
Towards Realizing Random Oracles:
Hash Functions That Hide All Partial Information

Ran Canetti

IBM T.J. Watson Research Center. Email: canettiOwatson.ibm.com

Abstract. The random oracle model is a very convenient setting for
designing cryptographic protocols. In this idealized model all parties
have access to a common, public random function, called a random or-
acle. Protocols in this model are often very simple and efficient; also
the analysis is often clearer. However, we do not have a general mech-
anism for transforming protocols that are secure in the random oracle
model into protocols that are secure in real life. In fact, we do not even
know how to meaningfully specify the properties required from such a
mechanism. Instead, it is a common practice to simply replace - often
without mathematical justification - the random oracle with a ‘crypto-
graphic hash function’ (e.g., MD5 or SHA). Consequently, the resulting
protocols have no meaningful proofi of security.
We propose a research program aimed at rectifying this situation by
means of identifying, and subsequently realizing, the useful properties
of random oracles. As a first step, we introduce a new primitive that
realizes a specific aspect of random oracles. This primitive, c d e d omcle
hashang, is a hash function that, like random oracles, ‘hides all partial
information on its input’. A salient property of oracle hashing is that it is
probabilistic: different applications to the same input result in Merent
hash d u e s . Still, we maintain the ability to uee jy whether a given hash
value was generated from a given input. We describe constructions of
oracle hashing, as well as applications where oracle hashing successfully
replaces random oracles.

1 Introduction

Existing collision resistant hash functions, such as MD5 [Ri] and SHA [SHA],
are very useful and popular cryptographic tools. In particular, these functions
(often nicknamed ‘cryptographic hash functions’) are used in a variety of settings
where far stronger properties than collision resistance are required.

Some of these properties are better understood and can be rigorously formu-
lated (e.g., the use as pseudorandom functions [BCKl], or as message authentica-
tion functions [BCK2]). Often, however, these extra properties are not precisely
specified; even worse, it is often unclear whether the attributed properties can
at all be formalized in a meaningful way.

We very roughly sketch two salient such properties. One is ‘total secrecy’:
it is assumed that if h is a cryptographic hash function then h (z) ‘gives no
information on c’. The other is ‘unpredictability’: it is assumed to be infeasible
to ‘find an z such that z , h (z) have some desired property’. This is of course
only a sketch; each application requires different variants.

B.S. Kaliski Jr. (Ed.): Advances in Cryptology - CRYPT0 ’97, LNCS 1294, pp. 455-469, 1997.
0 Springer-Verlag Berlin Heidelberg 1997

456

These uses of MD5, SHA, and other cryptographic hash functions are often
justified by saying that ‘using cryptographic hash functions is equivalent to using
random oracles’. More specifically, the following random oracle paradigm is em-
ployed. Assume the security of some protocol (that makes use of a ‘cryptographic
hash function’ h) needs to be proven. Then an idealized model is formulated,
where there is a public and r a n d o m function R such that everyone can query R
on any value x and be answered with R(z) . Next modify the protocol so that
each invocation of the hash function h is replaced with a query to R. Finally, it
is suggested that if the modified construction (using R) is secure in this idealized
model then the original construction (using h) is secure in ‘real-life’. (We remark
that here the random oracle can be viewed as an ‘ideal hash function’. In par-
ticular, R satisfies both the ‘total secrecy’ and the ‘unpredictability’ properties
sketched above, since R(t) is a r a n d o m n u m b e r totally independent of z.)

However, the fact that a construction is secure in the random oracle model
does not provide any concrete assurance in the security of this construction in
‘real life’. In particular, there exist natural protocols that are secure if a random
oracle is used, but are clearly insecure if the random oracle is replaced by any
deterministic func t ion (and in particular by any cryptographic hash function).
The motivating scenario described below provides a good example. (In view of
this criticism we stress that, with all its drawbacks, the random oracle model
has proved instrumental in designing very useful protocols and applications, as
well as new concepts, e.g. [FS, BDMP, M, BR1, BR2, BR3, PSI).

In this work we make a first step towards rigorously specifying some ‘random-
oracle-like’ properties of hash functions. We concentrate on the ‘total secrecy’
property sketched above. That is, we propose a new primitive, called oracle
hashing, that hides all partial information on its input, while maintaining the
desired properties of a hash function.

The rest of the introduction is organized as follows. We first sketch a mo-
tivating scenario for the new primitive. Next we describe the new primitive,
together with several constructions and applications.

Consider the following scenario. (It should be kept
in mind that, while providing initial intuition for the properties desired from the
new primitive, this scenario is of limited scope. In particular, some properties of
the new primitive do not come to play here.) Alice intends to publish a puzzle
in the local newspaper. She also wants to attach a short string c that will allow
readers that solved the puzzle to verify that they have the right solution, but
such that c will ‘give away’ n o part ial i n f o m a t i o n about the solution, X , to
readers who have not solved the puzzle themselves. In other words, Alice wants
c to mimic an ‘ideal scenario’ where the readers can call the editor (as many
times as they wish), suggest a solution and be answered only ‘right’ or ‘wrong’.

A crypto-practitioner posed with this problem may say: “what’s the big deal?
c should be a cryptographic hash (e.g., MD5 or SHA) of the solution. It is easily
verifiable, and since the hash is one-way c gives no information on the preirnage.”

Indeed, this ad-hoc solution may be good enough for some practical pur-
poses. However, when trying to ‘pin down’, or formalize the requirements from a
solution some serious difficulties are encountered. In particular, no known c ryp
tographic primitive is adequate. For instance one-way functions are not good

A motivating scenario.

457

enough, since they only guarantee that the en t i re preimage cannot be computed
given the function value. It is perfectly possible that a one-way function ‘leaks’
partial information, say half of the bits of its input.

Furthermore, any de te rmin i s t i c function (even ones that hide all the bits of
the input, and even ‘cryptographic hash functions’) are inadequate here, since
they are bound to disclose s o m e information on the input: For any deterministic
function f, f(x) itself is some information on z. One way hash families [NYl]
are inadequate for the same reason: they only guarantee that collisions are hard
to find, and may leak partial information on the input.

Similarly, commitment schemes (even non-interactive ones) are inadequate
since they require the committer to participate in the de-commit stage, whereas
here the newspaper editor does not want to be involved in de-committals. (Also,
de-committals by nature reveal the correct solution x, even if the suggested
solution is wrong.)

In fact, it seems that the only known way to model such a primitive is via
the random oracle model: Given access to a random oracle R, Alice can simply
publish c = R(z), where z is the solution to the puzzle. This way, given 2: it can
be easily verified whether c = R (z) , and as long as the correct z is not found
then R(x) , being a totally random string, gives no information on x.

We remark that R(r) does in a way provide assistance in finding z since
one can now exhaustively search the domain of solutions until a solution x such
that R (x) = c is found. This is, however, the same assistance provided by the
newspaper in the ‘ideal scenario’ described above; thus it is a welcome property
of a solution.
The new primitive: Oracle Hashing. The proposed primitive, oracle hash-
ing, is designed to replace the random oracle R in the above scenario, as well as
in several others. The idea behind this mechanism is quite simple. Traditionally,
one thinks of a hash function as a d e t e r m i n i s t i c construct, in the sense that two
invocations on the same input will yield the same answer. We diverge from this
concept, allowing the hash function, HI to be probabilistic in the sense that dif-
ferent invocations on the same input result in different outputs. That is, H (z)
is now a random variable depending on the random choices of H. It is this ran-
domization that allows us to require that H (z) will ‘hide all partial information
on 2’.

Oracle hashing also diverges from the notion of (universal, or even one way)
hash families [CW, NYl], since there it is usually the case that a d e t e m i n i s t i c
function is randomly chosen ‘beforehand’, and then fixed for the duration of the
application.

But now we may have lost the ability to verify hashes. So we require that
there exists a verification algorithm, V, that correctly decides, given x and c,
whether c a hash of z. (Using standard deterministic hashing, the verification
procedure is simple: apply the hash function to z and check whether the result
equals c. Here a different procedure may be required.)

This mechanism is somewhat reminiscent of signature schemes, where H
takes the role of the signing algorithm and V takes the role of the signature ver-
ification algorithm. It is stressed, however, that here no secret keys are involved
and both functions can be invoked by everyone. (Also, here additional properties
will be required from the pair H , V.)

It remains to formulate the ‘secrecy’ requirement. This proves to be a non-
trivial task. We want to capture the property that ‘the hashed value gives no
information on the input’. The natural concept that comes to mind is semantic
security (originally used for encryption schemes [GM]): ‘whatever can be com-
puted given H (z) can also be computed without it’. But semantic security is
unachievable in our scenario, since given H (z) and some value y one must be
able to tell whether z = y. In particular, if the input z has only a small number
of possible values (say 0 or 1) then it is easy to find 2: from H (t) by running the
verification algorithm on all possible inputs.

We thus introduce a new, weaker notion of secrecy, which we call oracle
security. This notion essentially means that the only way in which c = H (z)
can be used to find information on x is by exhaustively trying different Z’S and
checking if V (Z , c) accepts. Very roughly, this can be formulated as follows: Let
1% be the oracle that answers 1 to a query z iff z = 2; Otherwise it answers 0.
Then, “finding information on x given H (x) is equivalent to finding information
on z given only access to the oracle I=”. Thus, oracle security is valuable only
if there is ‘enough uncertainty’ about the input, i.e. if no single input is too
probable.

We present several equivalent formalizations of oracle security. Furthermore,
as in the case of encryption, it is convenient to incorporate in the formalization
the notion of ‘a-priori information’ on the secret value. However here (in contrast
with the case of encryption) we don’t know whether oracle security without a-
priori information is equivalent to oracle security with a-priori information. We
elaborate within.
O n the constructions. We present a simple oracle hashing scheme based on
number-theoretic primitives. Assume a large safe prime p is known. (p is safe if
q = (p - 1)/2 is a prime.) Then, given input 2, choose a random element T in 2;
and let H (x) = ?, T ~ ‘ ~ (~) , where the calculations are made modulo p , and h is
any collision resistant hash function. Verification is straightforward (i.e., to verify
whether a pair a, b is a hash of a known message z, check whether ah(z) 3 b (mod
p)) . Here the only requirement from the hash function h is collision resistance.
The security of this construction is shown based on strong variants of the Diffie-
Hellman assumption. (Different assumptions are needed to show different levels
of security.) These assumptions may well be of independent interest.

The above scheme is somewhat costly, since it involves a modular exponen-
tiation. We thus suggest simple constructions based on a cryptographic hash
function h. (For instance, let H (z , r) = P, h(r , h(z)) .) Here we of course make
stronger assumptions on h than just collision resistance. We stress however that,
in contrast to the ‘random oracle heuristic’, these are well-defined assumptions.

We remark that constructs similar to the ones described here are implicit in
several previous works, sometimes for related purposes (e.g., [F, P, El). None of
these works, however, suggests any primitive similar to the one proposed here.
Also, a similar idea is used in the BSD UNIX password file, where a random
‘salt’ is prepended to a password before encrypting it, and then stored together
with the ciphertext.
Applications. A first, immediate application is for scenarios like the ‘puzzle

459

in the newspaper’ scenario (i.e., whenever one wants to make public a verifi-
able hash that leaks no information on the hashed value.) Oracle hashing can
also be used to replace the use of random oracles in known constructions. We
demonstrate this on an encryption function introduced by Bellare and Rogaway
[BRl]. This function was proven semantically secure only in the random oracle
model described above. (It is suggested in [BRl], as a rule-of-thumb, to replace
the random oracle with a cryptographic hash function.) We show that if one
replaces oracle hashing for random oracles then the construction becomes secure
without resorting to random oracles.

Another application is for content-concealing signatures: Assume that one
wants to sign a message m and at the same time make sure that the signature
itself hides all partial information on m (from parties who do not already know
m). Then, given a message m one can simply sign H (m) instead of signing m.
See more details within.
Further research. This work can be viewed as a first step in a research pro-
gram whose goal is to better understand the random oracle model. This model
‘blends’ in it several potentially unrelated desired characteristics hash functions,
in a way that makes it hard to distinguish which property is being used at
each application. Such properties are ‘total secrecy’ together with several quite
different flavors of ‘unpredictability’. As demonstrated here, some applications
need only some properties and not others. Is it possible to identify additional
such properties, and subsequently to realize them without resorting to random
oracles?

2 Defining oracle hashing

The definition of oracle hashing consists of three requirements: Corn pleteness
and Correctness (that together comprise a validity requirement), together with
Secrecy. The first two requirements are fairly standard. Formulating the Secrecy
requirement, however, is non-trivial. We present several variants and briefly dis-
cuss their relations.
Completeness. This requirement is straightforward: “Algorithm V will accept
(except perhaps with negligible probability) pairs x , c where c is generated by
applying H to 2.’’
Correctness. We would like to require that: “ It is infeasible to cheat V into
accepting pairs T , c such that c was not generated b y applying H to T . ” Formal-
izing this requirement is somewhat tricky since the fact that H is probabilistic
make the statement ‘c was not generated as H (x) ’ ambiguous. In particular,
this requirement takes different flavors depending on whether the producer of
the hash is trusted to use H as specified (in which case one only needs to protect
against non-malicious errors) or untrusted (in which case one need to protect
against malicious efforts to generate ambiguous hashes). We get around these
problems by making the stronger requirement that it is infeasible to find ‘colli-
sions’, i.e. two different inputs 2, y and a hash value c such that V accepts c as
a legal hash of both x and y.
Secrecy (oracle security). We want to say that: “Bavingc = H (z) gives
no information on x, besides the ability to exhaustively search the domain for

460

z such that c = H(z) .” This requirement takes different flavors, depending on
which probability distributions on the inputs are considered, and on whether the
attacker is assumed to have some a-priori information on 2. We start with the
case where no a-priori information on 1: is known. Here we present our chosen
formalization, together with two other formalizations. We show that all three are
equivalent.’ We believe that comparing the different formalizations helps under-
standing the nature of oracle security. In particular, two of the formalizations
are reminiscent of the two equivalent formalizations of the security of encryption
functions (see [GI).

We first need the following definitions: Say that a function f : N -+ R is
negligible if it approaches zero faster than any polynomial (when its input grows
to infinity).

Definitionl. Let X = { X k) k E N and y = (Y k } k E N be two ensembles of prob-
ability distributions. We say that X and y are corn putationally indistinguish-
able (and write X & Y) if for any polytime distinguisher D the difference
IProb(D(z) = 1) - Prob(D(y) = 1)1 is a negligible function of h , where z is
drawn from xk and y is drawn from Yk.

Definition2. A distribution ensemble X = { X k } k E ~ is well-spread if for any
polynomial p (.) and all large enough k, the largest probability of an element in
Xk is smaller than p(k) (i.e., maxa(Xk(cz)) < p (k)) .
(In other words, the ma-entropy of distributions in X must vanish super-
logarithmically, see [CG]).

We proceed to the (basic) definition of oracle hashing. Consider a pair of
algorithms H , V. Algorithm Ei, given a security parameter k and input I, chooses
a random value in domain Rk and outputs a value c. Algorithm V , given k and
input c, outputs a binary value. In the sequel the security parameter, h , is often
implicit in our notation.

Definition3. Say that H , V are an oracle hashing scheme if the following re-
quirements hold.

1. Completeness: For all large enough k, for all input z and for T En Rk we
have that Prob(V(z, H(z, T)) # 1) is negligible (in k) . 2

2. Correctness: For any probabilistic polynomial time adversary A, the prob-
ability that A outputs, on input k, a triplet c, z, y such that z # y and
V(z, c) = V(y, c) = 1 is ~~eg l ig ib l e .~

Here and for the rest of the discussion we assume non-uniform adversaries. Le., an
adversary is a family of circuits with polynomial size.
E ER D means that element 2 is independently and uniformly chosen from domain
D.
Note that in the case that such triplets c, 2, y exist, a non-uniform adversary can
have a fixed triplet ‘wired in’ its circuit for each value of k. Thus, it appears to make
no sense to require that it is hard to find such triplets. We get around this problem
by letting H, V be chosen a-priori from a family of functions, and requiring that any
fixed triplet forms a collision only €or a small fraction of the €unctions in the family.
See [D].

46 1

3. Secrecy: For any poly time adversary A w i t h b inary output, and any well-
spread distribution {xk}:

(z, d(H(x, 7))) (2, -d(B(y, r))) (1)
where r ER Rk, and x, y are independently drawn from xk.

Remarks: 1. The Secrecy requirement can be relaxed by taking into account
only the uniform distribution on the inputs. We call this variant oracle h a s h i n g
for random inputs.

2. It appears that limiting A’s output t o a binary value is essential for the
Secrecy requirement to make sense. In particular, if A could have arbitrary
length output then it could simply output its input, thus making distinguishing
between the two sides of (1) easy.

We present two other formalizations of the secrecy requirement (i.e., of oracle
security). A somewhat simplified sketch follows.

First is the formalization sketched in the Introduction. We call it Oracle
simulatability: Let I, be the oracle that answers 1 to a query z iff z = x; Otherwise
it answers 0. Then, “For any algorithm C’ that has access to hashes of x, there
exists an algorithm C that has access only t o I,, such that for any distribution
OR the E’S, and any predicate P , C’ does not predicts P (z) substantially better
than C.”

Second is a formalization reminiscent of security by indistinguishability of
encryption functions. We call it 0 ra cle i n d ist i n g u is ha bi I i t y : For any distinguisher
D there exists a set L of polynomially many inputs, such that for any x, y 4 L
we have that D distinguishes between hashes of x and hashes of y only with
negligible probability.

We preferred the formalization of Definition 3 since it naturally supports
consideration of only specific distributions on the inputs, and since it extends
easily to a reasonable definition for the case where a-priori information on the
input is known (see Definition 6).

Theorem4. T h e fol lowing requ i remen t s are equivalent t o t h e Secrecy require-
m e n t of Defini t ion 3:

3a. Oracle simulatability: For a n y p o l y t i m e adversary C’ and a n y polyno-
m i a l p (.) there ezists a po ly t ime adversary C, s u c h tha t for a n y distribution
ensemble {xk}, f o r a n y po ly t ime predicate P(-), and for all large enough k:

1
Prob(C’(H(x,r)) = P (x)) - Prob(C’=() = P(a)) < -

P (k)
where r ER Rk, and x is drawn f r o m xk.

3b. Oracle indistinguishability: F o r a n y p o l y t i m e distingzlisher 2) and a n y
polynomial p (.) there e z i s t s a polynomial-s ize f a m i l y {Lk) of se t s such t ha t
for all large enough k and for all x, y 4 LI, :

where r ER Rk.

462

Proof. See [C].

Oracle security with a-priori information. The secrecy requirement of
Definition 3 assumes that no a-priori information on x is known. We formulate a
definition requiring that the hashed value gives no eztra information on the input
x, even when some partial information is already known on x. This definition
will be needed for the application described in Section 4.

A first attempt to incorporate a-priori information functions in oracle secu-
rity may be: “For any algorithm A and any a-priori information function f , we
have that (I , A(f(z), H (x , r))) and (2, A(f(z), H(y, r))) are computationallyin-
distinguishable, where r, z, y are chosen at random from their domains.” This
requirement doesn’t make sense, though, since f(z) may ‘leak’ z in full (for in-
stance it may be that f(z) = z), in which case A can use v to verify whether its
second input is a hash of x.

But a-priori information functions f that leak all information on their inputs
seem uninteresting here: why try to hide 2: from adversaries that already know
it via f(x)? We therefore restrict our attention to functions f that do not give
full information on x (ie. , functions where z can be computed from f(z) only
with negligible probability.) We call such functions uninvertible. Note that one-
way functions are uninvertible; yet uninvertible functions are a much broader
class than one-way functions. For instance, the null function Vx,f(z) = 8 is
uninvertible but not ~ n e - w a y . ~ Furthermore, we allow uninvertible functions to
be probabilistic, (i.e., the function value can be a random variable depending on
internal random choices of f). See also the discussion in [GL].

Definition5. A (probabilistic) function f : {0,1}* -+ (0,1}* is uninvertible with
respect to distribution ensemble {Xk} if for any probabilistic polynomial time
algorithm A and for z taken from Xk, the probability Prob(A(lk, f (x)) = x) is
negligible in k , where the probability is taken over the choices o f f , A and Z.
(We let A have input lk to signify that it may run in time polynomial in b .)
When no distribution is specified, uninvertibility with respect to the uniform
distribution is implied.

DefinitionG. Say that H , V are a strong oracle hash scheme if the Secrecy re-
quirement of Definition 3 is replaced with:

3. Strong Secrecy (oracle security with a-priori information): For any
algorithm A with binary output, for any well-spread distribution ensemble
{xk}, and and for any function f that is uninvertible for {xk}:

(x, A (f (t) , H (x , .)I) (X I A(f(x), H(Y, T I)) ,

where T ER Rk, and x , y are independently drawn from xk.

Remarks: 1. As in the case of Definition 3, the strong secrecy requirement can
be relaxed by taking into account only the uniform distribution on the inputs.
We call this variant strong oracle hashing for random inputs. In particular, this
variant will suffice for the first application of Section 4.

‘ One-way functions require that it is infeasible to find a n y value in the preimage of
f(z).

463

3 Constructions

We describe some constructions of oracle hash. First we describe a construction
based on a number theoretic assumption. Next we describe constructions based
on cryptographic hash functions (such as MD5, SHA).

3.1 The T,T" construction

The construction proceeds as follows. Let p be a large safe prime, i.e. p = aq + 1
where a is a small integer (for simplicity we assume a = 2). Let Q be the
subgroup of order q in 2; (i.e., Q is the group of squares modulo p) . On input
m and random input T ER Q, the oracle hash function H first computes z =
h(m) where h is a collision resistant hash function; next it outputs B(rn,r) =
T , T". (Here and in the sequel calculations are made modulo p .) The verification
algorithm V is straightforward: given an input rn and a hashed value (a, b},
compute z = h(m) and accept if a" = b.

We analyze this construction based on three strong variants of the DBe-
Hellman assumption. The variants are used to show, respectively, that the con-
struction satisfies oracle security with random inputs, oracle security, and oracle
security with a-priori information. (These notions are defined in Section 2.)

Assumption 7 The Diffie-Hellrnan Indistinguishability Assumptions: Let E be a
security parameter. Let p = 2q + 1 be a randomly chosen k-bit safe prime and
let g ER Q (where CJ is the group of squares modulo p) .

DHI Assumption I: Let a, b, c ER 2;. Then, (g", g b , g"*) & {g" , g b , g').
DHI Assumption 11: For any well-spread distribution ensemble {X,} where

the domain of X, is Z;, for a drawn from X, and for 6 , c ER Zp' we have

DHI Assumption 111: For any uninvertible function f and for a, b, c ER Zp'
(g" , 8, g a b) (!I", g * , 9 7 .

we have (f (.) , g b , go*) (f(a), g 6 , g C) .

Remarks: 1. It can be seen that Assumption I11 implies Assumption 11, and
that Assumption I1 implies Assumption I. We were unable to show implications
in the other direction.

2. While these assumptions are considerably stronger than the standard
Diffie-Hellman assumption (there it is only assumed that gab cannot be com-
puted given p , g, gar g') , they seem consistent with the current knowledge on the
Diffie-Hellman problem. In particular, Assumption I appeared in the past, both
explicitly and implicitly. It is not hard to see that it is equivdent to the se-
mantic security of the El-Gamal encryption scheme [El. Furthermore, the value
exchanged via the DH key exchange is often assumed to be indistinguishable
from random. An assumption equivalent to Assumption I is formulated in (B].
Also, this assumption underlies a new and efficient construction of pseudoran-
dom functions [NR].

Although Assumptions I1 and 111 look quite strong, we were unable to con-
tradict them. We propose the viability of these assumptions as an open question.

464

To gain assurance in the plausibility of these assumptions, we remark that it is
a common practice to use Diffie-Hellman key exchange modulo a large prime of,
say, 1024 bits, but to choose the secret exponents a and b as random numbers
of only, say, 200 bits. It is then assumed that the resulting secret, gab, still has
the full ‘100 bits of ~ecuri ty’ .~ This practice implicitly relies on Assumption I1
(or, alternatively, 111) for the case where the first 824 bits of a are fixed to 0.

3. Choosing a safe prime (and the restriction to the subgroup Q) is a standard
procedure aimed at avoiding attacks based on the residuocity of a, b, c relative
to small factors of p - 1. It also carries the advantage that any non-sero member
of Q is a generator of Q.

4. Naor and Reingold show that if Assumption I is broken then it is possible
to distinguish gal g b , gab from gal gb, gc for a n y a, b, c E 24‘ [NR].

For the analysis of the construction, we first consider a somewhat simplified
version, where the collision resistant hash function h is omitted and the input is
assumed to be taken from Zp’.

Theorem 8. 1. If DHI Assumption I holds then the function H (x , r) = r, r x ,
together with its verification algorithm, are an oracle hashing scheme for random
inputs .

2. If DHI Assumption 11 holds then the function H (x , r) = r , r x , together
with its verification algorithm, are an oracle hashing scheme.

3. If DHI Assumption III holds then the function H (x , r) = r , r x , together
with its verif ication algorithm, are a strong oracle hashing scheme.

Proof. See [C].

The construction R(m, r) = r, ~ ~ (~ 1 . Strictly speaking, this construction
does not satisfy our requirements since the functions h we have in mind are
fixed, non-scalable constructs with no asymptotic behavior. Assume however,
for sake of the following discussion, that h now describes a scalable collision
resistant function where the probability of finding collisions is negligible in the
security parameter. (In the next subsection we deal with the non-scalability of
existing cryptographic hash functions in a more rigorous way.)

We examine compliance with Definition 3. Completeness still holds. Correct-
ness is now based on the collision resistance of h. (Le., if two inputs rn # rn’ and
a hash value c are found such that V(m, c) = V(m’, c) = 1, then h (n) = h(m’).)
For the Secrecy requirement, note that as long as the input m is drawn from a
well-spread distribution, the value z = h(m) must also be well-spread (otherwise
h-collisions may be found by straightforward sampling). Thus, as long as h is
collision-resistant, Definition 3 is satisfied under DHI Assumption 11; Definition
6 is satisfied under DHI Assumption 111.

3.2

The construction described in the previous subsection is somewhat inefficient
since it involves a modular exponentiation. In light of the efficiency of existing

‘ There are several ways to find discrete logarithms of 2k bit numbers in 0 (2 k) steps,

Constructions based on cryptographic hash functions

regardless of the size of the modulus. See details in [MOV].

465

cryptographic hash functions (such as MD5 and SHA), and of the general “dif-
fusion and confusion” properties they seem to possess, it is natural to look for a
construction based only on such functions. Here making additional new assump
tions on these functions is unavoidable. However, in contrast with the ‘random
oracle heuristic’ discussed in the introduction, these will be well defined assump
tions.

We propose three simple constructions of oracle hashing, incorporating ran-
domness in the input of the hash function. Each construction (or, mode of o p
eration of the hash function) results in a different assumption on the underlying
hash function. The assumption will simply be that using the hash function in
the corresponding mode satisfies either Definition 3 or 6, respectively. We let
further research and practical experience indicate which construction (if any) is
preferable in terms of performance and security.

A first construction that comes to mind, given a cryptographic hash function
h is H (z , T) = T, h (~ , z), where T is a random string of length p. (Setting p = 128
for MD5 and p = 160 for SHA seems appropriate.) Verification (and the Com-
pleteness property) are straightforward. Correctness follows directly from the
collision resistance of h. The Secrecy requirement imposes the following require-
ment on h. Following the concrete (i.e., non-asymptotic) security approach of
[BKR, BGR, BCKL] we say that:

Definition9. A hash function h is (~,6)-secure with respect to the B(z,T) =
T, h(r, x) construction and some distribution A on (0,l)’ if for any adversary A
and distinguisher D, each running in time r , we have

IProb(D(z,A(r, h(r, z))) = 1) - Prob(D(z, A(T, h(r, y))) = 1)1 5 6

where x, y are independently drawn from A and r E R {O, 1)o.

(This assumption is obtained by simply plugging the construction in the Secrecy
requirement of Definition 3.) A seemingly equivalent variant is H (z , T) = T, h (~ @
z), where @ denotes bitwise exclusive or.

We remark that the “bit commitment scheme based on one way functions”
described in [S], p. 87, is secure under the assumption that the one-way function
in use satisfies Definition 9. In fact, this assumption seems necessary here.

Another possible construction is H (z , T) = T , h(r, h (z)) . Completeness and
correctness are as above. The resulting security assumption can be formulated
analogously to the former one. Note that potentially this construction is ‘more
secure’ than the former one, in the sense that if the latter construction fails then
most probably the former one fails, but not necessarily vice-versa.

Yet another construction is based on the HMAC construction [BCK2]: let
H (z , r) = ~ , h (r l , h (~ ~ , z)) , where r1 = reopad , r2 = ?&pad, and opad and
ipad are two fixed constants. Also here, Completeness and correctness are as
above. This construction may be even ‘more secure’, again in the sense that if
the HMAC construction fails then most probably so does the previous one, but
not necessarily vice versa.

We remark that embedding the randomness in the IV may result in inferior
constructions, since it may simplify violating Correctness. That is, let h,.(x)

466

denote the value of h (z) when the IV is set to r. Consider the construction
H (z , T) = h,(z). Now in order to violate Correctness it suffices to find T , T ' , z, z'
such that Fd,(z) = h+(z'). This is a much easier task; See [BB, MOV] for more
details.

4 Applications

We describe two more applications, on top of the one described in the Introduc-
tion.
Avoiding random oracles. In a sequence of papers Bellare and Rogaway
demonstrate how to construct, in the random oracle model, simple, efficient, and
provably secure encryption and signature schemes, based on any trapdoor per-
mutation (e.g., the RSA permutation) [BRl, BR2, BR3, BR4]. It is suggested as
a 'rule-of-thumb' to replace, in practice, the random oracle with a cryptographic
hash function. While the resulting constructions are very attractive and useful
in practice, they lack rigorous proofs of security.

It is thus natural to attempt the following procedure with respect to these
schemes: (a) replace the random oracle with oracle hashing, and (b) prove the
security of the resulting schemes without random oracles. We do that to a simple
encryption scheme described in [BRl].

The scheme proceeds as follows given a random oracle R, and a trapdoor
permutation generator G that on input l k outputs a pair f,f-' (where f is a
one way permutation and f-'. is the inverse of f) . The public encryption key is
f and the private decryption key is f -I. Given message m and a random input
s, let the encryption be E(m, s) = f(s), R(s)@m. Decryption is straightforward.

It is shown there that this scheme is semantically secure (in the random oracle
model). There, semantic security means that for any two messages %,ml, no
polytime adversary A (with access to the encryption algorithm E and to R) can
distinguish between encryptions of and encryptions of ml with more than
negligible probability.

We show how to replace R with an oracle hashing scheme H . First however we
need to make the following two technical assumptions on H. The first assumption
is that the random input T appears explicitly in the output of H (z , r) . All the
schemes described in this paper have this property. We call such schemes public
randomness schemes and write H (z , r) = r, &(z, T) .

Let Bk denote the domain of hashes with security parameter k. The second
assumption is that there is an 'easy to compute' encoding from Bk to (0, l}'(k)
for some 'reasonable' length function I(b) . The encoding should make sure that
when a hash is chosen at random from Be then the encoded value is distributed
(close to) uniform in (0, l] r (k) . Again, the schemes described in this paper have
this property: For the T , r2 scheme, one can use a standard encoding of 2; in, say,
(0, l) lPl- l . For the schemes based on cryptographic hash functions no encoding
seems to be needed.

We suggest the following encryption scheme. Given message m and random
input r, s compute:

~ (m , p , 8) = f(s), r , I?($, T) t~ m (2)

467

Again, decryption is straightforward.
Proving semantic security of this construction, based on the fact that H is

a strong oracle hash function for random inputs, is quite straightforward. In
fact, we use only a considerably weaker secrecy property than the one in Defin-
ition 6, namely that (f(z), h(z , T)) & (f (z) , h(y, r)) where 2, y, r are uniformly
distributed in their domains.

Theorem 10. T h e encrypt ion scheme described an (2) as semantically secure, if
H is a strong oracle hash funct ion f o r r a n d o m i n p u t s wi th the additional technical
properties described above.

Proof (sketch): Assume an adversary A such that Prob(d(E(m1, s)) = 1) -
P r o b (d (E (m , 5)) = 1) > 5 for some TTQ, ml and 6. Let po (resp., p l) denote the
probability that A outputs ‘1’ if it is given E(-, s) (resp., E(m1, s)), and let p ,
denote the probability that A outputs ‘1’ given E(m, s), where m is uniformly
distributed in its domain. Clearly either Ip, - ~ o I 2 6/2, or Ip, - pll 2 6/2.
Assume that Ip, -pol 2 5/2.

s.s’, T are randomlychosen. (Note that the function f is uninvertible.) Recall that
here H (s , T) = T , g (s , T) , and that for uniformly chosen s, T the value R(s,T)
is uniform in (0,l)‘ for some 1. Given ~ (s) , T , < (where < is either H (s , r) or
k(.s‘, T)) , D will hand A the ‘ciphertext’ f (s) , T , ($ m ~ . Now, if A outputs ‘mu’
then D outputs ‘ E = k(s, T)’ ; otherwise it outputs ‘< = fi(s‘, T)’.

Analyzing D is straightforward. (It distinguishes with probability 6/2.) It
should only be noted that if < = L(s’ , r) then A is given an encryption of a

Content-Concealing signatures. Assume that one wants to sign a document
m in a way that if m is known then the signature can be verified as usual, and
at the same time make sure that the signature itself hides all partial information
on m from parties who do not already know m. We call a signature scheme
that has this property content-conceaiing. Such signatures may become handy,
for instance, when the document to be signed has been agreed by the parties
in a private way, but the signature has to be broadcasted on a public channel
where encryption is unavailable or costly. Another possible scenario is when the
signer wants to publish beforehand a signature on a document (say, the quarterly
earnings of IBM) but make the document public only a t a later date.

As in the ‘puzzle in the newspaper’ problem, to crypto practitioners it may
seem that this problem is already solved: Since cryptographic hash functions are
assumed to ‘hide all partial information on the input’, and since the first step
in any digital signature algorithm is to apply a cryptographic hash function to
the document, then existing digital signatures are already content-concealing.

Also here, however, this is an illusion. No known (until now) cryptographic
primitive solves this problem. Furthermore, also here there is a simple solution
in the random oracle model: in the presence of a random oracle R one can simply
sign R(m) instead of signing m.

When formalizing the requirement that the signature ‘hides all partial infor-
mation on the input’ and at the same time allows for verification, one ends up

Construct a distinguisher D between (f(s), H (s , T)) and (f (s) , iY(s’, T)) , where

uniformly chosen message. 0

468

with the same notion of oracle security used for oracle hash. Tha t is:

Definitionll. A signature scheme is (Strong) content-concealing if, in addition
to being a signature scheme (as defined in, say, [GMR]), the signing algorithm
satisfies the Secrecy requirement of Definition 3 (resp., 6).

Once content-concealing signatures a re defined, a solution is straightforward:
To sign a message m, sign c = H (m , r) (and attach c to the signature), where
H, V are an oracle hash scheme and r is randomly chosen. For verification, first
verify the signature on c; next verify that c is a hash of m using the verification
algorithm V .
Acknowledgments. First and special thanks are due to Hugo Krawczyk and
Oded Goldreich, who spent considerable time trying to make sense of m y ram-
bling thoughts and early drafts. In particular, the idea to use the r, rT construc-
tion is Hugo’s, and some of the formalizations of oracle security are Oded’s.

I thank Shafi Goldwasser for discussions on content-concealing signatures
(and Juan Garay and Tal Rabin for suggesting the name). I also thank Rosario
Gennaro, Moni Naor and Omer Reingold for very helpful discussions, and Dan
Boneh for drawing my attention to [B].

References

[AS] N. Alon and J. Spencer, The Probabilistic Method, Wiley, 1992.
[BCKl] M. Bellare, R. Canetti and H. Krawczyk, “Pseudorandom functions revisited:

The cascade construction and its concrete security”, 37th FOCS, 1996.
[BCK2] M. Bellare, R. Canetti and H. Krawczyk, “Keying hash functions for message

authentication”, CRYPTO’96, 1996.
[BGR] M. Bellare, R. GuCrin and P. Rogaway, “XOR MACs: New methods for message

authentication using finite pseudorandom functions,” CRYPTO’95, 1995.
[BKR] M. Bellare, J. Kilian and P. Rogaway, ”The security of apher block chaining.”

CRYPTO’94, 1994.
[BRl] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for de-

signing efficient protocols”, 1st ACM Conference on Computer and Communica-
tions Security, 62-73, 1993.

[BR2] M. Bellare and P. Rogaway, “Optimal Asymmetric Encryption”, EUROCRYPT
’94 (LNCS 9501, 92-111, 1995.

[BR3] M. Bellare and P. Rogaway, “The exact security of digital signatures - How to
sign with RSA and Rabin”, EUROCRYPT ’96 (LNCS 1070), 1996.

[BR4] M. Bellare and P. Rogaway, ‘Minimiz ing the use of random oracles in P1363
encryption schemes”, Contribution on IEEE P1364. November 10, 1996.

[BDMP] M. Blum, A. De Santis, S. Micah and G. Persiano, “Non-interactive zero-
knowledge”, SIAM Journal on Computing, 20(6):10841118, December 1991.

[BB] B. den Boer and A. Bosselaers, “Collisions for the compression function of MD5”,

[B] S. Brands, “An efficient off-line electronic cash system based on the representation
problem”, CWI TR CS-R9323, 1993.

[C] R. Canetti, “Towards realizing random oracles: Hash functions that hide
all partial information”, in Theory of Cryptology Library, No. 97-07.
http://theory.lcs.mit.edu/ tcryptol, 1997.

EUROCRYPT’OS, 293-304, 1994.

469

[CW] J. L. Carter and M. N. Wegman, Universal classes of hash functions”, JCSS

[CG] B. Chor and 0. Goldreich, “Unbiased bits from sources of weak randomness and
probabilistic communication complexity”, SIAM J . Comp., Vol. 17, No. 2, 230-261,
1988.

[D] I.B. DamgHrd, “Collision free hash functions and public key signature schemes”,
EUROCRYPT 87 (LNCS 304), pp. 203-216, 1988.

[DDN] D. Dolev, C. Dwork and M. Naor, “Non-malleable cryptography”, 23rd STOC,
1991.

[El T. El-Gamal, “Cryptography and logarithms over finite fields”, Ph.D. Thesis, Stan-
ford University, 1984.

[F] P. Feldman, “A practical scheme for non-interactive verifiable secret sharing”, 28th
FOCS, 427-437, 1987.

[FS] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification
and signature problems”, CRYPTO’86 (LNCS 263), 186-194, 1986.

[GI 0. Goldreich, “Foundations of Cryptography (Fragments of a book)”, Weizmann
Inst. of Science, 1995. (Avaliable at h t tp : / / t heo ry . l c s .mi t .edu/fcryptol/)

[GM] Shafi Goldwasser and Silvio Micali, “Probabilistic encryption”, JCSS, Vol. 28,

[GL] 0. Goldreich and L. Levin, A Hard-core Predicate to any One-way Function,
Blst STOC, 1989, pp. 25-32.

[GMR] S. Goldwasser, S. Micali and R. Rivest, “A digital signature scheme se-
cure against adaptive chosen-message attacks,” SUM Journal of Computing,

[MOV] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, “Handbook of applied

[MI S. Micah, “CS proofs”, 35th FOCS, 436-453, 1994.
[NR] M. Naor and 0. Reingold, “The Brain can Compute Pseudo-Random Functions,

or Efficient Cryptographic Primitives Based on the Decisional Diffie-Hellman As-
sumption”, manuscript.

[NYl] M. Naor and M. Yung, “Universal one-way hash functions and their crypto-
graphic applications”, 21st STOC, 33-43, 1989.

[NY2] M. Naor and M. Yung, “Public key cryptosystems provably secure against cho-
sen ciphertext attacks”, 22nd STOC, 427-437, 1990.

[PI T . P. Pedersen, “Distributed provers with applications to undeniable signatures”,
EUROCRYPT’SI, 1991.

[PSI D . Pointcheval and J. Stern, “Security proofs for signature schemesn, Eurocrypt
’96 (LNCS 1070), pp. 387-398, 1996.

[RS] C. Rackoff and D. Simon, “Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack”, CRYPTO’91, (LNCS 576), 1991.

[Ri] R. Rivest, “The MD5 message-digest algorithm,” IETF Network Working Group,
RFC 1321, April 1992.

[S] B. Schneier, “Applied cryptography”, 2nd edition, Wiley and sons, 1996.
[SHA] FIPS 180, “Secure Hash Standard”, Federal Information Processing Standard

(FIPS), Publication 180, National Institute of Standards and Technology, US De-
partment of Commerce, Washington D.C., May 1993.

NO. 18, 143-154, 1979.

NO 2, 270-299, April 1984.

17(2):281-308, April 1988.

cryptography”, CRC Press, 1997.

