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Abstract. The random oracle model is a very convenient setting for 
designing cryptographic protocols. In this idealized model all parties 
have access to a common, public random function, called a random or- 
acle. Protocols in this model are often very simple and efficient; also 
the analysis is often clearer. However, we do not have a general mech- 
anism for transforming protocols that  are secure in the random oracle 
model into protocols that are secure in real life. In fact, we do not even 
know how to  meaningfully specify the properties required from such a 
mechanism. Instead, it is a common practice to simply replace - often 
without mathematical justification - the random oracle with a ‘crypto- 
graphic hash function’ (e.g., MD5 or SHA). Consequently, the resulting 
protocols have no meaningful proofi of security. 
We propose a research program aimed at  rectifying this situation by 
means of identifying, and subsequently realizing, the useful properties 
of random oracles. As a first step, we introduce a new primitive that 
realizes a specific aspect of random oracles. This primitive, c d e d  omcle 
hashang, is a hash function that, like random oracles, ‘hides all partial 
information on its input’. A salient property of oracle hashing is that it is 
probabilistic: different applications to the same input result in Merent  
hash d u e s .  Still, we maintain the ability to uee jy  whether a given hash 
value was generated from a given input. We describe constructions of 
oracle hashing, as well as applications where oracle hashing successfully 
replaces random oracles. 

1 Introduction 

Existing collision resistant hash functions, such as MD5 [Ri] and SHA [SHA], 
are very useful and popular cryptographic tools. In particular, these functions 
(often nicknamed ‘cryptographic hash functions’) are used in a variety of settings 
where far stronger properties than collision resistance are required. 

Some of these properties are better understood and can be rigorously formu- 
lated (e.g., the use as pseudorandom functions [BCKl], or as message authentica- 
tion functions [BCK2]). Often, however, these extra properties are not precisely 
specified; even worse, it is often unclear whether the attributed properties can 
at all be formalized in a meaningful way. 

We very roughly sketch two salient such properties. One is ‘total secrecy’: 
it is assumed that if h is a cryptographic hash function then h ( z )  ‘gives no 
information on c’. The other is ‘unpredictability’: it is assumed to be infeasible 
to ‘find an z such that z , h ( z )  have some desired property’. This is of course 
only a sketch; each application requires different variants. 
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These uses of MD5, SHA, and other cryptographic hash functions are often 
justified by saying that ‘using cryptographic hash functions is equivalent to using 
random oracles’. More specifically, the following random oracle paradigm is em- 
ployed. Assume the security of some protocol (that makes use of a ‘cryptographic 
hash function’ h)  needs to be proven. Then an idealized model is formulated, 
where there is a public and r a n d o m  function R such that everyone can query R 
on any value x and be answered with R(z) .  Next modify the protocol so that 
each invocation of the hash function h is replaced with a query to R. Finally, it 
is suggested that if the modified construction (using R)  is secure in this idealized 
model then the original construction (using h)  is secure in ‘real-life’. (We remark 
that here the random oracle can be viewed as an ‘ideal hash function’. In par- 
ticular, R satisfies both the ‘total secrecy’ and the ‘unpredictability’ properties 
sketched above, since R(t) is a r a n d o m  n u m b e r  totally independent of z.) 

However, the fact that a construction is secure in the random oracle model 
does not provide any concrete assurance in the security of this construction in 
‘real life’. In particular, there exist natural protocols that are secure if a random 
oracle is used, but are clearly insecure if the random oracle is replaced by any 
deterministic func t ion  (and in particular by any cryptographic hash function). 
The motivating scenario described below provides a good example. (In view of 
this criticism we stress that, with all its drawbacks, the random oracle model 
has proved instrumental in designing very useful protocols and applications, as 
well as new concepts, e.g. [FS, BDMP, M, BR1, BR2, BR3, PSI). 

In this work we make a first step towards rigorously specifying some ‘random- 
oracle-like’ properties of hash functions. We concentrate on the ‘total secrecy’ 
property sketched above. That  is, we propose a new primitive, called oracle 
hashing, that hides all partial information on its input, while maintaining the 
desired properties of a hash function. 

The rest of the introduction is organized as follows. We first sketch a mo- 
tivating scenario for the new primitive. Next we describe the new primitive, 
together with several constructions and applications. 

Consider the following scenario. (It should be kept 
in mind that, while providing initial intuition for the properties desired from the 
new primitive, this scenario is of limited scope. In particular, some properties of 
the new primitive do not come to play here.) Alice intends to publish a puzzle 
in the local newspaper. She also wants to attach a short string c that will allow 
readers that solved the puzzle to  verify that they have the right solution, but 
such that c will ‘give away’ n o  part ial  i n f o m a t i o n  about the solution, X ,  to 
readers who have not solved the puzzle themselves. In other words, Alice wants 
c to mimic an ‘ideal scenario’ where the readers can call the editor (as many 
times as they wish), suggest a solution and be answered only ‘right’ or ‘wrong’. 

A crypto-practitioner posed with this problem may say: “what’s the big deal? 
c should be a cryptographic hash (e.g., MD5 or SHA) of the solution. It is easily 
verifiable, and since the hash is one-way c gives no information on the preirnage.” 

Indeed, this ad-hoc solution may be good enough for some practical pur- 
poses. However, when trying to ‘pin down’, or formalize the requirements from a 
solution some serious difficulties are encountered. In particular, no known c ryp  
tographic primitive is adequate. For instance one-way functions are not good 

A motivating scenario. 
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enough, since they only guarantee that the en t i re  preimage cannot be computed 
given the function value. It is perfectly possible that a one-way function ‘leaks’ 
partial information, say half of the bits of its input. 

Furthermore, any de te rmin i s t i c  function (even ones that hide all the bits of 
the input, and even ‘cryptographic hash functions’) are inadequate here, since 
they are bound to disclose s o m e  information on the input: For any deterministic 
function f, f(x) itself is some information on z. One way hash families [NYl] 
are inadequate for the same reason: they only guarantee that collisions are hard 
to find, and may leak partial information on the input. 

Similarly, commitment schemes (even non-interactive ones) are inadequate 
since they require the committer to participate in the de-commit stage, whereas 
here the newspaper editor does not want to  be involved in de-committals. (Also, 
de-committals by nature reveal the correct solution x, even if the suggested 
solution is wrong.) 

In fact, it seems that the only known way to  model such a primitive is via 
the random oracle model: Given access to  a random oracle R, Alice can simply 
publish c = R(z), where z is the solution to  the puzzle. This way, given 2: it can 
be easily verified whether c = R ( z ) ,  and as long as the correct z is not found 
then R(x) ,  being a totally random string, gives no information on x. 

We remark that R(r )  does in a way provide assistance in finding z since 
one can now exhaustively search the domain of solutions until a solution x such 
that R ( x )  = c is found. This is, however, the same assistance provided by the 
newspaper in the ‘ideal scenario’ described above; thus it is a welcome property 
of a solution. 
The new primitive: Oracle Hashing. The proposed primitive, oracle hash- 
ing, is designed to replace the random oracle R in the above scenario, as well as 
in several others. The idea behind this mechanism is quite simple. Traditionally, 
one thinks of a hash function as a d e t e r m i n i s t i c  construct, in the sense that two 
invocations on the same input will yield the same answer. We diverge from this 
concept, allowing the hash function, HI to be probabilistic in the sense that dif- 
ferent invocations on the same input result in different outputs. That is, H ( z )  
is now a random variable depending on the random choices of H. It is this ran- 
domization that allows us to require that H ( z )  will ‘hide all partial information 
on 2’. 

Oracle hashing also diverges from the notion of (universal, or even one way) 
hash families [CW, NYl], since there it is usually the case that a d e t e m i n i s t i c  
function is randomly chosen ‘beforehand’, and then fixed for the duration of the 
application. 

But now we may have lost the ability to verify hashes. So we require that 
there exists a verification algorithm, V, that  correctly decides, given x and c, 
whether c a hash of z. (Using standard deterministic hashing, the verification 
procedure is simple: apply the hash function to  z and check whether the result 
equals c. Here a different procedure may be required.) 

This mechanism is somewhat reminiscent of signature schemes, where H 
takes the role of the signing algorithm and V takes the role of the signature ver- 
ification algorithm. It is stressed, however, that here no secret keys are involved 
and both functions can be invoked by everyone. (Also, here additional properties 
will be required from the pair H ,  V.) 



It remains to formulate the ‘secrecy’ requirement. This proves to be a non- 
trivial task. We want to capture the property that ‘the hashed value gives no 
information on the input’. The natural concept that comes to mind is semantic 
security (originally used for encryption schemes [GM]): ‘whatever can be com- 
puted given H ( z )  can also be computed without it’. But semantic security is 
unachievable in our scenario, since given H ( z )  and some value y one must be 
able to tell whether z = y. In particular, if the input z has only a small number 
of possible values (say 0 or 1) then it is easy to  find 2: from H ( t )  by running the 
verification algorithm on all possible inputs. 

We thus introduce a new, weaker notion of secrecy, which we call oracle 
security. This notion essentially means that the only way in which c = H ( z )  
can be used to find information on x is by exhaustively trying different Z’S and 
checking if V ( Z ,  c )  accepts. Very roughly, this can be formulated as follows: Let 
1% be the oracle that answers 1 to a query z iff z = 2; Otherwise it answers 0. 
Then, “finding information on x given H ( x )  is equivalent to finding information 
on z given only access to the oracle I=”. Thus, oracle security is valuable only 
if there is ‘enough uncertainty’ about the input, i.e. if no single input is too 
probable. 

We present several equivalent formalizations of oracle security. Furthermore, 
as in the case of encryption, it is convenient to incorporate in the formalization 
the notion of ‘a-priori information’ on the secret value. However here (in contrast 
with the case of encryption) we don’t know whether oracle security without a- 
priori information is equivalent to oracle security with a-priori information. We 
elaborate within. 
O n  the constructions. We present a simple oracle hashing scheme based on 
number-theoretic primitives. Assume a large safe prime p is known. ( p  is safe if 
q = ( p -  1)/2 is a prime.) Then, given input 2, choose a random element T in 2; 
and let H ( x )  = ?, T ~ ‘ ~ ( ~ ) ,  where the calculations are made modulo p ,  and h is 
any collision resistant hash function. Verification is straightforward (i.e., to verify 
whether a pair a, b is a hash of a known message z, check whether ah(z) 3 b (mod 
p ) ) .  Here the only requirement from the hash function h is collision resistance. 
The security of this construction is shown based on strong variants of the Diffie- 
Hellman assumption. (Different assumptions are needed to show different levels 
of security.) These assumptions may well be of independent interest. 

The above scheme is somewhat costly, since it involves a modular exponen- 
tiation. We thus suggest simple constructions based on a cryptographic hash 
function h. (For instance, let H ( z ,  r )  = P, h(r ,  h(z)) . )  Here we of course make 
stronger assumptions on h than just collision resistance. We stress however that, 
in contrast to the ‘random oracle heuristic’, these are well-defined assumptions. 

We remark that constructs similar to  the ones described here are implicit in 
several previous works, sometimes for related purposes (e.g., [F, P, El). None of 
these works, however, suggests any primitive similar to the one proposed here. 
Also, a similar idea is used in the BSD UNIX password file, where a random 
‘salt’ is prepended to a password before encrypting it, and then stored together 
with the ciphertext. 
Applications. A first, immediate application is for scenarios like the ‘puzzle 
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in the newspaper’ scenario (i.e., whenever one wants to  make public a verifi- 
able hash that leaks no information on the hashed value.) Oracle hashing can 
also be used to replace the use of random oracles in known constructions. We 
demonstrate this on an encryption function introduced by Bellare and Rogaway 
[BRl]. This function was proven semantically secure only in the random oracle 
model described above. (It is suggested in [BRl], as a rule-of-thumb, to replace 
the random oracle with a cryptographic hash function.) We show that if one 
replaces oracle hashing for random oracles then the construction becomes secure 
without resorting to random oracles. 

Another application is for content-concealing signatures: Assume that one 
wants to sign a message m and at the same time make sure that the signature 
itself hides all partial information on m (from parties who do not already know 
m). Then, given a message m one can simply sign H ( m )  instead of signing m. 
See more details within. 
Further research. This work can be viewed as a first step in a research pro- 
gram whose goal is to better understand the random oracle model. This model 
‘blends’ in it several potentially unrelated desired characteristics hash functions, 
in a way that makes it hard to distinguish which property is being used at 
each application. Such properties are ‘total secrecy’ together with several quite 
different flavors of ‘unpredictability’. As demonstrated here, some applications 
need only some properties and not others. Is it possible to  identify additional 
such properties, and subsequently to  realize them without resorting to random 
oracles? 

2 Defining oracle hashing 

The definition of oracle hashing consists of three requirements: Corn pleteness 
and Correctness (that together comprise a validity requirement), together with 
Secrecy. The first two requirements are fairly standard. Formulating the Secrecy 
requirement, however, is non-trivial. We present several variants and briefly dis- 
cuss their relations. 
Completeness. This requirement is straightforward: “Algorithm V will accept 
(except perhaps with negligible probability) pairs x ,  c where c is generated by 
applying H to 2.’’ 
Correctness. We would like to require that: “ It is  infeasible to cheat V into 
accepting pairs T ,  c such that c was not generated b y  applying H to T . ”  Formal- 
izing this requirement is somewhat tricky since the fact that H is probabilistic 
make the statement ‘c was not generated as H ( x ) ’  ambiguous. In particular, 
this requirement takes different flavors depending on whether the producer of 
the hash is trusted to use H as specified (in which case one only needs to protect 
against non-malicious errors) or untrusted (in which case one need to protect 
against malicious efforts to generate ambiguous hashes). We get around these 
problems by making the stronger requirement that it is infeasible to find ‘colli- 
sions’, i.e. two different inputs 2, y and a hash value c such that V accepts c as 
a legal hash of both x and y. 
Secrecy (oracle security). We want to  say that: “Bavingc = H ( z )  gives 
no information on x, besides the ability to  exhaustively search the domain for 
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z such that c = H(z) .” This requirement takes different flavors, depending on 
which probability distributions on the inputs are considered, and on whether the 
attacker is assumed to  have some a-priori information on 2. We start with the 
case where no a-priori information on 1: is known. Here we present our chosen 
formalization, together with two other formalizations. We show that all three are 
equivalent.’ We believe that comparing the different formalizations helps under- 
standing the nature of oracle security. In particular, two of the formalizations 
are reminiscent of the two equivalent formalizations of the security of encryption 
functions (see [GI). 

We first need the following definitions: Say that a function f : N -+ R is 
negligible if it approaches zero faster than any polynomial (when its input grows 
to infinity). 

Definitionl. Let X = { X k ) k E N  and y = ( Y k } k E N  be two ensembles of prob- 
ability distributions. We say that X and y are corn putationally indistinguish- 
able (and write X & Y )  if for any polytime distinguisher D the difference 
IProb(D(z) = 1) - Prob(D(y) = 1)1 is a negligible function of h ,  where z is 
drawn from xk and y is drawn from Yk. 

Definition2. A distribution ensemble X = { X k } k E ~  is well-spread if for any 
polynomial p ( . )  and all large enough k, the largest probability of an element in 
Xk is smaller than p(k) (i.e., maxa(Xk(cz)) < p ( k ) ) .  
(In other words, the ma-entropy of distributions in X must vanish super- 
logarithmically, see [CG]). 

We proceed to the (basic) definition of oracle hashing. Consider a pair of 
algorithms H ,  V. Algorithm Ei, given a security parameter k and input I, chooses 
a random value in domain Rk and outputs a value c. Algorithm V ,  given k and 
input c, outputs a binary value. In the sequel the security parameter, h ,  is often 
implicit in our notation. 

Definition3. Say that H ,  V are an oracle hashing scheme if the following re- 
quirements hold. 

1. Completeness: For all large enough k, for all input z and for T En Rk we 
have that Prob(V(z, H(z, T)) # 1) is negligible (in k ) . 2  

2. Correctness: For any probabilistic polynomial time adversary A, the prob- 
ability that A outputs, on input k, a triplet c, z, y such that z # y and 
V(z, c )  = V(y, c )  = 1 is ~~eg l ig ib l e .~  

Here and for the rest of the discussion we assume non-uniform adversaries. Le., an 
adversary is a family of circuits with polynomial size. 
E ER D means that element 2 is independently and uniformly chosen from domain 
D. 
Note that in the case that such triplets c,  2, y exist, a non-uniform adversary can 
have a fixed triplet ‘wired in’ its circuit for each value of k. Thus, it appears to make 
no sense to require that it is hard to find such triplets. We get around this problem 
by letting H, V be chosen a-priori from a family of functions, and requiring that any 
fixed triplet forms a collision only €or a small fraction of the €unctions in the family. 
See [D]. 
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3. Secrecy: For any poly time adversary A w i t h  b inary  output, and any well- 
spread distribution {xk}: 

(z, d(H(x,  7 ) ) )  (2, -d(B(y, r ) ) )  (1) 
where r ER Rk, and x, y are independently drawn from xk. 

Remarks: 1. The Secrecy requirement can be relaxed by taking into account 
only the uniform distribution on the inputs. We call this variant oracle h a s h i n g  
for random inputs. 

2. It appears that limiting A’s output t o  a binary value is essential for the 
Secrecy requirement to make sense. In particular, if A could have arbitrary 
length output then it could simply output its input, thus making distinguishing 
between the two sides of (1) easy. 

We present two other formalizations of the secrecy requirement (i.e., of oracle 
security). A somewhat simplified sketch follows. 

First is the formalization sketched in the Introduction. We call it Oracle 
simulatability: Let I, be the oracle that answers 1 to a query z iff z = x; Otherwise 
it answers 0. Then, “For any algorithm C’ that has access to hashes of x, there 
exists an algorithm C that has access only t o  I,, such that for any distribution 
OR the E’S,  and any predicate P ,  C’ does not predicts P ( z )  substantially better 
than C.” 

Second is a formalization reminiscent of security by indistinguishability of 
encryption functions. We call it 0 ra cle i n d  ist i n g u  is ha bi I i  t y  : For any distinguisher 
D there exists a set L of polynomially many inputs, such that for any x, y 4 L 
we have that D distinguishes between hashes of x and hashes of y only with 
negligible probability. 

We preferred the formalization of Definition 3 since it naturally supports 
consideration of only specific distributions on the inputs, and since it extends 
easily to a reasonable definition for the case where a-priori information on the 
input is known (see Definition 6). 

Theorem4. T h e  fol lowing requ i remen t s  are equivalent  t o  t h e  Secrecy require- 
m e n t  of Defini t ion 3: 

3a. Oracle simulatability: For  a n y  p o l y t i m e  adversary  C’ and a n y  polyno- 
m i a l  p ( . )  there ezists a po ly t ime  adversary  C, s u c h  tha t  for a n y  distribution 
ensemble {xk}, f o r  a n y  po ly t ime  predicate  P(-), and for all large enough k: 

1 
Prob(C’(H(x,r)) = P ( x ) )  - Prob(C’=() = P(a)) < - 

P ( k )  
where r ER Rk, and x is drawn  f r o m  xk. 

3b. Oracle indistinguishability: F o r  a n y  p o l y t i m e  distingzlisher 2) and a n y  
polynomial  p ( . )  there e z i s t s  a polynomial-s ize  f a m i l y  {Lk) of se t s  such t ha t  
for all large enough k and for all  x, y 4 LI, : 

where r ER Rk. 
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Proof. See [C]. 

Oracle security with a-priori information. The secrecy requirement of 
Definition 3 assumes that no a-priori information on x is known. We formulate a 
definition requiring that the hashed value gives no eztra information on the input 
x, even when some partial information is already known on x. This definition 
will be needed for the application described in Section 4. 

A first attempt to incorporate a-priori information functions in oracle secu- 
rity may be: “For any algorithm A and any a-priori information function f ,  we 
have that ( I ,  A(f(z), H ( x ,  r ) ) )  and (2, A(f(z), H(y, r ) ) )  are computationallyin- 
distinguishable, where r, z, y are chosen at random from their domains.” This 
requirement doesn’t make sense, though, since f(z) may ‘leak’ z in full (for in- 
stance it may be that f(z) = z), in which case A can use v to verify whether its 
second input is a hash of x. 

But a-priori information functions f that leak all information on their inputs 
seem uninteresting here: why try to  hide 2: from adversaries that already know 
it via f(x)? We therefore restrict our attention to functions f that do not give 
full information on x (ie. ,  functions where z can be computed from f(z) only 
with negligible probability.) We call such functions uninvertible. Note that one- 
way functions are uninvertible; yet uninvertible functions are a much broader 
class than one-way functions. For instance, the null function Vx,f(z) = 8 is 
uninvertible but not ~ n e - w a y . ~  Furthermore, we allow uninvertible functions to 
be probabilistic, (i.e., the function value can be a random variable depending on 
internal random choices of f). See also the discussion in [GL]. 

Definition5. A (probabilistic) function f : {0,1}* -+ (0,1}* is uninvertible with 
respect to distribution ensemble {Xk} if for any probabilistic polynomial time 
algorithm A and for z taken from Xk, the probability Prob(A(lk, f (x))  = x) is 
negligible in k ,  where the probability is taken over the choices o f f ,  A and Z. 
(We let A have input lk to signify that it may run in time polynomial in b . )  
When no distribution is specified, uninvertibility with respect to the uniform 
distribution is implied. 

DefinitionG. Say that H ,  V are a strong oracle hash scheme if the Secrecy re- 
quirement of Definition 3 is replaced with: 

3. Strong Secrecy (oracle security with a-priori information): For any 
algorithm A with binary output, for any well-spread distribution ensemble 
{xk}, and and for any function f that is uninvertible for {xk}: 

(x, A ( f ( t ) ,  H ( x ,  .)I) ( X I  A(f(x), H(Y, T I ) ) ,  

where T ER Rk, and x ,  y are independently drawn from xk. 

Remarks: 1. As in the case of Definition 3, the strong secrecy requirement can 
be relaxed by taking into account only the uniform distribution on the inputs. 
We call this variant strong oracle hashing for random inputs. In particular, this 
variant will suffice for the first application of Section 4. 

‘ One-way functions require that  it is infeasible to  find a n y  value in the preimage of 
f(z). 
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3 Constructions 

We describe some constructions of oracle hash. First we describe a construction 
based on a number theoretic assumption. Next we describe constructions based 
on cryptographic hash functions (such as MD5, SHA). 

3.1 The T,T" construction 

The construction proceeds as follows. Let p be a large safe prime, i.e. p = aq + 1 
where a is a small integer (for simplicity we assume a = 2). Let Q be the 
subgroup of order q in 2; (i.e., Q is the group of squares modulo p ) .  On input 
m and random input T ER Q, the oracle hash function H first computes z = 
h(m) where h is a collision resistant hash function; next it outputs B(rn,r) = 
T ,  T". (Here and in the sequel calculations are made modulo p . )  The verification 
algorithm V is straightforward: given an input rn and a hashed value (a, b}, 
compute z = h(m) and accept if a" = b. 

We analyze this construction based on three strong variants of the DBe-  
Hellman assumption. The variants are used to  show, respectively, that the con- 
struction satisfies oracle security with random inputs, oracle security, and oracle 
security with a-priori information. (These notions are defined in Section 2.) 

Assumption 7 The Diffie-Hellrnan Indistinguishability Assumptions: Let E be a 
security parameter. Let p = 2q + 1 be a randomly chosen k-bit safe prime and 
let g ER Q (where CJ is the group of squares modulo p ) .  

DHI Assumption I: Let a,  b, c ER 2;. Then, (g",  g b ,  g"*) & {g" ,  g b ,  g'). 
DHI Assumption 11: For any well-spread distribution ensemble {X,} where 

the domain of X, is Z;, for a drawn from X, and for 6 ,  c ER Zp' we have 

DHI Assumption 111: For any uninvertible function f and for a, b,  c ER Zp' 
(g" ,  8,  g a b )  (!I", g * ,  9 7 .  

we have ( f ( . ) , g b ,  go*)  (f(a), g 6 ,  g C ) .  

Remarks: 1. It can be seen that Assumption I11 implies Assumption 11, and 
that Assumption I1 implies Assumption I. We were unable to show implications 
in the other direction. 

2. While these assumptions are considerably stronger than the standard 
Diffie-Hellman assumption (there it is only assumed that gab cannot be com- 
puted given p ,  g, gar g') ,  they seem consistent with the current knowledge on the 
Diffie-Hellman problem. In particular, Assumption I appeared in the past, both 
explicitly and implicitly. It is not hard to  see that it is equivdent to the se- 
mantic security of the El-Gamal encryption scheme [El. Furthermore, the value 
exchanged via the DH key exchange is often assumed to  be indistinguishable 
from random. An assumption equivalent to Assumption I is formulated in (B]. 
Also, this assumption underlies a new and efficient construction of pseudoran- 
dom functions [NR]. 

Although Assumptions I1 and 111 look quite strong, we were unable to con- 
tradict them. We propose the viability of these assumptions as an open question. 
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To gain assurance in the plausibility of these assumptions, we remark that it is 
a common practice to use Diffie-Hellman key exchange modulo a large prime of, 
say, 1024 bits, but to choose the secret exponents a and b as random numbers 
of only, say, 200 bits. It is then assumed that the resulting secret, gab, still has 
the full ‘100 bits of ~ecuri ty’ .~ This practice implicitly relies on Assumption I1 
(or, alternatively, 111) for the case where the first 824 bits of a are fixed to 0. 

3. Choosing a safe prime (and the restriction to the subgroup Q) is a standard 
procedure aimed at  avoiding attacks based on the residuocity of a, b, c relative 
to small factors of p -  1. It also carries the advantage that any non-sero member 
of Q is a generator of Q. 

4. Naor and Reingold show that if Assumption I is broken then it is possible 
to distinguish gal  g b ,  gab from gal gb, gc for a n y  a, b, c E 24‘ [NR]. 

For the analysis of the construction, we first consider a somewhat simplified 
version, where the collision resistant hash function h is omitted and the input is 
assumed to be taken from Zp’. 

Theorem 8. 1. If DHI Assumption I holds then the function H ( x ,  r )  = r,  r x ,  
together with its verification algorithm, are an oracle hashing scheme for random 
inputs . 

2. If DHI Assumption 11 holds then the function H ( x , r )  = r , r x ,  together 
with its verification algorithm, are an oracle hashing scheme. 

3. If DHI Assumption III holds then the function H ( x , r )  = r , r x ,  together 
with its verif ication algorithm, are a strong oracle hashing scheme. 

Proof. See [C]. 

The construction R(m, r )  = r,  ~ ~ ( ~ 1 .  Strictly speaking, this construction 
does not satisfy our requirements since the functions h we have in mind are 
fixed, non-scalable constructs with no asymptotic behavior. Assume however, 
for sake of the following discussion, that h now describes a scalable collision 
resistant function where the probability of finding collisions is negligible in the 
security parameter. (In the next subsection we deal with the non-scalability of 
existing cryptographic hash functions in a more rigorous way.) 

We examine compliance with Definition 3. Completeness still holds. Correct- 
ness is now based on the collision resistance of h. (Le., if two inputs rn # rn’ and 
a hash value c are found such that V(m,  c )  = V(m’, c )  = 1, then h ( n )  = h(m’).) 
For the Secrecy requirement, note that as long as the input m is drawn from a 
well-spread distribution, the value z = h(m) must also be well-spread (otherwise 
h-collisions may be found by straightforward sampling). Thus, as long as h is 
collision-resistant, Definition 3 is satisfied under DHI Assumption 11; Definition 
6 is satisfied under DHI Assumption 111. 

3.2 

The construction described in the previous subsection is somewhat inefficient 
since it involves a modular exponentiation. In light of the efficiency of existing 

‘ There are several ways to find discrete logarithms of 2k bit numbers in 0 ( 2 k )  steps, 

Constructions based on cryptographic hash functions 

regardless of the size of the modulus. See details in [MOV]. 



465 

cryptographic hash functions (such as MD5 and SHA), and of the general “dif- 
fusion and confusion” properties they seem to possess, it is natural to look for a 
construction based only on such functions. Here making additional new assump 
tions on these functions is unavoidable. However, in contrast with the ‘random 
oracle heuristic’ discussed in the introduction, these will be well defined assump 
tions. 

We propose three simple constructions of oracle hashing, incorporating ran- 
domness in the input of the hash function. Each construction (or, mode of o p  
eration of the hash function) results in a different assumption on the underlying 
hash function. The assumption will simply be that using the hash function in 
the corresponding mode satisfies either Definition 3 or 6, respectively. We let 
further research and practical experience indicate which construction (if any) is 
preferable in terms of performance and security. 

A first construction that comes to  mind, given a cryptographic hash function 
h is H ( z ,  T)  = T, h ( ~ ,  z), where T is a random string of length p. (Setting p = 128 
for MD5 and p = 160 for SHA seems appropriate.) Verification (and the Com- 
pleteness property) are straightforward. Correctness follows directly from the 
collision resistance of h. The Secrecy requirement imposes the following require- 
ment on h. Following the concrete (i.e., non-asymptotic) security approach of 
[BKR, BGR, BCKL] we say that: 

Definition9. A hash function h is (~,6)-secure with respect to the B(z,T) = 
T, h(r, x )  construction and some distribution A on (0,l)’ if for any adversary A 
and distinguisher D, each running in time r ,  we have 

IProb(D(z,A(r, h(r, z))) = 1) - Prob(D(z, A(T, h(r, y))) = 1)1 5 6 

where x, y are independently drawn from A and r E R  {O, 1)o. 

(This assumption is obtained by simply plugging the construction in the Secrecy 
requirement of Definition 3.) A seemingly equivalent variant is H ( z ,  T) = T, h ( ~ @  
z), where @ denotes bitwise exclusive or. 

We remark that the “bit commitment scheme based on one way functions” 
described in [S], p. 87, is secure under the assumption that the one-way function 
in use satisfies Definition 9. In fact, this assumption seems necessary here. 

Another possible construction is H ( z ,  T) = T ,  h(r,  h (z ) ) .  Completeness and 
correctness are as above. The resulting security assumption can be formulated 
analogously to the former one. Note that potentially this construction is ‘more 
secure’ than the former one, in the sense that if the latter construction fails then 
most probably the former one fails, but not necessarily vice-versa. 

Yet another construction is based on the HMAC construction [BCK2]: let 
H ( z , r )  = ~ , h ( r l , h ( ~ ~ , z ) ) ,  where r1 = reopad ,  r2 = ?&pad, and opad and 
ipad are two fixed constants. Also here, Completeness and correctness are as 
above. This construction may be even ‘more secure’, again in the sense that if 
the HMAC construction fails then most probably so does the previous one, but 
not necessarily vice versa. 

We remark that embedding the randomness in the IV may result in inferior 
constructions, since it may simplify violating Correctness. That is, let h,.(x) 
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denote the value of h ( z )  when the IV is set to  r. Consider the construction 
H ( z ,  T )  = h,(z). Now in order to  violate Correctness it suffices to find T ,  T ' ,  z, z' 
such that Fd,(z) = h+(z'). This is a much easier task; See [BB, MOV] for more 
details. 

4 Applications 

We describe two more applications, on top of the one described in the Introduc- 
tion. 
Avoiding random oracles. In a sequence of papers Bellare and Rogaway 
demonstrate how to construct, in the random oracle model, simple, efficient, and 
provably secure encryption and signature schemes, based on any trapdoor per- 
mutation (e.g., the RSA permutation) [BRl, BR2, BR3, BR4]. It is suggested as 
a 'rule-of-thumb' to replace, in practice, the random oracle with a cryptographic 
hash function. While the resulting constructions are very attractive and useful 
in practice, they lack rigorous proofs of security. 

It is thus natural to attempt the following procedure with respect to these 
schemes: (a) replace the random oracle with oracle hashing, and (b) prove the 
security of the resulting schemes without random oracles. We do that to a simple 
encryption scheme described in [BRl]. 

The scheme proceeds as follows given a random oracle R, and a trapdoor 
permutation generator G that on input l k  outputs a pair f,f-' (where f is a 
one way permutation and f-'. is the inverse of f) .  The public encryption key is 
f and the private decryption key is f -I. Given message m and a random input 
s, let the encryption be E(m,  s) = f(s), R(s)@m. Decryption is straightforward. 

It is shown there that this scheme is semantically secure (in the random oracle 
model). There, semantic security means that for any two messages %,ml, no 
polytime adversary A (with access to  the encryption algorithm E and to R)  can 
distinguish between encryptions of and encryptions of ml with more than 
negligible probability. 

We show how to replace R with an  oracle hashing scheme H .  First however we 
need to make the following two technical assumptions on H. The first assumption 
is that the random input T appears explicitly in the output of H ( z , r ) .  All the 
schemes described in this paper have this property. We call such schemes public 
randomness schemes and write H ( z ,  r )  = r,  &(z, T ) .  

Let Bk denote the domain of hashes with security parameter k. The second 
assumption is that there is an 'easy to  compute' encoding from Bk to (0, l}'(k) 
for some 'reasonable' length function I(b) .  The encoding should make sure that 
when a hash is chosen at random from Be then the encoded value is distributed 
(close to) uniform in (0, l ] r ( k ) .  Again, the schemes described in this paper have 
this property: For the T ,  r2 scheme, one can use a standard encoding of 2; in, say, 
(0, l ) lPl- l .  For the schemes based on cryptographic hash functions no encoding 
seems to be needed. 

We suggest the following encryption scheme. Given message m and random 
input r,  s compute: 

~ ( m ,  p ,  8) = f(s), r ,  I?($, T )  t~ m (2) 
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Again, decryption is straightforward. 
Proving semantic security of this construction, based on the fact that H is 

a strong oracle hash function for random inputs, is quite straightforward. In 
fact, we use only a considerably weaker secrecy property than the one in Defin- 
ition 6, namely that (f(z), h(z ,  T ) )  & ( f ( z ) ,  h(y, r ) )  where 2, y, r are uniformly 
distributed in their domains. 

Theorem 10. T h e  encrypt ion scheme described an (2) as semantically secure, if 
H is a strong oracle hash funct ion f o r  r a n d o m  i n p u t s  wi th  the additional technical 
properties described above. 

Proof (sketch): Assume an adversary A such that Prob(d(E(m1, s)) = 1) - 
P r o b ( d ( E ( m ,  5)) = 1) > 5 for some TTQ, ml and 6. Let po (resp., p l )  denote the 
probability that A outputs ‘1’ if it is given E(-, s) (resp., E(m1, s)), and let p ,  
denote the probability that A outputs ‘1’ given E(m, s), where m is uniformly 
distributed in its domain. Clearly either Ip, - ~ o I  2 6/2, or Ip, - pll  2 6/2.  
Assume that Ip, -pol 2 5/2. 

s.s’, T are randomlychosen. (Note that the function f is uninvertible.) Recall that 
here H ( s ,  T )  = T ,  g ( s ,  T ) ,  and that for uniformly chosen s, T the value R(s,T) 
is uniform in (0,l)‘  for some 1. Given ~ ( s ) , T , <  (where < is either H ( s , r )  or 
k(.s‘, T ) ) ,  D will hand A the ‘ciphertext’ f ( s ) ,  T ,  ( $ m ~ .  Now, if A outputs ‘mu’ 
then D outputs ‘ E  = k(s, T)’ ;  otherwise it outputs ‘< = fi(s‘, T)’.  

Analyzing D is straightforward. (It distinguishes with probability 6/2.) It 
should only be noted that if < = L(s’ , r )  then A is given an encryption of a 

Content-Concealing signatures. Assume that one wants to sign a document 
m in a way that if m is known then the signature can be verified as usual, and 
at the same time make sure that the signature itself hides all partial information 
on m from parties who do not already know m. We call a signature scheme 
that has this property content-conceaiing. Such signatures may become handy, 
for instance, when the document to be signed has been agreed by the parties 
in a private way, but the signature has to  be broadcasted on a public channel 
where encryption is unavailable or costly. Another possible scenario is when the 
signer wants to publish beforehand a signature on a document (say, the quarterly 
earnings of IBM) but make the document public only a t  a later date. 

As in the ‘puzzle in the newspaper’ problem, to crypto practitioners it may 
seem that this problem is already solved: Since cryptographic hash functions are 
assumed to ‘hide all partial information on the input’, and since the first step 
in any digital signature algorithm is to apply a cryptographic hash function to  
the document, then existing digital signatures are already content-concealing. 

Also here, however, this is an illusion. No known (until now) cryptographic 
primitive solves this problem. Furthermore, also here there is a simple solution 
in the random oracle model: in the presence of a random oracle R one can simply 
sign R(m) instead of signing m. 

When formalizing the requirement that the signature ‘hides all partial infor- 
mation on the input’ and at the same time allows for verification, one ends up 

Construct a distinguisher D between (f(s), H ( s ,  T)) and ( f ( s ) ,  iY(s’, T ) ) ,  where 

uniformly chosen message. 0 
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with the same notion of oracle security used for oracle hash. Tha t  is: 

Definitionll. A signature scheme is (Strong) content-concealing if, in addition 
to  being a signature scheme (as defined in, say, [GMR]), the signing algorithm 
satisfies the Secrecy requirement of Definition 3 (resp., 6). 

Once content-concealing signatures a re  defined, a solution is straightforward: 
To sign a message m, sign c = H ( m ,  r )  (and attach c to the signature), where 
H, V are an oracle hash scheme and r is randomly chosen. For verification, first 
verify the signature on c;  next verify that c is a hash of m using the verification 
algorithm V .  
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