision occured. Any node receiving a message sets a flag indicating
that a collision was detected.

3. Notification: This phase informs all nodes if a collision occured. Every node that detected
a collision in the previous phase sends a Broadcast of some standard collision message using
failure probability ε

3 . Any node receiving this message knows a collision occurred. All nodes
receive this message with high probability.

3.2.1 Analysis

Now that we’ve seen the algorithm for emulation, let’s try to analyze it and validate BGI’s claims.

Lemma 1: Assuming that the propagation phase succeeded (everyone received at least one mes-
sage):

1. If there was a single initiator, then after the detection phase, everyone has the right message
and no conflicts are detected.

2. If there is more than one initiator, then with probability ≥ 1− ε
3 , at the end of the detection

phase, some vertex has discovered the conflict.

Proof: (1) is obvious. If only one person tried to send, everyone will hear it correctly. This is the
result from BGI-1.

(2) follows simply. Since the network is connected, we know that there are two adjacent nodes
which heard different messages, which means that they have different tag. For every bit i, the two
tags differ with probability 1/2. This means that one of the nodes will detect it with probability
1/2 at round i. In other words, someone detects the collision at round i with probability 1/4. Thus,
the probability that a collision occurred but was not detected over the k rounds is ≤ (1− 1

4)k. k is
defined to be

⌈
2.5log ε

3

⌉
, which leads to the probability of a collision not being detected being ≤ ε

3 .

Lemma 2: The entire protocol requires (2 + o(1))Bε rounds to execute, where Bε is defined to be
O((D + log(n

ε))log∆). This simplifies to simply O(Bε).

Proof: The Propagation and Notification phases simply consist of running the Broadcast primitive,
which executes in O(Bε) time as shown in BGI-1. The Detection phase consists of k iterations of
Decay, where each iteration takes 2 log ∆ rounds to complete. Since k =

⌈
2.5log ε

3

⌉
, the total time

for the algorithm to complete is dominated by O(Bε), and the Lemma holds.

Now we combine Lemmas 1 and 2 to get Theorem 1: If there is a single initiator, then with
probability ≥ 1− ε

3 , everyone receives its message. If, however, there are more initiators, then with
probability ≥ 1− ε, everyone detects a conflict.

8 Lecture 11: Network-Wide Broadcast

Proof: For any number of initiators, the Propagation phase succeeds in disseminating the message
everywhere with probability ≥ 1− ε

3 , because it uses the Broadcast primitive. With more initiators,
the Detection phase succeeds with probability ≥ 1 − ε

3 . The last possible point of failure is the
Broadcast in the Notification phase. Since this failure is bounded by ε

3 , the theorem holds.

Based on Theorem 1, this algorithm provides successful emulation. In other words, if possible,
it delivers the message. Otherwise, it detects a collision. Of course, this is all with some high
probability, not guaranteed.

3.3 A side issue: Implementing a CD mechanism in arbitrary multi-hop net-
works

A side issue: BGI present a method for implementing a CD mechanism for a multi-hop network
directly, without turning it into a single-hop network first. The algorithm they use is as follows:

1. Any node wishing to transmit selects a random tag.

2. All transmitters perform Decay(m,tag) k times.

3. Any node not transmitting listens, and detects conflict if it hears 2 msgs with different tags.

4. Receivers remember the first message they hear.

This can be shown to guarantee collision detection at the receiver with high probability. (But they
don’t actually show it...)

This method is for having receivers detect collisions. Most models assume that the transmitters
are detecting the collisions. Essentially, they do two rounds. The first round uses their method as
described above. They then have all receivers who detect collision broadcast a message. BGI claim
that in the second round, the original transmitters either receive an explicit collision report, or else
detect a collision. This isn’t really obvious, since it might be possible not to hear anything. If two
neighbors of the original transmitter both send collision reports, these could collide. Remember that
the original definition mentions that a collision might not be distinguishable from no transmissions
at all. BGI don’t address this, and it makes me somewhat nervous, seeing as this was basically the
error from the first paper. . . .

3.4 Emulating an Entire Algorithm

All they do here is choose ε cleverly. They let ε’ be the probability of error for a single round. This
number is then equal to ε

t , where t is a known upper bound on the number of rounds. Thus, for t
rounds with probability of error ε’, the probability that the algorithm succeeds is (1− ε′)t > 1− tε′.

If they don’t know an upper bound, they can adapt by decreasing epsilon sufficiently at each step,
so that the total error probability stays bounded. The analysis here is on page 8/9 of the BGI-2
paper, together with Theorem 2 which pulls the whole thing together. Basically, Theorem 2 bounds
the time taken to emulate any Ethernet algorithm.

Lecture 11: Network-Wide Broadcast 9

3.5 Applications and Conclusions

As an example, they assert that Willard’s Ethernet algorithm for leader election can be run in a
multi-hop network. Willard’s algorithm uses collision detection, and elects a leader in O(log log n)
rounds. Thus, BGI’s emulation scheme leads to a O(Bε log lon n) algorithm for leader election on
multi-hop networks without CD mechanisms.

Limitation of the approach: It requires global synchronization for every round of the emulated
algorithm. This is a consequence of the slotted notion of time used the algorithms. This won’t be
efficient for distributed algorithms with a “local” flavor, (e.g., the topology control algorithm from
Li and Halpern). If global synchronization is not practical, this emulation scheme will no longer be
a reasonable approach.

4 Kowalski, Pelc

After noting the error in BGI-1, they decided that they in fact like Model A of that paper—collisions
result in no info (guaranteed).
Enough to invest a lot of time developing new algorithms and lower bounds for the same model.

Results:
1. They show that the BGI-1 result is in fact false in model A, by giving an algorithm that bcasts
in log(n) time on all of the BGI-1 graphs.
2. They generalize this to sublinear time for all graphs of small diameter.
3. They construct a new class of graphs, of diameter 4, such that every deterministic bcasting
algorithm requires time Ω(n(1/4)) on these graphs.
4. Combining this with the randomized algorithm from BGI-1 does yield an exponential gap be-
tween deterministic and randomized algorithms for bcast, in model A—they are now considered
the first to obtain this.

4.1 Introduction

Same as Model A in BGI-1:
Steps (slots, rounds)
In every step, each node decides to be either a transmitter or a receiver (or inactive).
Node receives a message iff it is a receiver and exactly one of its nbrs transmits.
Deterministic

Nodes have uids, which they assume to be from the set {1, ..., r}.
The nodes know r.
r is polynomial in the actual number n of nodes.
Nodes know their own ids and the ids of their neighbors.

For lower bounds, assume n itself is known.

Related work: Nice discussion
BGI papers, Kushelevits-Mansour.
KP results also invalidate another lower bound, by Hwang

10 Lecture 11: Network-Wide Broadcast

Other papers that studied the problem in deterministic setting where nodes know their own ids
but not the ids of their neighbors; yields linear upper and lower bounds.
Some papers that assume the entire topology is known.

4.2 Logarithmic broadcasting in BGI networks

They discuss the BGI-1 error.
Here, they describe the flaw in a different way from the errata note: They say that the lower
bound works for oblivious algorithms, where the nodes can’t change their decisions about whether
to transmit based on past history.
But they also say that the proof is correct in the other communication model, model B, presumably
without the obliviousness restriction.
The errata note explains why the oblivious restriction is OK...

Then they show the result itself is wrong, by exhibiting an O(logn) algorithm (for the specific
graphs in Cn.

Main idea of algorithm:
Simulate collision detection for some nodes.
For these graphs, it’s enough to simulate collision detection at the source only.
For other networks, they will need to do this for other nodes as well.

Uses subroutine:
ECHO(i, A), where A is a set of nodes at layer L1:
1. Every node in A transmits its id.
2. Every node in A ∪ {i} transmits its id.

This leads to 3 possible effects at the source:
Case 1: Message received in step 1 and none in step 2:
Then, because of the very strong collision assumptions, the source knows that A contains exactly
one element, and moreover, it knows who it is.

Case 2: Message received in step 2 and none in step 1:
Then the message must come from i. The source knows that A = ∅.

Case 3: No message received at either round.
Then A has at least 2 nodes.

Thus, ECHO allows the source to determine whether A has 0, 1, or > 1 members.

KP will use ECHO to help select one node in the set S in a BGI network.
Once such a node is selected, it transmits alone, thus completing the bcast.

Assume for convenience that r is a power of 2.

Binary − Selection−Broadcast
Step 0: Source transmits the source message and the smallest id i of any of its neighbors in L1.

Lecture 11: Network-Wide Broadcast 11

Step 1: Node i (alone) transmits the source message and its degree.
If degree(i) = 2, the sink receives the message and bcast is completed.
Otherwise, degree(i) = 1, which means i ∈ S̄.
Source sets range R = {x, ..., y}, where x = 1, y = r/2.

Step 2: Source sends R.

Steps 3 and 4:
ECHO(i, R ∩ S)
If case 1 occurs, bcast is done.
If case 2 occurs, source sets x := y + 1, y := y + (y − x + 1)/2
If case 3 occurs, source keeps x unchanged, sets y : (y + x− 1)/2

Step 5: Repeat from Step 2

Theorem 3.1: Completes bcasting in O(logn).

Proof: Successively halves the range, so it takes O(log(b)) to home in on a unique element of
S. That’s also O(log(n)), since b is poly in n.

4.3 Sublinear Broadcasting in networks with D = 2

They show how to bcast in networks with D = 2, in time O(n(2/3)logn).
They also handle networks where D is o(loglogn), getting an o(n) bound, but we will cover just
the simpler case.

4.3.1 Some results from earlier papers

In these results, G = (V,E), where V ⊆ {1, . . . , r}.

Theorem 4.1:
Assume A ⊆ V , and all nodes in A have same message m.
Then there is a protocol with time bound O(min(r, dlog(r/d))), after which message m is known
to all nodes in V −A having at least 1 and at most d neighbors in A.

Theorem 4.2:
Suppose every node in V has a (possibly different) message.
Then there is a protocol with time bound O(min(r, d2log(r))), after which every node of degree
≤ d has learned the messages of all of its neighbors.

These were proved nonconstructively (recall Komlos-Greenberg for an example of a nonconstructive
existence theorem for an algorithm).
Constructive counterparts exist, with only small complexity increases.
This paper assumes the nonconstructive results (with the better bounds), but the constructive ones
would yield similar results.

12 Lecture 11: Network-Wide Broadcast

4.3.2 The Algorithm

Nodes are source 0, L1, L2.
Assume constants d1, d2, to be determined later.
Source maintains set DIS of “discovered” nodes—those that it knows have received its message.

Part 0:
Step 0: Source sends (m,L1). Sets DIS := {0} ∪ L1

Step 1: The node u with the smallest label in L1 sends (m,Nu ∩ L2)—the message and the set of
its neighbors in L2.
At this point, the source knows that m has been delivered to Nu ∩ L2, so it sets DIS := DIS ∪
(Nu ∩ L2).

Step 2: Source sends DIS.

Part 1: (Now it starts getting interesting...)
Using an algorithm like Binary-Selection-Broadcast, the source selects a single node v ∈ L1 for
which the number of undiscovered nbrs in L2, Nv ∩ L2, is maximum, adds all nodes in Nv ∩ L2 to
DIS, and transmits DIS.

How does this work?
The source first does binary search to figure out the maximum number of neighbors:
Starting from x = r/2, bcast DIS and a request to hear from nodes having at least x neighbors in
L2 −DIS.
Home in on the maximum x in logr steps, which is O(logn).
Then, after the source knows the exact number x of neighbors it’s looking for, it bcasts x and does
binary search for a single node v having |Nv ∩ L2| = x.
Then the source can add all of Nv ∩ L2 to DIS.
Repeat this until no nodes are left in L1 with > d1 undiscovered neighbors in L2.
Let R ⊆ L1 be the remaining nodes in L1; thus, every node in R has ≤ d1 neighbors in L2.

So at this point, DIS includes 0, all of L1, and “most” of L2: the only nodes in L2 − DIS
are Nv for some v ∈ R (and such that |Nv −DIS| ≤ d1).
All the nodes in L2 that are now in DIS become silent for the rest of the protocol.
We must deal with the remaining, undiscovered nodes U ⊆ L2.

At this point, the source and all nodes in L1 know the set DIS.

Part 2:
Now use the algorithm from Theorem 4.1, with d = d2, where V = L1 ∪ U , and where A = L1.
This gets the message to every node in U having ≤ d2 neighbors in L1.
Let X ⊆ U = all the newly-informed nodes in L2.
Thus, every node in U −X has > d2 neighbors in L1.

So at this point, the only nodes who haven’t received the source message are those in U −X.

Q: How big can U −X be?

Lecture 11: Network-Wide Broadcast 13

Claim: |U −X| ≤ nd1/d2:
We have a bipartite graph connecting L1 and U −X. Of course, |L1| ≤ n.
Each node in U − X is connected to > d2 of the nodes in L1; hence, the number of edges is
> |U −X|d2. On the other hand, each node in L1 has ≤ d1 neighbors in U −X.
(Tricky here—using the fact that the only nodes in L1 that are actually connected to anything in
U are those in R.)
so the number of edges is ≤ d1n. Thus, |U −X|d2 ≤ d1n, which implies that |U −X| ≤ nd1/d2, as
claimed.

Part 3:
Next use the algorithm from Theorem 4.2, with d = d1, where V = L1 ∪ X, to let all of L1 ∪ X
broadcast their own ids.
This gets all these ids to every node in L1 that is connected to ≤ d1 nodes in X, and thus, to every
node in L1 that is connected to ≤ d1 nodes in U (since X ⊆ U).
In particular, every node in L1 that was not chosen in Part 1 has now learned the ids of its neighbors
in X—those who got the message in Part 2.
So it can deduce which of its neighbors are in U −X, and so still must get the message.

Part 4:
Let Z ⊆ L1 be the nodes in L1 that weren’t chosen in Part 1, and that have some still-uninformed
neighbors in L2.
Nodes in Z know who they are, as above.
Now the source uses the binary-search strategy again to isolate one node z ∈ Z, who then transmits
(alone) the source message plus the set of its neighbors in L2; the source adds these to DIS.
The source repeats this selection of nodes in Z, each time being sure to pick a node that still has
uninformed neighbors, until there are no more such nodes in Z.

Key counting argument: How many selections can be performed?
Answer: No more than the number of undiscovered nodes left in U − X, since at least one such
node gets informed at each selection of a node z.
That’s at most |U −X| ≤ nd1/d2, as shown above.

We have to be careful here. The source must be doing the bookkeeping to ensure that each
selection in fact ensures that at least one new node in U − X is discovered each time. It has to
inform the nodes in L1 so they can “drop out” of the algorithm if they have no more L2 nodes left
to inform.
The bookkeeping seems similar to before (in Part 1).

4.3.3 The Theorem

Theorem 4.4: This completes broadcasting (that seems clear), and does so within time O(n(2/3)logn).

Proof:
Part 0 takes 3 steps.

Part 1:
O(logr) for each selected L1 node.
There are at most n/d1 selected nodes, since each one must yield at least d1 new discovered L2

14 Lecture 11: Network-Wide Broadcast

nodes.
So the total time here is O((n/d1logr)).

Part 2: By Theorem 4.1, this is O(d2logr) (overestimate).
Part 3: By Theorem 4.2, this is O(d2

1logr).
Part 4: Each selection takes O(logr), and there are at most nd1/d2 selections.
Therefore, the entire phase takes O(nd1/d2log(r)).

Now, they fix values of d1 = n(1/3) and d2 = n(2/3), and all these bounds stay within O(n(2/3)logr) =
O(n(2/3)logn), as needed.
QED Theorem 4.4

Very cute algorithm and analysis.

4.3.4 Extension to arbitrary networks of radius o(log(log(n)))

I think we’ve already seen the important ideas; we’ll skip this one.

Here they use multiple layers L1, L2, . . . instead of just 2.
Algorithm works in phases 1, 2, . . ., where each layer Lk informs layer Lk+1.

4.4 Lower bound

We will have to skip this. It’s quite complex. I’ll try to summarize a few key ideas from the proof.
They give a lower bound—not as high as the claimed (but incorrect) lower bound in BGI-1, just
Ω(n(1/4)).
They also use a sequence of classes of 2-layer networks Cn, but now L2 contains about n(1/4) nodes,
and each node in L2 is adjacent to only one in L1.

The specific networks that exhibit the lower bound are constructed by an adversary, based on
the behavior of a particular algorithm Π.

Notation:
V = {0} ∪ L1 ∪ L2

Nv = neighborsofv

Idea of the construction:
Step by step, based on steps of the given algorithm Π.
However, the construction doesn’t assume that it has the entire execution up to some point in order
to construct the next step; rather, it assumes partial information about the execution, in the form
of an “abstract history” for each particular node v.
An abstract history for v contains:
A neighborhood of v, and a sequence of messages received by v so far.

However, at a given point in the execution, not all the neighborhoods are yet determined, so
there may be several abstract histories to consider.
The next step is generated by an “abstract action function”, which says what node v would do for

Lecture 11: Network-Wide Broadcast 15

each possible abstract history it might have seen.
This generates new possible abstract histories for the next step.

At the same time, the construction determines neighborhoods for some nodes in L2.
Thus, the neighborhoods get specified along the way, which prunes down the set of possible abstract
histories.

At the end of the construction, all the neighborhoods have been determined, and the abstract
histories pruned down until there is only one possibility for each node at each point—then we have
a completely-specified actual history.

The strategy for constructing the abstract histories and neighborhoods is designed to prevent some
nodes in L2 from getting any message for a long time.
In particular, as long as the nbhd of a node of L2 isn’t determined, it hasn’t received the source
message.

The construction is similar in spirit to the BGI-1 lower bound.
You have already seen a kind of “abstract action function” in that proof, where I pointed out the
use of a predicate π(id, S− indicator, history) that allowed us to talk about what a node would do
in various circumstances.

4.5 Conclusion

Summarize results.

Open problem: Is there a deterministic algorithm running in sublinear time on all networks with
sublinear radius?

5 Kushilevitz-Mansour

5.1 Introduction

Continuing work on the study of randomized broadcast protocols.

KM claim that the BGI-1 paper’s randomized algorithm has an expected time bound of O(D log N+
log2 N). Does this match up with the actual bound in that paper? BGI-1 don’t analyze expected
time, just high-probability of termination within a certain time. In fact, a nonzero probability
subset of their executions don’t terminate, so the expected time would in fact be infinite! Anyway,
the BGI-1 bound is stated as O((D + log(n/ε)) log n), which is only of the form KM describe in
case ε is regarded as a constant.

Alon et al. worked on proving the BGI-1 algorithm’s optimality: they showed that for D = 3,
there is an Ω(log2 N) lower bound. This work actually gives a lower bound for any broadcast
algorithm—not just an expected bound.

The Kushilevitz-Mansour paper deals with non-constant-diameter networks and randomized algo-
rithms, and proves a lower bound on expected time. It shows that for any randomized broadcast
protocol for radio networks there exists an ordering of the N nodes in which the expected time to
broadcast a message is Ω(D log N

D).

16 Lecture 11: Network-Wide Broadcast

So, if D ≤ N1−ε this yields an Ω(D log N) lower bound. We need a little calculation to show this:
It suffices to show that, for any k1, exists k2 such that k1 log(N/D) ≥ k2 log(N).
Or (exponentiating): for any k1, exists k2 such that (N/D)k1 ≥ Nk2 .
Since we know D ≤ N1−ε, it’s enough to show that (N/N1−ε)k1 ≥ Nk2 ; in other words, N ε∗k1 ≥
Nk2 . Clearly, taking k2 = ε ∗ k1 is enough for this.

Ω(D log N) gives the first term of the BGI-1 upper bound. Together with Alon et al, this starts to
approach a proof of the tightness of the Bar-Yehuda algorithm for all N and D ≤ N1−ε.

5.2 The Randomized Model

Assume an undirected graph G = (V,E) with a distinguished node 0, the source. It could be
directed, and the results won’t change. Undirected is the usual case.
n = number of nodes.
D = diameter of the network = maximum distance in the graph (number of hops) between node 0
and any other node.

Many radio networks are mobile, with changing topology. Therefore, we want to assume as little
as possible about the layout of the nodes. This paper assumes the nodes know only the size of the
network and the diameter. In real networks, the diameter might be changing and nodes might only
know some upper bound for D: this makes the lower bound stronger.

Slotted, time synchronized.

This paper assumes that receivers cannot distinguish a collision from “nothing sent”, as in Model
A of the deterministic algorithms.

Nodes may NOT know anything about the network topology. If they do, the lower bound may
be broken (it is still an open question). But the networks constructed in the proof can actually
complete broadcast in O(D + log2 n) time, if they know the complete network topology ahead of
time.

Nodes can be unique or uniform, and may use their unique IDs in an algorithm. The lower bound
holds in either case, but the proofs are a bit different. I will cover the uniform transmitter case in
detail. The paper covers half of the non-uniform case, which is just a bit more complex.

5.3 Uniform Processors

Π is a broadcast protocol, successful when 1 processor transmits
t = 2` is the number of participants
` is chosen uniformly from the range 1 ≤ ` ≤ log n
E(TΠ

`) is the expected number of rounds until success in Π

Lemma 1: E`[E(TΠ
`)] = Ω(log n)

Lemma 1 is a subproof on the way to Ω(D log N
D) proof. It says that if there are n processor in a

clique (completely connected) and t processors wish to transmit (2 ≤ t ≤ n), the time until exactly
ONE (the first one) of the t processors transmits is E`[E(TΠ

`)] = Ω(log n). Because the nodes know
nothing about the network topology, t is unknown, so the lower bound is based on n.

Here, the inner expectation is just the ordinary expectation of the random variable T`, for the
fixed `. The outer expectation assumes that ` itself is chosen randomly, uniformly, from the range
[1, log n].

Lecture 11: Network-Wide Broadcast 17

We only deal with first success, therefore processors can act at all times as if all previous rounds
were unsuccessful. Because unsuccessful rounds mean you hear only silence (Model A), you can
decide ahead of time on a transmission schedule. Each of 2` processors chooses whether to transmit
in a round s.

Assume WLOG that n is a power of 2.

Define ps,` = probability of failure in rounds 1, ..., s − 1 and success in round s, assuming 2`

participants.

Equation (1):
∑∞

s=1 ps,` = 1 Sure, the sum of the probabilities is 1. That is, no matter what ` is,
eventually a successful round will happen.

This will be useful later: ps,` ≤ Pr(success in round s). (Eqn 2) The probability of success in
round s is smaller than the probability of that and all rounds 1, ..., s− 1 failing.

Now they calculate a lower bound for E(T`) (for specific `): Just write out the sum. Then break
the sum up at s = λ log(n) (for a parameter λ not yet specified). For the second term in the sum,
then just (under)estimate s by λ log(n). For the first term, they play around a bit. Then stuff
cancels easily, yielding simply λ log n− α(`), where α(`) = Σλ log(n)−1

s=1 (λ log(n)− s) ∗ ps,` That gets
us to the bottom of p. 68. (Eqn 3)

Now we want to start solving E`[E(TΠ
`)] using Eqn 3, but we will get stuck and do a side proof.

E`[E(TΠ
`)] = Σlog(n)

`=1 Pr(`) ∗ E(TΠ
`)

= Σlog(n)
`=1 (1/ log n) ∗ (λ log n− α(`))

= Σlog(n)
`=1 (λ− (α(`)/ log n))

= λ log n− (Σlog(n)
`=1 α(`)/ log n)

Now, so far they have just been considering a fixed `. At this point we are stuck and need to switch
to taking expectations over all ` (see the sum over ` above), chosen randomly.

Now we need Σlog(n)
`=1 α(`).

= Σlog(n)
`=1 Σλ log(n)−1

s=1 (λ log(n)− s) ∗ ps,`

≤ Σλ log(n)−1
s=1 (λ log(n)− s) ∗ Σlog(n)

`=1 Pr(success in round s | 2` participants)

As a helpful lemma, they prove: Claim 2: For any s, Σlog(n)
`=1 Pr(success in rounds | 2` participants) <

2. (Eqn 4)

This is saying, whatever strategy Π is used, if the processes make all their choices in advance, then
not all numbers of participants can yield good probabilities of success.

Proof of Claim 2: Fix s.
Define q(s) = Pr(trying in round s) = Σhistory hPr(h) ∗ Pr(trying in round s after history h).
Note that q(s) doesn’t depend on `, and is the same for each processor.

So Pr(success at round s | 2` participants) = 2` ∗ q(s) ∗ (1− q(s))2
`−1.

That is, the number of choices of successful transmitter times probability it transmits times prob-
ability the others don’t.

Then summing this up for all `, we get the obvious summation. Pull out the term q(s).
Then there’s a slightly cryptic inequality—this is based on noticing that the two sums are both
sums of powers of p = (1-q(s)), only the first one repeats p1 once, p3 twice, p7 four times, etc.,
whereas the second one includes all the consecutive powers.
OR! do this step by variable substitution? j = 2` − 1.
Then they give the closed for for the geometric progression (powers of p). QED Claim 2

18 Lecture 11: Network-Wide Broadcast

Now we go back to our summation of α(`) using Eqn 4:
Σlog(n)

`=1 α(`)
≤ Σλ log(n)−1

s=1 (λ log(n)− s) ∗ Σlog(n)
`=1 Pr(success in round s | 2` participants)

≤ 2 ∗ Σλ log(n)−1
s=1 (λ log(n)− s)

≤ λ2 log2 n (Eqn 5)

Now back to the original equation using Eqn 5
E`[E(TΠ

`)] = λ log n− (Σlog(n)
`=1 α(`)/ log n)

= λ log n− (λ2 log2 n/ log n)
= (λ− λ2) log n

So the result is just (λ − λ2) log(n). Provided we choose lambda to maximize this expression,
namely, to be 1/2, we get this expectation to be at least 1/4 log(n). QED Claim 1

5.4 Non-Uniform Processors

Lemma 3: Looks like same statement as Lemma 1, but for the case of non-uniform processes.

Proof of Lemma 3: Suppose we have a collection of non-uniform processes P1, ..., Pn. That means
each process has a probability distribution of schedules that it uses to decide when to transmit, as
before. But now, each process may have a different distribution.

Based on P1, ..., Pn, we define a new, single program for a uniform set of processes Q1, ..., QL:
Simply put, each Q process chooses at random a number i in [1, n] and simulates process Pi. Cute.
Of course, it is possible that two Qj ’s will choose the same i, but we will choose L to be small
enough so that this will be very unlikely.

Claim 4: Says that, if the Qj ’s do choose different i’s, then the probability distribution of the
schedules chosen by the Qj ’s is the same as that of a RANDOMLY chosen set of processes Pi.

This isn’t hard to believe.

Claim 5 is the main claim of this section; it’s a bit tricky. It talks about a particular transformation
from a non-uniform protocol P1, ..., Pn to a uniform one. But this isn’t exactly the Q1, ..., QL

described above. Rather, it’s a modification Q′
1, ...Q

′
L, which acts on odd steps like the Q protocol

above, and on the even steps like the BGI-1 randomized (uniform) protocol (repeated use of Decay?).
It’s OK to mix two protocols—they are both trying to get the source message sent, and can be
mixed freely.

The point of mixing in the BGI protocol is to take care of the (unlikely) cases where two Qj ’s
happen to choose the same Pi to simulate. If the chosen process happened to act deterministically,
then the two Qs would always transmit at the same slots. This could be problematic for bounding
the running time. So they use the BGI bound for the running time in this case.

Claim 5 says that the expected running time for the Q′ protocol, for a fixed number 2` of partici-
pants, is at most: 2β`E(T`) + 8(1− β`) log(n), where T` refers to the expectation in the original P
protocol, and β` is the probability that all the Q′s choose different i’s.

Thus, the first term handles the cases where all the Q’s choose differently, whereas the second term
comes from the BGI-1 bound. Specifically, they use the fact that the BGI-1 protocol has expected
time at most 4 log(n) until the first success. ***This seems plausible, but which result in BGI-1
says this? I don’t see it.

Lecture 11: Network-Wide Broadcast 19

They also give a lower bound on the probability β`—we need the lower bound because what we
have to worry about bounding is the second term, in which β` is subtracted.

...calculations LTTR.

5.5 Main Theorem

So, we have some bounds on the expected time to successful transmission within a one-hop clique,
Ω(log n) for both the uniform and nonuniform case. We now want a result about multi-hop trans-
mission.

Theorem 7: For any (non-uniform) broadcast protocol, there exists a network with N nodes, max
distance D, in which the expected time to complete a broadcast is Ω(D log(N/D)).

They claim this implies a similar lower bound for the case where the worst-case running time
is considered and a small probability of error is allowed (which is the way the properties are
formulated in BGI-1). I don’t quite see this—if we had an algorithm with the worst-case running
time bounded, with high probability, then we don’t automatically get an algorithm with a bounded
expected running time: the cases where the time isn’t bounded could take arbitrarily long. Do
they have this backwards?

Notation:
N = total nodes in network
D = network diameter (# hops)
n = N/D = max nodes in a “layer”

Proof: Given n, D. Assume for simplicity that n is a power of 2. Network: D+2 layers:
Layer 0: One node 0, the source.
Layer i, 1 ≤ i ≤ D: ni = 2(`i), where `i is chosen randomly, uniformly from the range [1, ..., log(n/D)].
Layer D+1: All the other nodes, so that the total is N.
Each node connected to all those in preceding and succeeding layers.

They discuss the uniform case only, saying that the non-uniform case can be shown with similar
techniques to those in section 4.

Main property:
For all i, and all runs, all the processes in Li have the same view; every message received at one of
these processes is received by all others at the same time. This is because they are all connected
to the same potential transmitters. Thus, the broadcast progresses layer-by-layer, and the nodes
at each layer contend with each other, but not with nodes in other layers.

There are a few points to note about this layered setup, before we continue with the proof of the
main theorem.

• These networks are not physically realizable as stated. The paper mentions that layers are
fully connected to the next and previous layers, but not within a layer. If connectivity implies
proximity, more than 3 nodes per layer could mean these networks make no physical sense.
We think you can add the assumption that nodes within a layer form a clique: broadcasts
are randomized, and nodes within a layer interfere with each other at the receivers anyway.
Other papers such as BGI and Kowalski-Pelc also seem to have physical realizability problems
that may not be so easily argued away.

20 Lecture 11: Network-Wide Broadcast

• Another issue is whether layer i + 1 can always hear a successful (single) broadcasting node
from layer i. The paper assumes this away by requiring all future layers to maintain silence
while the protocol progresses. This seems to assume some sort of synchronized broadcast
phase, not interrupted by any other chatter.

• Once a broadcast has finished in a layer, can past layers perform extra work to help future
layers speed up? This is assumed away by saying that layers know all the sizes of previous
layers. As long as layer sizes are independently chosen, this is fine.

• The authors add a funny assumption: when a node at Li gets the first message from a process
at layer i−1, it also receives all the other messages it will ever get in the future, from layer i−1.
But while this is only giving extra info (strengthening the lower bound) this is “predicting
the future”. This is circular: what node u does at the given point can affect the future, and
so can affect what the layer i-1 nodes send in the future. It is also unclear to us where this
assumption is used.

Define a random variable ti: the number of rounds from when the nodes in Li first get the message
until Li succeeds (someone transmits alone). It suffices to show that, for some choice of the layer
sizes, the expected value of a ti is Ω(log(n)). The expectation is just over the choices within the
algorithm. Recall that we choose the layer sizes `i randomly. It suffices to show that the expected
value of the sum, taken over both the choices in the algorithm and the choices of the layer sizes, is
Ω(D log(n)). (Because if the expected value is high over all the choices of layer sizes, there must
be a particular set of layer sizes for which it’s high.)

Bottom of p. 72: Here, they simply expand the expectation according to the different choices
of sizes for layers 1-(i-1). So far, so good. Next equation, at top of p. 73: Just break up the
probability of getting a combination of layer sizes as a product, since the choices are independent.
And then observe that we are using the uniform distribution for each layer size, so we pull out the
log expression. So now we are left with a summation, over all possible sets of layer sizes, of the
expected value of ti given those layer sizes.

So it remains to lower-bound the expected value of ti given a particular set of sizes for layers 1,...,i-
1. But now they claim they can apply Lemma 1—the problem at one layer is like the single-hop
broadcast problem discussed in section 3 (that’s for the uniform case, but that is what we are doing
here). This yields a lower bound on expectation of at least c log(n) for some constant c. That’s for
one set of layer sizes—but when we add these up for all the sets of layer sizes and divide by the log
expression, we get back to c log(n) for the whole sum. Summing over the ti of every layer yields
Ω(D log(n)) = Ω(D log(N/D)).

QED Theorem 7

6 Livadas, Lynch

This is a different sort of paper—just a brief note, giving an idea for a possibly-practical protocol
to disseminate a message efficiently in a sensor network.
It arose after a lunchtime discussion with Deborah Estrin and David Culler at a DARPA sensor
nets meeting, where they said that they didn’t have good practical solutions to this problem.

Lecture 11: Network-Wide Broadcast 21

6.1 Introduction

Stationary sensor net, connected, single source, sending a sequence of numbered messages m1,m2,
We want to get the messages everywhere, reliably.
As in the theory papers.

But unlike in the theory papers, we have to cope with unpredictable occasional message loss (no
strong assumptions about collisions, delivery success, etc.)
We assume that message loss, while fairly common, is not overwhelming; thus, we suppose that
topology control (e.g., power reduction) and collision-avoidance (e.g., backoff) mechanisms have
already been applied, to reduce the percentage of message loss to something manageable.

The main idea is to use a combination of two mechanisms, which run at different time scales:

Normal case:
Flood the messages through the network, very fast.
Nodes notice when they first receive a particular message and
immediately retransmit it.
When no losses occur (the “normal case”), the message gets everywhere, very quickly.

Recovery mode:
In the background, at a more leisurely pace, nodes notice when their neighbors are “behind” them
in acquiring messages.
They do this by, periodically (according to a local clock), transmitting their “frontier number”,
which indicates the largest number such that the node has received all packets through that num-
ber.
A node that hears that any neighbor has a frontier number less than his own retransmits.

Consider what happens in a typical run, say with 1 message.
It gets to a lot of the nodes very rapidly, but may stop spreading normally because of some losses
or other failures.
Then fairly soon, the nodes on the “boundary” of the region that has received the message discover
that their neighbors haven’t received it, so they retransmit.
The nodes that previously failed to get the message now receive it for the first time.
They can’t tell this situation from the one where they received the message immediately.
So they retransmit immediately.
The message then spreads through new regions of the network very fast.

6.2 Formal Model

The next section just formalizes these simple ideas. LTTR.
Describes the nodes as Timed I/O Automata, writes little programs for their behavior.

You might want to look at the program, top of p. 3, to see the program style.
Basically, the node maintains state that includes the current time, a timer saying when it should
next broadcast its frontier, the received messages, etc.
The little code fragments describe what happens to the state in response to arrival of messages,
and expiration of timers.

22 Lecture 11: Network-Wide Broadcast

(I think the code is slightly buggy:
Classifies updt as an output in the signature but not in the transition defs.
I think the intention is to send out all messages in the bqueue immediately—but this doesn’t seem
to be enforced by any stopping conditions on time-passage.

Section 2.2 has the same title as section 2.1. Should be Env, not Host.)

6.2.1 Performance Analysis

Basically, if the max-distance is D, and there are at most f packet losses, the time to complete the
broadcast is at most Dd + f(update− period), where d is the message delay, and update− period
is a larger timeout for retransmission.

7 Kushilevitz-Mansour

7.1 Introduction

Continuing work on the study of randomized broadcast protocols.

KM claim that the BGI-1 paper’s randomized algorithm has an expected time bound of O(D log N+
log2 N). Does this match up with the actual bound in that paper? BGI-1 don’t analyze expected
time, just high-probability of termination within a certain time. In fact, a nonzero probability
subset of their executions don’t terminate, so the expected time would in fact be infinite! Anyway,
the BGI-1 bound is stated as O((D + log(n/ε)) log n), which is only of the form KM describe in
case ε is regarded as a constant.

Alon et al. worked on proving the BGI-1 algorithm’s optimality: they showed that for D = 3,
there is an Ω(log2 N) lower bound. This work actually gives a lower bound for any broadcast
algorithm—not just an expected bound.

The Kushilevitz-Mansour paper deals with non-constant-diameter networks and randomized algo-
rithms, and proves a lower bound on expected time. It shows that for any randomized broadcast
protocol for radio networks there exists an ordering of the N nodes in which the expected time to
broadcast a message is Ω(D log N

D).

So, if D ≤ N1−ε this yields an Ω(D log N) lower bound. We need a little calculation to show this:
It suffices to show that, for any k1, exists k2 such that k1 log(N/D) ≥ k2 log(N).
Or (exponentiating): for any k1, exists k2 such that (N/D)k1 ≥ Nk2 .
Since we know D ≤ N1−ε, it’s enough to show that (N/N1−ε)k1 ≥ Nk2 ; in other words, N ε∗k1 ≥
Nk2 . Clearly, taking k2 = ε ∗ k1 is enough for this.

Ω(D log N) gives the first term of the BGI-1 upper bound. Together with Alon et al, this starts to
approach a proof of the tightness of the Bar-Yehuda algorithm for all N and D ≤ N1−ε.

7.2 The Randomized Model

Assume an undirected graph G = (V,E) with a distinguished node 0, the source. It could be
directed, and the results won’t change. Undirected is the usual case.

Lecture 11: Network-Wide Broadcast 23

n = number of nodes.
D = diameter of the network = maximum distance in the graph (number of hops) between node 0
and any other node.

Many radio networks are mobile, with changing topology. Therefore, we want to assume as little
as possible about the layout of the nodes. This paper assumes the nodes know only the size of the
network and the diameter. In real networks, the diameter might be changing and nodes might only
know some upper bound for D: this makes the lower bound stronger.

Slotted, time synchronized.

This paper assumes that receivers cannot distinguish a collision from “nothing sent”, as in Model
A of the deterministic algorithms.

Nodes may NOT know anything about the network topology. If they do, the lower bound may
be broken (it is still an open question). But the networks constructed in the proof can actually
complete broadcast in O(D + log2 n) time, if they know the complete network topology ahead of
time.

Nodes can be unique or uniform, and may use their unique IDs in an algorithm. The lower bound
holds in either case, but the proofs are a bit different. I will cover the uniform transmitter case in
detail. The paper covers half of the non-uniform case, which is just a bit more complex.

7.3 Uniform Processors

Π is a broadcast protocol, successful when 1 processor transmits
t = 2` is the number of participants
` is chosen uniformly from the range 1 ≤ ` ≤ log n
E(TΠ

`) is the expected number of rounds until success in Π

Lemma 1: E`[E(TΠ
`)] = Ω(log n)

Lemma 1 is a subproof on the way to Ω(D log N
D) proof. It says that if there are n processor in a

clique (completely connected) and t processors wish to transmit (2 ≤ t ≤ n), the time until exactly
ONE (the first one) of the t processors transmits is E`[E(TΠ

`)] = Ω(log n). Because the nodes know
nothing about the network topology, t is unknown, so the lower bound is based on n.

Here, the inner expectation is just the ordinary expectation of the random variable T`, for the
fixed `. The outer expectation assumes that ` itself is chosen randomly, uniformly, from the range
[1, log n].

We only deal with first success, therefore processors can act at all times as if all previous rounds
were unsuccessful. Because unsuccessful rounds mean you hear only silence (Model A), you can
decide ahead of time on a transmission schedule. Each of 2` processors chooses whether to transmit
in a round s.

Assume WLOG that n is a power of 2.

Define ps,` = probability of failure in rounds 1, ..., s − 1 and success in round s, assuming 2`

participants.

Equation (1):
∑∞

s=1 ps,` = 1 Sure, the sum of the probabilities is 1. That is, no matter what ` is,
eventually a successful round will happen.

This will be useful later: ps,` ≤ Pr(success in round s). (Eqn 2) The probability of success in
round s is smaller than the probability of that and all rounds 1, ..., s− 1 failing.

24 Lecture 11: Network-Wide Broadcast

Now they calculate a lower bound for E(T`) (for specific `): Just write out the sum. Then break
the sum up at s = λ log(n) (for a parameter λ not yet specified). For the second term in the sum,
then just (under)estimate s by λ log(n). For the first term, they play around a bit. Then stuff
cancels easily, yielding simply λ log n− α(`), where α(`) = Σλ log(n)−1

s=1 (λ log(n)− s) ∗ ps,` That gets
us to the bottom of p. 68. (Eqn 3)

Now we want to start solving E`[E(TΠ
`)] using Eqn 3, but we will get stuck and do a side proof.

E`[E(TΠ
`)] = Σlog(n)

`=1 Pr(`) ∗ E(TΠ
`)

= Σlog(n)
`=1 (1/ log n) ∗ (λ log n− α(`))

= Σlog(n)
`=1 (λ− (α(`)/ log n))

= λ log n− (Σlog(n)
`=1 α(`)/ log n)

Now, so far they have just been considering a fixed `. At this point we are stuck and need to switch
to taking expectations over all ` (see the sum over ` above), chosen randomly.

Now we need Σlog(n)
`=1 α(`).

= Σlog(n)
`=1 Σλ log(n)−1

s=1 (λ log(n)− s) ∗ ps,`

≤ Σλ log(n)−1
s=1 (λ log(n)− s) ∗ Σlog(n)

`=1 Pr(success in round s | 2` participants)

As a helpful lemma, they prove: Claim 2: For any s, Σlog(n)
`=1 Pr(success in rounds | 2` participants) <

2. (Eqn 4)

This is saying, whatever strategy Π is used, if the processes make all their choices in advance, then
not all numbers of participants can yield good probabilities of success.

Proof of Claim 2: Fix s.
Define q(s) = Pr(trying in round s) = Σhistory hPr(h) ∗ Pr(trying in round s after history h).
Note that q(s) doesn’t depend on `, and is the same for each processor.

So Pr(success at round s | 2` participants) = 2` ∗ q(s) ∗ (1− q(s))2
`−1.

That is, the number of choices of successful transmitter times probability it transmits times prob-
ability the others don’t.

Then summing this up for all `, we get the obvious summation. Pull out the term q(s).
Then there’s a slightly cryptic inequality—this is based on noticing that the two sums are both
sums of powers of p = (1-q(s)), only the first one repeats p1 once, p3 twice, p7 four times, etc.,
whereas the second one includes all the consecutive powers.
OR! do this step by variable substitution? j = 2` − 1.
Then they give the closed for for the geometric progression (powers of p). QED Claim 2

Now we go back to our summation of α(`) using Eqn 4:
Σlog(n)

`=1 α(`)
≤ Σλ log(n)−1

s=1 (λ log(n)− s) ∗ Σlog(n)
`=1 Pr(success in round s | 2` participants)

≤ 2 ∗ Σλ log(n)−1
s=1 (λ log(n)− s)

≤ λ2 log2 n (Eqn 5)

Now back to the original equation using Eqn 5
E`[E(TΠ

`)] = λ log n− (Σlog(n)
`=1 α(`)/ log n)

= λ log n− (λ2 log2 n/ log n)
= (λ− λ2) log n

So the result is just (λ − λ2) log(n). Provided we choose lambda to maximize this expression,
namely, to be 1/2, we get this expectation to be at least 1/4 log(n). QED Claim 1

Lecture 11: Network-Wide Broadcast 25

7.4 Non-Uniform Processors

Lemma 3: Looks like same statement as Lemma 1, but for the case of non-uniform processes.

Proof of Lemma 3: Suppose we have a collection of non-uniform processes P1, ..., Pn. That means
each process has a probability distribution of schedules that it uses to decide when to transmit, as
before. But now, each process may have a different distribution.

Based on P1, ..., Pn, we define a new, single program for a uniform set of processes Q1, ..., QL:
Simply put, each Q process chooses at random a number i in [1, n] and simulates process Pi. Cute.
Of course, it is possible that two Qj ’s will choose the same i, but we will choose L to be small
enough so that this will be very unlikely.

Claim 4: Says that, if the Qj ’s do choose different i’s, then the probability distribution of the
schedules chosen by the Qj ’s is the same as that of a RANDOMLY chosen set of processes Pi.

This isn’t hard to believe.

Claim 5 is the main claim of this section; it’s a bit tricky. It talks about a particular transformation
from a non-uniform protocol P1, ..., Pn to a uniform one. But this isn’t exactly the Q1, ..., QL

described above. Rather, it’s a modification Q′
1, ...Q

′
L, which acts on odd steps like the Q protocol

above, and on the even steps like the BGI-1 randomized (uniform) protocol (repeated use of Decay?).
It’s OK to mix two protocols—they are both trying to get the source message sent, and can be
mixed freely.

The point of mixing in the BGI protocol is to take care of the (unlikely) cases where two Qj ’s
happen to choose the same Pi to simulate. If the chosen process happened to act deterministically,
then the two Qs would always transmit at the same slots. This could be problematic for bounding
the running time. So they use the BGI bound for the running time in this case.

Claim 5 says that the expected running time for the Q′ protocol, for a fixed number 2` of partici-
pants, is at most: 2β`E(T`) + 8(1− β`) log(n), where T` refers to the expectation in the original P
protocol, and β` is the probability that all the Q′s choose different i’s.

Thus, the first term handles the cases where all the Q’s choose differently, whereas the second term
comes from the BGI-1 bound. Specifically, they use the fact that the BGI-1 protocol has expected
time at most 4 log(n) until the first success. ***This seems plausible, but which result in BGI-1
says this? I don’t see it.

They also give a lower bound on the probability β`—we need the lower bound because what we
have to worry about bounding is the second term, in which β` is subtracted.

...calculations LTTR.

7.5 Main Theorem

So, we have some bounds on the expected time to successful transmission within a one-hop clique,
Ω(log n) for both the uniform and nonuniform case. We now want a result about multi-hop trans-
mission.

Theorem 7: For any (non-uniform) broadcast protocol, there exists a network with N nodes, max
distance D, in which the expected time to complete a broadcast is Ω(D log(N/D)).

They claim this implies a similar lower bound for the case where the worst-case running time
is considered and a small probability of error is allowed (which is the way the properties are

26 Lecture 11: Network-Wide Broadcast

formulated in BGI-1). I don’t quite see this—if we had an algorithm with the worst-case running
time bounded, with high probability, then we don’t automatically get an algorithm with a bounded
expected running time: the cases where the time isn’t bounded could take arbitrarily long. Do
they have this backwards?

Notation:
N = total nodes in network
D = network diameter (# hops)
n = N/D = max nodes in a “layer”

Proof: Given n, D. Assume for simplicity that n is a power of 2. Network: D+2 layers:
Layer 0: One node 0, the source.
Layer i, 1 ≤ i ≤ D: ni = 2(`i), where `i is chosen randomly, uniformly from the range [1, ..., log(n/D)].
Layer D+1: All the other nodes, so that the total is N.
Each node connected to all those in preceding and succeeding layers.

They discuss the uniform case only, saying that the non-uniform case can be shown with similar
techniques to those in section 4.

Main property:
For all i, and all runs, all the processes in Li have the same view; every message received at one of
these processes is received by all others at the same time. This is because they are all connected
to the same potential transmitters. Thus, the broadcast progresses layer-by-layer, and the nodes
at each layer contend with each other, but not with nodes in other layers.

There are a few points to note about this layered setup, before we continue with the proof of the
main theorem.

• These networks are not physically realizable as stated. The paper mentions that layers are
fully connected to the next and previous layers, but not within a layer. If connectivity implies
proximity, more than 3 nodes per layer could mean these networks make no physical sense.
We think you can add the assumption that nodes within a layer form a clique: broadcasts
are randomized, and nodes within a layer interfere with each other at the receivers anyway.
Other papers such as BGI and Kowalski-Pelc also seem to have physical realizability problems
that may not be so easily argued away.

• Another issue is whether layer i + 1 can always hear a successful (single) broadcasting node
from layer i. The paper assumes this away by requiring all future layers to maintain silence
while the protocol progresses. This seems to assume some sort of synchronized broadcast
phase, not interrupted by any other chatter.

• Once a broadcast has finished in a layer, can past layers perform extra work to help future
layers speed up? This is assumed away by saying that layers know all the sizes of previous
layers. As long as layer sizes are independently chosen, this is fine.

• The authors add a funny assumption: when a node at Li gets the first message from a process
at layer i−1, it also receives all the other messages it will ever get in the future, from layer i−1.
But while this is only giving extra info (strengthening the lower bound) this is “predicting
the future”. This is circular: what node u does at the given point can affect the future, and
so can affect what the layer i-1 nodes send in the future. It is also unclear to us where this
assumption is used.

Define a random variable ti: the number of rounds from when the nodes in Li first get the message
until Li succeeds (someone transmits alone). It suffices to show that, for some choice of the layer

Lecture 11: Network-Wide Broadcast 27

sizes, the expected value of a ti is Ω(log(n)). The expectation is just over the choices within the
algorithm. Recall that we choose the layer sizes `i randomly. It suffices to show that the expected
value of the sum, taken over both the choices in the algorithm and the choices of the layer sizes, is
Ω(D log(n)). (Because if the expected value is high over all the choices of layer sizes, there must
be a particular set of layer sizes for which it’s high.)

Bottom of p. 72: Here, they simply expand the expectation according to the different choices
of sizes for layers 1-(i-1). So far, so good. Next equation, at top of p. 73: Just break up the
probability of getting a combination of layer sizes as a product, since the choices are independent.
And then observe that we are using the uniform distribution for each layer size, so we pull out the
log expression. So now we are left with a summation, over all possible sets of layer sizes, of the
expected value of ti given those layer sizes.

So it remains to lower-bound the expected value of ti given a particular set of sizes for layers 1,...,i-
1. But now they claim they can apply Lemma 1—the problem at one layer is like the single-hop
broadcast problem discussed in section 3 (that’s for the uniform case, but that is what we are doing
here). This yields a lower bound on expectation of at least c log(n) for some constant c. That’s for
one set of layer sizes—but when we add these up for all the sets of layer sizes and divide by the log
expression, we get back to c log(n) for the whole sum. Summing over the ti of every layer yields
Ω(D log(n)) = Ω(D log(N/D)).

QED Theorem 7

