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ABSTRACT
We show how to securely realize any multi-party functional-
ity in a way that preserves security under an a-priori
bounded number of concurrent executions, regardless of the
number of corrupted parties. Previous protocols for the
above task either rely on set-up assumptions such as a Com-
mon Reference String, or require an honest majority. Our
constructions are in the plain model and rely on standard in-
tractability assumptions (enhanced trapdoor permutations
and collision resistant hash functions).

Even though our main focus is on feasibility of concur-
rent multi-party computation we actually obtain a proto-
col using only a constant number of communication rounds.
As a consequence our protocol yields the first construction
of constant-round stand-alone secure multi-party computa-
tion with a dishonest majority, proven secure under standard
(polynomial-time) hardness assumptions; previous solutions
to this task either require logarithmic round-complexity, or
subexponential hardness assumptions.

The core of our protocol is a novel construction of (concur-
rently) simulation-sound zero-knowledge protocols, which
might be of independent interest.

Finally, we extend the framework constructed to give a
protocol for secure multi-party (and thus two-party) compu-
tation for any number of corrupted parties, which remains
secure even when arbitrary subsets of parties concurrently
execute the protocol, possibly with interchangeable roles. As
far as we know, for the case of two-party or multi-party pro-
tocols with a dishonest majority, this is the first positive
result for any non-trivial functionality which achieves this
property in the plain model.

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: Interactive and reactive
computation

General Terms
Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

Keywords
concurrent composition, secure multi-party computation,
simulation-sound zero-knowledge, constant-round protocols

1. INTRODUCTION
The task of secure multi-party computation involves n par-

ties P1, ..., Pn, that wish to jointly and securely compute a
functionality f(x̄) = (f1(x̄), ..., fn(x̄)) of their corresponding
private inputs x̄ = x1, ..., xn, such that party Pi receives the
value fi(x̄). This functionality may be probabilistic in which
case fi(x̄) is a random variable. Loosely speaking, the se-
curity requirements are that the parties learn nothing more
from the protocol than their prescribed output, and that
the output of each party is distributed according to the pre-
scribed functionality. This should hold even in case that a
subset of the parties maliciously deviates from the protocol.
Shortly after its conceptualization, very strong results were
established for secure multi-party computation. Specifically,
it was shown that any probabilistic polynomial-time com-
putable multi-party functionality can be securely computed,
regardless of the number of corrupted parties, assuming the
existence of enhanced trapdoor permutations [38, 22].

1.1 Concurrent Multi-Party Computation
The original setting in which secure multi-party protocols

were investigated allowed the execution of a single instance
of the protocol at a time. This is the so called stand-alone

setting. A more realistic setting, however, is one which al-
lows the concurrent execution of protocols. In the concur-
rent setting (originally introduced in the context of zero-
knowledge [18, 17]), many protocols are executed at the
same time. This setting presents the new risk of a coor-
dinated attack in which an adversary interleaves many dif-
ferent executions of a protocol and chooses its messages in
each instance based on other partial executions of the pro-
tocol.

It has been noticed that security of a specific protocol in
the stand-alone setting does not necessarily imply its secu-
rity in the, more demanding, concurrent setting. It is thus
of great relevance to examine whether the original feasibility
results for multi-party computation in the stand-alone set-
ting still hold when many copies of the protocol are executed
concurrently.

Multi-party computation with honest majority. For
the case of an honest majority, Canetti [9], based on the
works of Ben-Or, Goldwasser and Wigderson [6], and Rabin
and Ben-Or [34], show that a protocol for secure multi-party



computation that composes concurrently, can be achieved.
(In fact, the protocol of [9] achieves the even stronger prop-
erty of Universal Composability. See [9] for more details.)
The proof of [9] relies on the fact that in the multi-party
setting with an honest majority a specific simulation tech-
nique called one-pass black-box simulation (that is black-box
simulation without the use of rewinding) can be performed.
We note that this technique is inherently bound to fail in
the case of a dishonest majority [11].

Multi-party computation with a dishonest majority.
For the case of a dishonest majority, on the other hand, the
situation is less satisfactory. The only previous positive re-
sults in the plain model (without set-up assumptions) are in
the special-case of two-party computation and can be sum-
marized as follows:

• Lindell demonstrated the feasibility of m-bounded con-
current two-party computation using O(m) communi-
cation rounds. [27]

• Recently, Pass and Rosen showed that the notion of
m-bounded concurrent two-party computation could
be achieved using only O(1) communications rounds.
[32].

The notion of m-bounded concurrent composition, first con-
sidered by Barak [1] in the context of zero-knowledge, relates
to a restricted form of concurrent composition, where an a-
priori bound m on the number of concurrent executions is
specified before the protocol is constructed. Certainly the
notion of unbounded concurrency, i.e, security is guaranteed
even under an unbounded number of concurrent executions,
is more appealing than that of bounded concurrency. How-
ever, a recent, surprising, result by Lindell [29] shows that
unbounded concurrent two-party computation can not be
achieved in general.1 On the other hand, in the special case
of zero-knowledge proofs, security under unbounded concur-
rent composition can be achieved [35].

We note that the lower bound by Lindell also extends to
the multi-party setting with a dishonest majority. The up-
per bounds of [27] and [32], however, do not seem to directly
extends to the multi-party setting, leaving the following im-
portant question unanswered:

Does there exist a protocol for secure multi-party compu-

tation with a dishonest majority whose security is preserved

under an a-priori bounded number of concurrent executions?

This is the question that we address in the current work.

Concurrent composition with set-up assumptions.
Before we state our results, let us mention a few words
about the use of set-up assumption in order to deal with
concurrency. The literature discusses a wide array of set-
up assumptions, most notably the timing assumption [17],
the Public-Key models [10, 15] and the Common Reference
String (CRS) model [9, 13]. Whereas the former assump-
tions have been primarily used to obtain concurrent compo-
sition of zero-knowledge proofs, the latter assumption has
1Note that the lower bound of [29] relies on the fact that the
honest party chooses its input adaptively. It might still be
possible to construct a protocol for unbounded concurrent
two-party computation for the case when the honest party
chooses its inputs ahead of the protocol executions.

been also used to obtain strong composition theorems for
secure multi-party computation. Specifically, in the model
assuming the existence of a Common Reference String, it has
been shown how to achieve the very strong notion of Univer-
sal Composability for both two-party and multi-party secure
computation [9, 13]. In particular, universal composability
implies security under unbounded concurrent composition.

Nevertheless, although very strong result have been achie-
ved in the CRS model it is still of both theoretical and prac-
tical interest to investigate the possibility of constructing
protocols in the plain model, without extra set-up assump-
tion, that compose concurrently. Firstly, in some settings it
might be difficult to obtain the trusted set-up phase needed
in order to set up a common reference string. Secondly, re-
cent work seems to indicate that the CRS model might not
reflect the security concerns than one would like to address
in reality [31]. Loosely speaking, standard simulation-based
definitions of security in the CRS model do not cover certain
“natural” security properties that are satisfied in the plain
model (e.g., deniability of protocols). Moreover, known im-
possibility results for composition in the plain model (e.g.,
[12, 27]) will apply to any protocol that satisfies these “nat-
ural” security properties in the CRS model.

1.2 Our Results
In this work we address the above mentioned question and

present a result of a positive nature. Specifically, we show
that for any n-party functionality (two-party functionalities
being a special case) there exist a protocol that is secure un-
der bounded-concurrent composition, regardless of the num-
ber of corrupted parties.

The security of our protocol relies on the existence of en-
hanced trapdoor permutations [19], as well as on the exis-
tence of collision resistant hash functions. For an integer m,
the notion of m-bounded concurrent composition refers to a
setting in which at most m copies of a protocol are executed
concurrently (typically, m = m(k) is a fixed polynomial in
the security parameter k). Our results are stated below.

Theorem 1. Assume the existence of enhanced trapdoor

permutations and the existence of collision-resistant hash

functions. Then, for any n-party functionality f and for

any integer m, there exists a protocol Π that securely com-

putes f under m-bounded concurrent composition, regardless

of the number of corrupted parties. Moreover, the number

of communication rounds is constant.

Although our main focus is on feasibility of multi-party
computation with a dishonest majority that composes con-
currently, we actually achieve the best one could hope for in
terms of round complexity. By doing so we get the following
corollary which is interesting in its own:

Corollary 1. Assume the existence of enhanced trap-

door permutations and the existence of collision-resistant

hash functions. Then, for any n-party functionality f there

exists a protocol Π that securely computes f , regardless of

the number of corrupted parties. Moreover, the number of

communication rounds is constant.

Corollary 1 gives the first constant-round construction for
(stand-alone) secure multi-party computation under stan-
dard polynomial-time hardness assumptions.2 The only pre-

2In the case of stand-alone security our security definition



vious constant-round solution is a protocol by Katz, Os-
trovsky and Smith [26], which relies on the assumption of
dense cryptosystems and collision resistant hash functions,
both secure against subexponential sized circuits, as well
as enhanced trapdoor permutations. The protocol of Katz
et al, in fact, relies on the non-malleable zero-knowledge
protocol of Barak [2] and inherits both the subexponential
hardness assumptions and the complexity of this protocol.
Katz et al. also give a protocol based on polynomial-time
hardness assumptions, this time relying on the technique
of Chor and Rabin [14], although this protocol requires a
logarithmic round-complexity.

We further note that an important extra feature of our
approach is the relative simplicity of the solution in com-
parison to the works of [27, 32, 26, 2].

On the model of computation: In this work we consider
a malicious static computationally bounded (i.e., probabilis-
tic polynomial-time) adversary that is allowed to corrupt an
arbitrary number of parties. That is, before the beginning of
the interaction the adversary corrupts a subset of the players
that may deviate arbitrarily from the protocol.

The parties are assumed to be connected through a point-
to-point asynchronous public network, without guaranteed
delivery of messages.

Following the standard of the area [19], we assume that
the communication channels are authenticated.

The focus of this work is not on fairness, and we therefore
present a definition where the adversary always receives the
output of the functionality first and then decides which of
the honest parties that will receive its output (c.f. Secure

computation with abort and no fairness in the taxonomy of
[24]).

The concurrent setting considered is a generalization of
Lindell’s treatment [27, 29] for concurrent secure two-party
computation, which, in turn, is adapted from previous works
on concurrent zero-knowledge [17]. We consider a single set

of n parties that are running many concurrent executions of
the same multi-party protocol, each time playing the same
roles. The honest parties may adaptively choose their in-
puts to the protocol based on outputs received from previ-
ous executions. However, in each instance of the protocol
the honest parties are required to act independently. The
adversary, on the other hand, may arbitrarily coordinate its
actions between the different executions.

The restriction on m-bounded concurrency is formalized
by requiring that during the execution of a single instance
of the protocol, messages from no more than m − 1 other
executions are exchanged.

New techniques: Already in the case of (bounded) con-
current two-party computation, it was noticed that the main
technical difficulty consists of constructing two zero-
knowledge protocols that are simulation-sound with respect

reduces down to secure computation with abort and no fair-
ness in the taxonomy of [24]. As was noted in [24], in a
setting with a broadcast channel, any protocol for secure
computation with abort can be transformed (in a round-
preserving way) into a protocol secure according to the more
standard definition of secure computation with unanimous
abort. This is obtained by letting the parties broadcast
whether they received output or not, at the end of the pro-
tocol with abort.

to each other [27, 32]. Simulation-soundness (introduced
by Sahai in a different context [37]) means that the sound-
ness of each of the protocols is preserved even when the
other protocol is simulated at the same time with the roles
of the prover and verifier reversed. The problem is related
to the notion of non-malleability [16]. Unfortunately, since
soundness, here, should hold also when concurrently simu-
lating many zero-knowledge protocols, known techniques for
achieving non-malleability, such as [16, 2], do not seem to
apply. The works of [27, 32] constructed protocols satisfy-
ing this notion. We note that their techniques inherently
make use of the fact that in the two-party setting only two

protocols need to be constructed. In fact, both [27] and [32]
construct two asymmetric protocols and rely on different
methods for proving simulation-soundness in each direction.

In the multi-party setting, on the other hand, the diffi-
culty consists of constructing a family of polynomially many
zero-knowledge protocols that are simulation-sound with re-
spect to each other under concurrent executions. The main
technical contribution of this work is the construction of a
family of constant-round protocols satisfying this property.
Although our techniques partly rely on techniques from [27]
and [32], the methods for achieving simulation-soundness
are, in fact, quite different.

Interestingly, the problem of constructing a family of poly-
nomially many zero-knowledge arguments, such that are the
protocols are simulation-sound with respect to each other
under parallel executions, has occurred before in the context
of stand-alone secure multi-party computation [26]. Previ-
ously, the only known constant-round protocols satisfying
this (potentially weaker) property were the non-malleable
zero-knowledge protocols of Barak [2] (with extensions in
[26]). Our construction improves upon these protocols both
in terms of assumptions (we rely on standard polynomial-
time hardness assumptions, while the protocols of [2] rely
on subexponential hardness assumptions), and in terms of
simplicity.

We believe that our techniques for achieving simulation-
soundness, and the zero-knowledge protocols constructed,
are of independent interest and might find applications else-
where.

1.3 Extensions to Arbitrary Sets of Parties
Until now we have focused on concurrent composition of

multi-party protocols for a single set of parties. In this set-
ting two (or more) parties are executing multiple concurrent
executions of the same protocol, each time playing the same
roles (i.e., using fixed roles). The setting originated in works
on concurrent zero-knowledge [18, 17], where in particular,
one party acts as prover in all concurrent executions and
another party acts as verifier in all executions. Alterna-
tively, this setting can be seen as modeling many different
provers and verifiers with the restriction that the adversary
may only corrupt either parties acting as provers or parties
acting as verifiers. In other words, the adversary may not
corrupt both a party acting as prover and a party acting as
verifier.

A more general setting considers concurrent composability
of a protocol with arbitrary subsets of parties [28]. In this
setting, arbitrary, and possibly intersecting, sets of parties
concurrently execute the same protocol. In particular, there
is no restriction on what role a specific party plays in the
protocol, and the roles might be interchanged. This means



that a party may play the role of P1 in one execution and
simultaneously play the role of P2 in a different execution.
In the case of zero-knowledge proofs, this would mean that a
party may act as prover in some of the concurrent executions
and act as verifier in the others.

In Section 3.3 we show that the framework developed in
this paper can be extended to give a protocol for secure
multi-party (and thus also two-party) computation for any
number of corrupted parties, which remains secure under
bounded-concurrent composition with arbitrary subsets of
parties. As far as we know, for the case of two-party or
multi-party protocols with a dishonest majority, this is the
first positive result for any non-trivial functionality (zero-
knowledge proofs being an important special-case) which
achieves this property. We mention that our solution re-
lies on the assumption that the participating parties have
unique identities.

1.4 Subsequent Work and Open Problems

Unbounded concurrency. The elegant lower bound of
Lindell [29] shows that unbounded concurrent composition
can not be achieved in the model that we are considering
(even for a single set of parties). Nevertheless, it might still
be possible to achieve unbounded concurrency in a weaker
model, where for example the inputs of the honest parties
are fixed ahead of the protocol execution (i.e., inputs are
chosen in a non-adaptive way).

Non-malleable cryptographic primitives. In subse-
quent work [33], our zero-knowledge protocols are used in
order to construct simple constant-round protocols for non-
malleable cryptographic primitives, such as commitments
and zero-knowledge, under standard cryptographic assump-
tions. Previous constant-round constructions relied on sub-
exponential hardness assumptions [2].

Cryptographic assumptions. We have shown that the
notion of (bounded-concurrent) secure multi-party compu-
tation with a dishonest majority can be achieved in a con-
stant number of rounds based on standard polynomial-time
hardness assumptions, such as the existence of enhanced
trapdoor permutations and collision resistant hash-functions.
In contrast, stand-alone secure multi-party computation with
polynomial round-complexity can be based on the existence
of only enhanced trapdoor permutations [21]. This gives rise
to two interesting open problems:

• Is it possible to construct a constant-round protocol
for stand-alone secure multi-party computation with a
dishonest majority, based on only enhanced trapdoor
permutations?

• Is it possible to construct a protocol (which might
have a non-constant round-complexity) for bounded-
concurrent secure two-party/multi-party computation
with a dishonest majority based on only enhanced trap-
door permutations?

1.5 Organization of the Paper
Formal definitions of bounded-concurrent secure multi-

party computation can be found in Section 2. Section 3
contains a high level description of our main proof, as well
as a description of our new zero-knowledge protocols.

2. DEFINITIONS
In this section we present the definition for m-bounded

concurrent secure multi-party computation. The definitions
below are generalizations of the definition of secure multi-
party computation with abort and no fairness of Goldwasser
and Lindell [24] and the definition of concurrent secure two-
party computation with adaptive inputs of Lindell [29].
Parts of the definition have been taken almost verbatim from
[24] and [29].

The basic description and definition of secure computa-
tion follows [23, 30, 5, 8]. We denote computational indis-

tinguishability by
c
≡, and the security parameter by k. For

notational simplicity, we let the lengths of the parties’ inputs
be k.

Multi-party computation. A multi-party protocol prob-
lem for n parties P1, ..., Pn is cast by specifying a random
process that maps vectors of inputs to vectors of outputs
(one input and one output for each party). We refer to
such a process as a n-ary functionality and denote it f :
({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, ..., fn). That is, for
every vector of inputs x̄ = (x1, ..., xn), the output-vector is
a random variable (f1(x̄), ..., fn(x̄)) ranging over vectors of
strings. The output of the i’th party (with input xi) is de-
fined to be fi(x̄). In the context of concurrent composition,
each party actually uses many inputs (one for each execu-
tion) and these may be chosen adaptively based on previous
outputs. The fact that m-bounded concurrency is consid-
ered relates to the allowed scheduling of messages by the
adversary in the protocol executions; see the description of
the real model below.

Adversarial behavior. In this work we consider a ma-
licious, static adversary. That is, at the beginning of the
execution the adversary is given a set I of corrupted par-
ties which it controls and through which it interacts with
the honest parties while arbitrarily deviating from the spec-
ified protocol. The focus of this work is not on fairness. We
therefore present a definition where the adversary always re-
ceives its own output and can then decide when (if at all)
the honest parties will receive their output. The scheduling
of message delivery is decided by the adversary.

Security of protocols (informal). The security of a pro-
tocol is analyzed by comparing what an adversary can do
in the protocol to what it can do in an ideal scenario. The
ideal scenario is formalized by considering an incorruptible
trusted third party to whom the parties send their inputs.
The trusted party computes the functionality on the inputs
and returns to each party its respective output.

Unlike in the case of stand-alone computation, here the
trusted party computes the functionality many times, each
time upon different inputs. Loosely speaking, a protocol
is secure if any adversary interacting in the real protocol
(where no trusted third party exists) can do no more harm
than if it was involved in the above-described ideal compu-
tation.

Concurrent execution in the ideal model. Let I ⊂ [n]
denote the subset of corrupted parties. An ideal execution
with an adversary who controls the parties I proceeds as
follows:



Inputs: The inputs of the parties P1, ..., Pn are respectively
determined by probabilistic polynomial-time Turing
machines M1, ..., Mn and the initial inputs x1, ..., xn to
these machines. As will be described below, these Tur-
ing machine determine the input values to be used by
the different parties in the protocol executions.
These input values are computed from the initial in-
put, the current session number and outputs that were
obtained from executions that have already concluded.
Note that the number of previous outputs ranges from
zero (when no previous outputs have been obtained)
to some polynomial in k that depends on the number
of sessions initiated by the adversary.

Session initiation: The adversary initiates a new session
by sending a (start-session, i) to the trusted party. If
i ∈ [n] − I (that is Pi is an honest party) the trusted
party sends (start-session, j) to Pi, where j is the index
of the session (i.e., this is the j’th session to be started
by Pi).

Honest parties send inputs to trusted party: Upon re-
ceiving (start-session, j) from the trusted party, each
honest party Pi applies its input-selecting machine Mi

to its initial input xi, the session number j and its
previous outputs, and obtains a new input xi,j . In
the first session xi,1 = Mi(x, 1). In later sessions
j, xi,j = Mi(x, j, αi,1...αi,ω) where ω sessions have
concluded and the outputs of Pi were αi,1, ..., αi,ω .
Each honest party Pi then sends (j, xi,j) to the trusted
party.

Corrupted parties send inputs to trusted party: When-
ever the adversary wishes it may ask a corrupted party
Pi to send a message (j, x′

i,j) to the trusted third party,
for any x′

i,j ∈ {0, 1}n of its choice. A corrupted party
Pi can send the pairs (j, x′

i,j) in any order it wishes
and can also send them adaptively (i.e., choosing in-
puts based on previous outputs). The only limitation
is that for any j, at most one pair indexed by j can be
sent to the trusted party.

Trusted party answers corrupted parties: When the
trusted third party has received messages (j, x′

i,j) from
all parties (both honest and corrupted) it sets x̄′

j =
(x′

1,j , ..., x
′
n,j). It then computes f(x̄′

j) and sends
(j, fi(x̄

′
j)) to Pi for every i ∈ I.

Trusted party answers honest parties: When the adver-
sary sends a message of the type (send-output, j, i)
to the trusted party, the trusted party directly sends
(j, fi(x

′
j)) to party Pi. If all inputs for session i have

not yet been received by the trusted party the message
is ignored. If the output has already been delivered to
the honest party, or i is the index of a corrupted party,
the messages is ignored as well.

Outputs: Each honest party Pi always outputs the vector
(fi(x̄

′
1), fi(x̄

′
2), ...) of outputs that it received from the

trusted party. The corrupted parties may output an
arbitrary (probabilistic polynomial-time computable)
function of its initial input and the messages obtained
from the trusted party.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be a n-ary functionality,
where f = (f1, ..., fn). Let S be a non-uniform probabilis-
tic polynomial-time machine (representing the ideal-model
adversary) and let I ⊂ [n] (the set of corrupted parties)
be such that for every i ∈ I, the adversary S controls
Pi. Then the ideal execution of f with security parame-
ter k, input-selecting machines M = M1, ..., Mn, initial in-
puts x̄ = (x1, ..., xn) and auxiliary input z to S, denoted
idealf,I,S,M (k, x̄, z), is defined as the output vector of the
parties and the adversary S resulting from the ideal process
described above.

Note that the definition of the ideal model does not in-
clude any reference to the bound m on the concurrency.
This is because this bound is relevant only to the schedul-
ing allowed to the adversary in the real model; see below.
However, the fact that a concurrent setting is considered can
be seen from the above-described interaction of the adver-
sary with the trusted party. Specifically, the adversary is
allowed to obtain outputs in any order that it wishes, and
can choose its inputs adaptively based on previous outputs.
This is inevitable in a concurrent setting where the adver-
sary can schedule the order in which all protocol executions
take place. In particular, the adversary can schedule the
executions sequentially, thereby learning previous outputs
before defining the next input.

Execution in the real model. We next consider the real
model in which a real multi-party protocol is executed (and
there exists no trusted third party).

We consider a scenario where the parties communicate
through an asynchronous fully connected point-to-point net-
work, without guaranteed delivery of messages. The com-
munication lines between the parties are assumed to be au-
thenticated and thus the adversary cannot modify messages
sent by honest parties.

Let f , I be as above and let Π be a multi-party proto-
col for computing f . Furthermore, let A be a non-uniform
probabilistic polynomial-time machine such that for every
i ∈ I, the adversary A controls Pi. Then, the real m-

bounded concurrent execution of Π with security parame-
ter k, input-selecting machines M = M1, ..., Mn, initial in-
puts x̄ = (x1, ..., xn) and auxiliary input z to A, denoted
real

m
Π,I,A,M (k, x̄, z), is defined as the output vector of the

honest parties and the adversary A resulting from the fol-
lowing process. The parties run concurrent executions of the
protocol, where every party initiates a new session whenever
it receives a start-session from the adversary. The honest
parties then apply their input-selecting machines to their
initial input, the session number and their previously re-
ceived outputs, and obtain the input for this new session.
The scheduling of all messages throughout the executions
is controlled by the adversary. That is, the execution pro-
ceeds as follows. The adversary sends a message of the form
(j, x) to an honest party. The honest party then adds x to
the view of its j’th execution of Π and replies according to
the instructions of Π and this view. Note that the honest
parties runs each execution of Π obliviously to the other exe-
cutions. (Thus, this is stateless composition.) The fact that
the network is asynchronous means that the adversary has
complete control over the timing and delivery of messages.
In particular, the adversary may decide never to deliver cer-
tain messages. This is modeled as follows: The parties send
messages by placing them in a “out-box” and the adversary
delivers (or does not deliver) them at will.



The fact that we are considering m-bounded concurrency

means that the scheduling by the adversary must fulfill the
following condition: for every execution i, from the time
that the i’th execution begins until the time that it ends,
messages from at most m different executions can be sent.

Note that this definition of concurrency covers the case
that m executions are run simultaneously. However, it also
includes a more general case where many more than m ex-
ecutions take place, and they possibly all overlap.

Security as emulation of a real execution in the ideal
model. Having defined the ideal and real models, we can
now define security of protocols. Loosely speaking, the defi-
nition asserts that a secure multi-party protocol (in the real
model) emulates the ideal model (in which a trusted party
exists). This is formulated by saying that for every real-
model adversary there exists an ideal model adversary that
can simulate an execution of the secure real-model protocol.

Definition 1. (security in the malicious model): Let m =
m(k) be a polynomial and let f and Π be as above. Pro-

tocol Π is said to t-securely compute f under m-bounded

concurrent composition if for every real-model non-uniform

probabilistic polynomial-time adversary A, there exists an

ideal-model non-uniform probabilistic expected polynomial-

time adversary S, such that for all input-selecting machines

M = M1, ..., Mn, every z ∈ {0, 1}∗, every x̄ = (x1, ..., xn),
where x1, ..., x2 ∈ {0, 1}∗ and every I ⊂ [n] with |I| < t,
n

idealf,I,S,M (k, x̄, z)
o

k∈N

c
≡

n

real
m
Π,I,A,M (k, x̄, z)

o

k∈N

That is, concurrent executions of Π with A cannot be dis-

tinguished from concurrent invocations of f with S in the

ideal model.

3. PROOF OUTLINE
In this section we give a high-level outline of our proof, as

well as a description of our new zero-knowledge protocols.
The starting point of our proof is the constant-round se-

cure multi-party computation protocol for semi-honest ad-
versaries of Beaver, Micali and Rogaway [7, 36]. Our goal is
to compile this protocol into a protocol that is secure against
a malicious adversary, in a way that preserves security un-
der an a-priori bounded number of concurrent executions.
Goldreich, Micali and Wigderson [21] presented a general
compilation technique for the stand-alone setting, showing
the usefulness of zero-knowledge proofs in order achieve such
a compilation. Unfortunately, it is not known if the tech-
nique of [21] is secure in the concurrent setting.

Inspired by the central role of zero-knowledge proofs in the
compilation of [21], we show a compilation for the concurrent
setting in the following two step:

1. Identify a suitable notion of “zero-knowledge” proofs,
called special-purpose zero-knowledge, and show that
the compilation task reduces down to the construction
of such protocols.

2. Implement special-purpose zero-knowledge.

The high-level structure of our proof follows that of Pass
and Rosen [32] which in turn builds on the work of Lin-
dell [27].

3.1 Reducing the Problem to Special-Purpose
Zero-Knowledge

Idealized Functionalities. Our starting point is the pro-
tocol of Canetti et al. [13]. They show that in a setting
where all parties have access to a specific idealized function-

ality, protocols secure against a semi-honest adversary can
be compiled into protocols secure against a malicious adver-
sary.3 The notion of ideal functionalities is a central tool
in the framework of universal composability [9], and can be
thought of as the introduction of a trusted third party that
is designed to perform a specific task. In the case of Canetti
et al. [13], the protocol requires usage of the ideal one-to

many zero-knowledge proof of knowledge functionality.

The IdealZK1:M functionality: Informally, the ideal one-
to-many zero-knowledge proof of knowledge functionality
(called IdealZK1:M) for a language L is specified as follows:
The prover sends an instance-witness pair (x,w) to the ideal
functionality which, in turn, sends (x, 1) to all the other
parties if w is a valid witness for x ∈ L and (x, 0) oth-
erwise. (That is one prover proves a statement to many
verifiers). The setting in which the parties have access to
(multiple) ideal one-to-many zero-knowledge functionalities
is called the ZK1:M-Hybrid model. Our motivation is to re-
move the usage of the ideal functionality and implement a
protocol that performs the same task but in the real model.
In order to achieve this, we show a general transformation
that transforms any protocol Π̃ in the ZK1:M-Hybrid model
into a protocol Π in the real model (without any ideal func-
tionalities or set-up assumptions). This is what we call real-

izing the ZK-Hybrid1:M model. Jumping ahead, we mention
that this part also includes the construction of the special-
purpose zero-knowledge protocols (as will be described in
Section 3.2). We further show that the transformation sat-
isfies the following properties:

Concurrency: The protocol’s security is preserved under
(bounded) concurrent composition.

Round-Efficiency: The protocol’s round-complexity is
preserved (up to a constant factor).

In particular the transformation can be applied to the pro-
tocol of [13] (when in turn applied to the protocol of [7]) in
order to obtain a constant-round bounded concurrent secure
multi-party computation protocol.

How to Realize any Protocol in the ZK1:M-Hybrid
Model. The above transformation is performed in three
steps:

1. Reduce the usage of the IdealZK1:M functionality to
the usage of the more standard two-party ideal zero-
knowledge proof of knowledge functionality, IdealZK.
Whereas the IdealZK1:M functionality models interac-
tion between a single prover and many verifiers, the
IdealZK functionality models interaction between a sin-
gle prover and single verifier. The idea underlying the
reduction is straight-forward and similar to the idea

3The result by Canetti et al. [13] is in fact stronger, as they
construct a protocol that is universally composable [9]. Nev-
ertheless, in this work we only require composition in the
(less demanding) concurrent setting.



used by Goldwasser and Lindell [24] to implement a
broadcast channel. Roughly, whenever a prover wishes
to prove a statement x using the IdealZK1:M function-
ality, he instead gives an individual proof of x to each
other party using the IdealZK functionality. Whenever
a party receives a proof of a statement x it sends an
acknowledgment to all other parties. Finally, when
a party has received both a proof (from the IdealZK

functionality) and an acknowledgment from all other
parties it accepts the proof of the instance x. More
details in the full version.

2. Reduce the usage of the IdealZK functionality to the
usage of a weaker ideal functionality, MemberZK. Whe-
reas the IdealZK functionality models a proof of knowl-
edge, i.e., the prover not only proves the validity of a
statement but also that it possesses a witness for it,
the MemberZK functionality models simply a proof.
Such a reduction was shown in [32], making use of a
general transformation of zero-knowledge proofs into
zero-knowledge proofs of knowledge due to [4]. We re-
mark that the same reduction goes through also in the
multi-party setting.

3. Show how to transform any protocol using the Mem-

berZK functionality (we call this setting the MemberZK-

Hybrid model) into a protocol in the real model by
“plugging in” the special-purpose zero-knowledge pro-
tocols. We note that such a transformation was shown
in [27] and in [32] for the special case of two-party pro-
tocols. Unfortunately, these transformations do not
seem to directly extend to the multi-party setting.

The proof of the last step essentially boils down to the con-
struction of a family of n (one for each party) constant-round
zero-knowledge protocols, cZK1, ..., cZKn. These protocols
are used to instantiate calls to the MemberZK functionality,
in the following way: a call to the MemberZK functionality
initialized by a party Pi (acting as prover) is instantiated
with an execution of the protocol cZKi. In order for the in-
stantiation to preserve security, the family of protocols needs
to satisfy the following requirements:

• The protocols are bounded-concurrent zero-knowledge.

• The protocols compose concurrently with respect to
arbitrary protocols with an a-priori bounded commu-
nication complexity.

• The protocols compose concurrently (an a-priori boun-
ded number of times) with respect to themselves, with
the roles of the prover and the verifier reversed. That
is, simulation of the protocols can be performed even
while simultaneously verifying them.

• Simulation of the protocols does not make use of rewind-
ing.

• The protocols are simulation-sound with respect to
each other. That is, the soundness of each one of the
protocols is preserved even when the all the other pro-
tocols are simulated at the same time with the role of
the prover and verifier reversed.

3.2 The Special-Purpose ZK Protocols
As in [32], our special purpose zero-knowledge protocols

are based on the bounded-concurrent zero-knowledge proto-
col of Barak [1]. Before describing our protocols we therefore
give a brief description of this protocol with an emphasis on
the simulation technique, which will be useful in our setting.
(Parts of the following paragraph are taken almost verbatim
from [32]).

Barak’s protocol relies on the existence of collision resis-
tant hash functions. Other tools used in the protocol are
perfectly binding bit-commitments and a witness-indistin-
guishable universal argument (WI UARG) [3]. More details
on Barak’s protocol can be found in [1]. The underlying idea
behind Barak’s protocol is the usage of an NTIME(T (k))
relation denoted Rsim. This relation is described in Figure 1.

Barak’s NTIME(T (k)) Relation RSim

Input: A triplet 〈h, c, r〉.

Witness: A program Π, a string y ∈ {0, 1}(|r|−k), and
string s.

Relation: RSim(〈h, c, r〉, 〈Π, s, y〉) = 1 if and only if:

1. c = Com (h(Π); s).

2. Π(c, y) = r within T (k) steps.

Figure 1: Barak’s NTIME(T (k)) relation Rsim.

Let T : N → N be a “nice” function that satisfies T (k) =

kω(1). Let T ′ : N → N be a function such that T ′(k) =

T (k)ω(1). Suppose there exist a T ′(k)-collision resistant hash
functions ensemble {Hk}h∈{0,1}k where h maps {0, 1}∗ to

{0, 1}k. Barak’s protocol is described in Figure 2.

Barak’s Non Black-Box ZK Protocol for NP

Common Input: an instance x of a language L, secu-
rity parameter 1k.

Length parameter: `(k).

Stage 1:

V → P : Send h
r
←Hk.

P → V : Send c = Com(0k).

V → P : Send r ∈ {0, 1}`(k).

Stage 2: (Proof Body)

P ↔ V : A WI UARG proving the OR of the
following two statements:

1. ∃w ∈ {0, 1}poly(|x|) s.t RL(x,w) = 1.

2. ∃〈Π, s〉 s.t RSim(〈h, c, r〉, 〈Π, s〉) = 1.

Figure 2: Barak’s bounded-concurrent zero-
knowledge argument for NP.

Before we continue discussing the security of the protocol,
let us remark that the assumption of hash functions collision
resistant for slightly super-polynomial time can be relaxed to
the standard assumption of hash functions collision resistant
for polynomial time [3]. Looking ahead, we note that the
same relaxation can be done also to our protocols.



As shown in [1], Barak’s protocol is computationally sound.
Moreover, given access to the verifier’s code (or, equiva-
lently, to the verifier’s next message function), the proto-
col can be simulated without making use of rewinding. To
simulate a specific session, the simulator commits to the
verifier’s next-message function (instead of committing to
zeros). The verifier’s next message function is then a pro-
gram whose output depends on all the prover messages sent
between messages c and r in the relevant session. Now, if
the length of all these messages is bounded by `(k) − k the
simulator will have a valid witness for stage 2 of the proto-
col. The zero-knowledge property then follows (with some
work) from the witness indistinguishable property of stage
2.

Barak [1] has shown that the length of the prover’s mes-
sages in a single execution can be bounded by 2k2. Thus,
for m concurrent executions, taking `(k) = 2m ·k2 +k would
do. We note that the length of the verifier’s messages, not

counting r’s, can also be bounded by 2k2.
An important extra feature of the protocol is that it is

sufficient that the simulator has a “short” description of the
prover’s messages. The protocol is thus simulatable even
if the total length of the prover’s messages is greater than
`(k) − k, as long as the simulator has a description of a
program for generating the prover’s messages that is shorter
than `(k) − k.

Our protocols: Suppose there exist a collision resistant
hash functions ensemble {Hk}h∈{0,1}k as required by Barak’s
protocol. We are ready to describe our special purpose pro-
tocols, cZK1, ..., cZKn (depicted in Figure 3).

Protocol i - cZKi

Common Input: an instance x of a language L, secu-
rity parameter 1k.

Length parameter: `(k).

Stage 0 (Set-up):

V → P : Send h
r
←Hk.

Stage 1 (Slot 1):

P → V : Send c1 = Com(0k).

V → P : Send r1
r
← {0, 1}i`(k)

Stage 2 (Slot 2):

P → V : Send c2 = Com(0k).

V → P : Send r2
r
← {0, 1}(n+1−i)`(k)

Stage 3: (Proof Body)

P ↔ V : A WI UARG proving the OR of the
following two statements:

1. ∃w ∈ {0, 1}poly(|x|) s.t RL(x,w) = 1.

2. ∃〈Π, s, j〉 s.t RSim(〈h, cj , rj〉, 〈Π, s〉) = 1.

Figure 3: The i’th special-purpose zero-knowledge
protocol – cZKi.

The difference of the protocols cZKi from the protocol of
Barak is that the prover (simulator) is given two opportu-
nities to guess the verifier’s next message (called the chal-
lenge). We call each such opportunity a slot. Messages that

are exchanged between the message cj and the message rj

are said to be contained in slot j. Note that it is sufficient
to have a “short” description of the messages contained in
one of the two slots to succeed in the simulation of cZKi.

Note that the sequence of protocols satisfies the following
two properties:

• the length of the first challenge, r1, is strictly increas-

ing,

• the length of the second challenge, r2, is strictly de-

creasing.

Thus, for any two protocols cZKi, cZKj it holds that either
the length of the first or the second challenge in cZKi is
strictly larger than the corresponding challenge in cZKj .
This property will be essential to us when proving that the
protocols are simulation sound with respect to each other.

Simulating the protocols: Let `(k) = m(γ · 4k2 +
length(Π′)) + k, where Π′ denotes the protocol in the
MemberZK-Hybrid model (that we wish to realize) and γ
is the total number of ideal zero-knowledge calls in one
execution of Π′. We note that the total length of mes-
sages sent by a party, not including the challenges r1, r2,
is bounded by m(γ · 2k2 + length(Π′)), as both the length
of the prover messages and verifier messages in the proto-
cols cZK1, ..., cZKn are bounded by 2k2. It follows that
if the simulator can give a description of the various chal-
lenges r1, r2 (each being of length at least `(k)) that is
shorter than k2 it will always succeed in the simulation of
cZK1, ..., cZKn, even if simultaneously verifying these pro-
tocols. As in [32], this is done by letting the simulator use a
pseudorandom generator4 in order to generate verifier mes-
sages (and in particular the verifier’s challenges r1, r2) when
playing the role of the verifier in other protocols.

Note that the simulator has two opportunities to succeed
in the simulation, that is by either using slot 1 or 2. As
a convention, we let the simulator always use the first slot
to commit the verifier’s code and acts as the honest prover
(that is committing to zeros) in the second slot.

Soundness of the stand-alone protocols: It follows us-
ing the same argument as in [1] that the protocols are com-
putationally sound.

Simulation soundness. The last step is to guarantee that
the soundness of each one of the protocols cZK1, ..., cZKn

is not violated when simulating any (or all) of the other
protocol with the roles of the prover and verifier reversed.
To do this we show how to transform a cheating prover in
this simulation/cheating scenario into a cheating prover for
the stand alone case.

Suppose there exists a cheating prover P ∗ that manages
to violate the soundness of one instance of protocol cZKi

while it is verifying the simulation of multiple concurrent
instances of the other protocols cZKj , where j 6= i.

Using a standard argument, we show how to construct a
cheating prover P ∗∗ for a single instance of cZKi by for-
warding the messages of this “cheating” instance of cZKi to
an external honest verifier V (the instance in which P ∗ is

4Note that the existence of pseudorandom generators follows
from our assumptions [25].



actually cheating can be “guessed” by picking one of the in-
stances of cZKi at random). V ’s replies are then forwarded
by P ∗∗ back to P ∗ as if they were generated by the simu-
lator. Since P ∗ is assumed to be cheating in this specific
instance of cZKi, and since the verifier messages used by
P ∗∗ are indistinguishable from the messages used by V , the
(stand-alone) soundness of cZKi is presumably violated.

One problem that arises is that the code of the exter-
nal verifier V is not available to us. This means that the
straightforward simulation of the protocols cZKj , where
j 6= i, cannot be completed as it is, since it explicitly re-
quires possession of a “short” description of the correspond-
ing verifier messages. To overcome this problem we resort
to an alternative simulation technique.

The alternative simulator. For all protocol cZKj where
j 6= i we resort to the following alternative simulation tech-
nique.

We start by noting that except for the “long” challenges
r1, r2 sent by the verifier of cZKi we do have a description of
all messages sent to the adversary that is shorter than `(k)−
k. In order to show that we can still perform a simulation,
even in the presence of these messages (to which we do not
have a short description), we use the fact that it is sufficient
to have a short description of the messages sent in one of
the slots of cZKi.

We separate between two different schedulings:

Both the first and the second challenge r1, r2 in
cZKi are contained in the same slot in cZKj.
It follows that there is always a “free” slot in cZKj

which can be used to perform the simulation. The WI
property of the UARG guarantees that the the pre-
sumed cheating prover will still succeed in convincing
the honest verifier of protocol cZKi with roughly the
same probability.

The messages r1, r2 in cZKi occur in slot 1, 2 respec-
tively in cZKj . By the construction of the protocols
it follows that the length of either the first or the sec-
ond challenge in cZKj is at least `(k) bits longer than
the corresponding challenge in cZKi. Thus there exist
a slot in cZKj such that even if we include the veri-
fier’s challenge, from the protocol cZKi, in whole, in
the description, we still have `(k) − k to describe the
other messages, which means that simulation can be
performed. As in the previous case, the WI property
of the UARG guarantees that the presumed cheating
prover will still succeed in convincing the honest veri-
fier of protocol cZKi with roughly the same probabil-
ity.

3.3 Arbitrary Sets of Parties
Until this point we have focused on concurrent composi-

tion of secure multi-party computation for a single set of
parties, i.e., n parties that concurrently are running many
executions of the same protocol, each time playing the same
roles in the protocol. A more general setting considers arbi-

trary sets of parties [28]. In this setting, arbitrary, and pos-
sibly intersecting, sets of parties concurrently execute the
same n-party protocol. In particular, there is no restriction
on what role a specific party plays in the protocol. This
means that a party may play the role of P1 in one execu-
tion and simultaneously play the role of P2 in a different
execution.

It is quite easy to see that unless the parties have identi-
ties it is impossible to construct a protocol for secure two-
party (and thus also multi-party) computation in this gen-
eral setting. This follows since without identities a man-in-
the-middle attack can not be prevented. Let us therefore
focus on a setting where all parties have unique identities.

First, assume that the participating parties have identities
of length O(log k) (note that this is enough to model poly(k)
parties). In this case, essentially the same construction as
previously described can be used. The only difference is
that when instantiating calls to the MemberZK functional-
ity with a special-purpose zero-knowledge protocol, this is
done by using the protocol cZKid, where id is the identity of
the prover initiating the zero-knowledge proof. Note that,
whereas in the case of a single set of parties we instantiated
the zero-knowledge calls according to the role of the prover
in the the main protocol, the above-described instantiation
is independent of the proving party’s role and, instead, only
depends on its identity. Using this construction the same
proof as in the case of a single set of parties goes through.5

A more standard setting considers parties with identities
of length k (i.e., 2k possible identities). In this setting, the
above-mentioned construction does not directly work. In
fact, in order to make the same proof work, we need to
construct a family of 2k (instead of only O(k)) protocols
that are simulation-sound with respect to each other. Be-
low we outline how the special-purpose zero-knowledge pro-
tocols given in Figure 3 can be modified in order to achieve
this property. Unfortunately, this modification increases the
round-complexity.

For simplicity, let the identity id be given in base k. Let
idi denote the i’th digit of id in base k. Note that the length
of id, denoted |id|, is k/ log k. We show how the special-
purpose protocols can be modified, using 2|id| slots, instead
of 2 slots, in order to be simulation-sound for 2k identities.
The protocol for a specific identity id is specified as follows.
The first half of the slots will decode the identity id, i.e.,
the length of the challenge ri in slot i is idi · l(k). The
second half will be “mirror-slots” (in the same way that slot
2 was a mirror-slot to slot 1 for the special-purpose protocols
in Figure 3), i.e, the challenge r|id|+i in slot |id| + i is of
length (n + 1)l(k)− ri. It follows, using the same argument
as was used for the protocols in Figure 3, that the above
construction yields a family of 2k zero-knowledge protocols
that are simulation-sound with respect to each other.
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