Problem Set 2, Part a

Due: Wednesday, March 15, 2006
Problem sets will be collected in class. Please hand in each problem on a separate page, with your name on it.

Reading

Localization Aspnes et. al: Theory of localization
Time Sync Elson, Girod, Estrin: RBS paper
Karp et. al: Global synchronization in sensornets

Reading for next week

Time sync Fan, Lynch: Gradient clock sync
Attiya, Hay, Welch: Optimal clock sync paper
Topology control Li, et. al: Cone-based topology control algorithm
Bahramgiri et. al: Fault tolerant distributed topology control algorithm

Problems

1. The mobile-assisted localization paper describes an algorithm for determining the distances between 2,3 , and 4 points in 3 -space, and uses this to determine coordinates for all nodes. Now suppose that we only need these algorithms to work in 2 -space.
(a) State versions of propositions 2 and 4, as needed for use in 2D.
(b) Describe how a 2D version of MAL would work, using your propositions.
(c) Describe what a 2D version of AFL would do, based on your new version of MAL.
2. A complete bipartite graph $K_{x, y}$ is a graph whose vertices can be partitioned into two sets S_{1} and S_{2}, such that $\left|S_{1}\right|=x,\left|S_{2}\right|=y$, an edge connects each vertex in S_{1} to each vertex in S_{2}, and there are no edges between vertices in S_{1} or between vertices in S_{2}. Let $G=K_{2,3}$ be a complete bipartite graph.
(a) Is the graph G generically rigid in two dimensions? Why or why not?
(b) Provide an example of a rigid formation in two dimensions with graph G.
3. In this problem, we use RBS to compute the velocity of an object tracked by a field of sensors. Consider a simple scenario consisting of four nodes, i, j, k and ℓ, as depicted below. Edges connect nodes which can directly communicate with each other. Suppose that j observes an object when its clock value is 8 , and k observes the same object when its clock is 18 . After this, node ℓ sends two reference signals. The first signal is heard by i when its clock is 10 , by j when its clock is 16 , and by k when its clock is 24 . The second signal is heard by i at $12, j$ at 18.2 , and k at 25.8 . Nodes i, j and k use the signals to synchronize their clocks via RBS. If nodes j and k send i their clock values when they observe the object, and i knows the distance between j and k is 10 meters, then what does i compute for the object's velocity?

Figure 1: Network for problem 2
4. Consider the method for modeling an execution of RBS as a bipartite graph, as described in the Karp paper. Let the graph shown below be the bipartite graph corresponding to some execution of RBS. Here, each circle represents a node, and each triangle represents a signal. Each edge has a variance of 1 . Compute the variance of the minimum variance unbiased estimator of $T_{p}-T_{q}$, as described in Section 3.2 of the Karp paper.

Figure 2: Graph for problem 3

