Problem Set 6, Part a

Due: Wednesday, May 17, 2006

Problem sets will be collected in class. Please hand in each problem on a separate page, with your name on it.

Reading

Middleware services	Malpani, Chen, Vaidya: Token circulation
	Chen, Welch: Self-stabilizing dynamic mutual exclusion
	Dolev, Schiller, Welch: Random walk for self-stabilizing group communication
Virtual objects	Dolev, Gilbert, et al.: GeoQuorums: implementing atomic memory in ad hoc networks
Compulsory protocols	Hatzis, Pentaris, et al.: Fundamental control algorithms in mobile networks
	Chatzigiannakis, et al.: Efficiency of distributed communication and control algorithms
	Chatzigiannakis, et al.: An efficient communication strategy for ad-hoc mobile networks
	Chatzigiannakis, et al.: An efficient routing protocol for hierarchical ad-hoc mobile networks

Reading for next week

Virtual nodes	Dolev, Gilbert, et al.: Virtual Mobile Nodes for Mobile Ad hoc Networks
	Dolev, Gilbert, et al.: Timed Virtual Stationary Automata
Dolev, Lahiani, et al.: Self-stabilizing node location and routing	
Data aggregati	on Nath, Gibbons, et al.: Synopsis Diffusion for Robust Aggregation in Sensor Networks
	Shrivastava, Buragohain, et al.: New Aggregation Techniques for Sensor Networks
	Patt-Shamir: A note on efficient aggregate queries in sensor networks
	Angluin, Aspnes, et al.: Computation with mobile finite state sensors
	Angluin, Aspnes, et al.: Stably computable properties of network graphs

Problems

- 1. Malpani, Chen, and Vaidya give an example to demonstrate that their Least Recency token-circulation algorithm can generate exponential-length traversals in some graphs. They also show an exponential upper bound. However, in simulations, the LR algorithm seems to exhibit *linear* traversal lengths.
 - (a) Describe some classes of graphs for which you can prove a linear upper bound on traversal length for LR.
 - (b) Describe as large a class of graphs as you can for which you can prove a polynomial upper bound on traversal length.
- 2. We studied two self-stabilizing algorithms this week, one for mutual exclusion, and the other for group membership and multicast.
 - (a) Describe informally the ideas that are used in these algorithms which are specifically for the purpose of achieving self-stabilization.
 - (b) (Open question) Using similar ideas, can you design a good self-stabilizing algorithm for k-exclusion in mobile networks?
 - (c) (Open question) What about a self-stabilizing leader election algorithm for mobile networks?

- 3. The GeoQuorums paper describes a way of implementing virtual objects based on a strong assumption about communication: nodes in the vicinity of a virtual object's location can communicate reliably among themselves, using totally-ordered broadcast. Real networks, however, typically do not satisfy this assumption.
 - (a) Discuss possible ways of ensuring (or at least approximating) this assumption over a real wireless broadcast network.
 - (b) Assuming that it is hard to guarantee totally-ordered reliable broadcast, discuss other possible ways you might try to implement reliable virtual objects over a real wireless broadcast network.
- 4. Explain (quantitatively, qualitatively, or both) the advantages of the Snake versus the Runners protocol as a basis for message routing in mobile ad hoc networks. You may assume that the network graph is a two-dimensional grid and that the sender S and receiver R are performing random walks on the network graph.