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Abstract

The Distributed Computing Column covers the theory of systems that are composed of a
number of interacting computing elements. These include problems of communication and net-
working, databases, distributed shared memory, multiprocessor architectures, operating systems,
verification, Internet, and the Web.

This issue contains two items:

• An eulogy in memory of Larry Stockmeyer, who passed away on July 31, 2004. Larry
did pioneering work in various areas, such as complexity theory, logic, interactive proofs,
distributed computing, parallel computing, secure architectures, database privacy, and
storage systems. A celebration of Larry’s work will be held May 21–22, 2005, in conjunction
with STOC 2005 (May 22–24). On May 21, a tutorial by Nick Pippenger (Princeton) on
some of Stockmeyer’s fundamental results in complexity theory will be followed by lectures
by Miki Ajtai (IBM), Anne Condon (UBC), Cynthia Dwork (Microsoft), Richard Karp
(UC Berkeley), Albert Meyer (MIT), and Chris Umans (CalTech). Some time will be
reserved for personal remarks. If you wish to speak in this part of Larry’s commemoration
contact Cynthia Dwork (dwork@microsoft.com). The celebration of Stockmeyer’s work
will conclude on May 22, with Lance Fortnow giving a keynote address to STOC.

• “Distributed Approximation,” a survey by Michael Elkin. Considerable progress has
been recently achieved in designing efficient distributed approximation algorithms, and in
demonstrating hardness of distributed approximation for various problems. An overview
of the research in this area is presented, including several directions for future research.

Many thanks to Michael for his contribution to this issue.

Request for Collaborations: Please send me any suggestions for material I should be including
in this column, including news and communications, open problems, and authors willing to write
a guest column or to review an event related to theory of distributed computing.

∗Instituto de Matemáticas, UNAM. Ciudad Universitaria, Mexico City, D.F. 04510 rajsbaum@math.unam.mx.
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Larry Stockmeyer 1948–2004

Larry was born in Evansville, Indiana, in 1948. He attended college at MIT, receiving a B.S.
in mathematics and an M.S. in electrical engineering in 1972, and a Ph.D. in computer science in
1974. He spent all of his professional career at IBM. He started in 1974 at the Thomas J. Watson
Research Center, and in 1982 moved to what is now the Almaden Research Center. He retired from
IBM in November 2003. In 1996 he was named an ACM Fellow. Larry passed away on July 31,
2004, at age 55.

Larry made many important contributions to the theory of computation. One – extremely
important– example is his discovery (with Albert Meyer in FOCS 1972) of the polynomial time
hierarchy. He also did important work in parallel and distributed computing. He had three in-
fluential papers about consensus in partial synchrony models. After the FLP result that proved
consensus to be impossible in an asynchronous system where one process can crash, finding realistic
systems where consensus could be solved became an active research area. Larry’s paper “On the
Minimal Synchronism Needed for Distributed Consensus” (with Danny Dolev and Cynthia Dwork
in FOCS 1983 and JACM 1987) helped explaining why consensus is possible in certain models but
not possible in others. It considered various synchrony conditions, examined how varying these
affects the number of faults that can be tolerated by a consensus algorithm. In “Consensus in
the presence of partial synchrony” (with Dwork and Nancy Lynch, JACM 1988), the concept of
partial synchrony in a distributed system is studied, and consensus protocols are given for various
cases of partial synchrony and various fault models. Lower bounds that show in most cases that
the protocols are optimal with respect to the number of faults tolerated are also given. Also, they
introduced fault-tolerant clock synchronization protocols, and used them in their protocols. In
“Bounds on the time to reach agreement in the presence of timing uncertainty” (with Hagit Attiya,
Dwork and Lynch in JACM 1994) upper and lower bounds are proved for the time complexity of
solving consensus in a crash failure model, where time for message delivery is at most d, and the
amount of time between any two consecutive steps of any nonfaulty process is at least c1 and at
most c2; thus, C = c2/c1 is a measure of the timing uncertainty. On a different subject, “Lower
bounds on the competitive ratio for mobile user tracking and distributed job scheduling” (with
Noga Alon, Gil Kalai and Moty Ricklin, TCS 1994) proves a lower bound of Ω(log n/ log log n) on
the competitive ratio for solving a mobile user problem and a Distributed Job Scheduling problem.
His paper “What can be computed locally?” (with Moni Naor, SICOMP 1995) studies computation
that can be done within time independent of the size of the network.

These distributed computing papers are consistent with others by Larry – serious, deep work.
They further illustrate how broad his research was. He will be missed by many people.
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Distributed Approximation - A Survey1

Michael Elkin 2

Abstract

Recently considerable progress was achieved in designing efficient distributed approxima-
tion algorithms, and in demonstrating hardness of distributed approximation for various
problems. In this survey we overview the research in this area and propose several
directions for future research.

1 Introduction

The area of distributed approximation is a new rapidly developing discipline that lies on the bound-
ary between two well-established areas, specifically distributed computing and approximability.

1.1 Distributed Computing

Distributed computing is a very broad area that encompasses a plethora of disciplines. The particular
subarea of distributed computing that is relevant to this survey focuses on the so-called message-
passing model of computation [5, 13, 23]. In this model we are given a network of processors
modeled by an unweighted undirected N -vertex graph G = (V,E). The processors reside in the
vertices of the graph, and the edges of E model the links of the network. The processors (henceforth,
vertices) have infinite computational power, but their initial knowledge is limited to their immediate
neighborhood. The network is to solve (cooperatively) some global problem, whose resolution
requires communication between the vertices. The vertices are allowed to communicate via the
links of the network (henceforth, edges). The communication is synchronous, that is, it occurs in
discrete rounds. On each round at most B bits can be sent through each edge in each direction,
where B is the bandwidth parameter of the network. A particularly interesting case emerges when
B is equal to infinity [24].

The most commonly used measure of efficiency of distributed algorithms is the (worst-case)
number of rounds of communication. (Note that that the local computation is completely free
under this measure.) This efficiency measure naturally gives rise to the time complexity measure
of problems.

The message-passing model was subject to extensive research for the last two decades (see [28]
for an excellent comprehensive survey).

1.2 Approximability

The study of approximate variants of combinatorial optimization problems in the Turing machine
model of computation is an extremely active mainstream area of research. In the quest for better

1This work was done in Yale University, and was supported by the DoD University Research Initiative (URI)
administered by the Office of Naval Research under Grant N00014-01-1-0795.

2Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel, elkinm@cs.bgu.ac.il
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approximation algorithms researchers developed a great variety of elegant and sophisticated math-
ematical techniques. The study of lower bounds, in turn, gave rise to the algebraically deep PCP
theory, which is as great a contribution to Complexity Theory as to Approximability Theory. In
other words, the study of the approximability of problems in a given computational model turns
out to be instrumental for achieving a better understanding of the capabilities and the limitations
of the model. Additionally, such a study enables to expose important structural properties of the
studied problems; properties that can be left unexploited when one analizes the exact variants of
the same problems.

1.3 Distributed Approximation

With this motivation in mind, it is not surprising that much of the recent research efforts in the
study of the message-passing model were funneled to distributed approximation. Fortunately, those
efforts stood up to the expectations in shedding a new light also on the exact variants of some of the
most important problems in the area, such as the maximal independent set, the minimum spanning
tree (henceforth, MST ), and the maximal matching problems [18, 9]. In fact, the state-of-the-art
lower bounds for (the exact versions of) these problems are mere corollaries of more general results
concerning the hardness of distributed approximation.

1.3.1 Upper Bounds

Distributed approximation algorithms are currently available for a number of problems. One of
them is the minimum dominating set (henceforth, MDS) problem [16, 6, 19]. Another relatively
well-studied problem is the minimum edge-coloring [26, 4, 14, 2]. Approximation algorithms for
the maximum matching problem were developed in [3, 32]. Algorithms for distributed distance
estimation were developed in [8, 10]. Kuhn et al. [17] devised an approximation algorithm for the
minimum vertex cover problem. Furthermore, in what appears to be the most general upper bound
in this area so far, they were able to extend their algorithm to solve positive linear programs [20].
This result, in turn, gave rise to improved approximation algorithms for the minimum dominating
set, minimum vertex cover, and maximum matching problems. (The study of distributed algorithms
for positive linear programs dates back to the papers of Papadimitriou and Yannakakis [27], and
of Bartal et al. [1].)

1.3.2 Lower Bounds

Until very recently all the existing results on hardness of distributed approximation could have
been divided to two categories.

First, there were inapproximability results that are based on lower bounds on the time required
for exact solution of certain problems, and on integrality of the objective functions of these problems.
For example, there is a classical result due to Linial [24] saying that 3-coloring an N -vertex ring
requires Ω(log∗ N) time. In particular, it implies that any 3/2-approximation protocol for the
vertex-coloring problem requires Ω(log∗ N) time.

Second, there were inapproximability results that assume that the vertices are computationally
limited, e.g., are allowed to perform at most polynomial in N number of operations. Obviously,
under this assumption any NP-hardness inapproximability result immediately gives rise to an anal-
ogous result in the distributed model.

Note, however, that neither of these inapproximability results sheds a new light on our un-
derstanding of the limitations of distributed computing. Specifically, the results of this sort are
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just somewhat different semantic interpretations of already known lower bounds. Additionally, we
believe that imposing restrictions on the computational power of the vertices is as unnatural as
limiting the computational power of the parties in the two-party communication complexity model
(see [21]). In both cases the abstraction of computationally unbounded vertices or parties is nec-
essary to make possible the study of the role that communication plays in computation (see also
[24, 28]).

Recently strong lower bounds on the hardness of distributed approximation for the MST prob-
lem were established by the author in [9]. In another even more recent development Kuhn et al.
[17] have shown a series of strikingly elegant lower bounds on the approximability of the minimum
vertex cover, the minimum dominating set, and maximum matching problems. As was already
mentioned, their technique enabled them to improve drastically the classical lower bounds of Linial
[24] for the complexity of the maximal independent set (henceforth, MIS ) and maximal matching
problems.

1.3.3 The Structure of the Survey

The rest of the survey is organized as follows. Section 2 is devoted to the upper bounds, and is
based on the work of Kuhn et al. [17, 19, 20]. Section 3 is devoted to the lower bounds. In Section
3.1 we describe the lower bound of [9] for the minimum spanning tree problem, and in Section 3.2
we turn to the lower bounds of [17, 18] for the minimum vertex cover and minimum dominating
set problems. We conclude (Section 4) with some open problems.

2 Upper Bounds

Linear Programming (henceforth, LP) is one of the most general and useful tools in algorithmic
design. Particularly, there is a great multitude of different approximation algorithms that solve an
LP and employ one of the rounding techniques (see [15, 31] for the systematic overview of such
algorithms).

However, it is a-priori not clear that this powerful methodology can be applied in the distributed
setting. Indeed, all the known algorithms for solving general linear programs (LPs) need to process
the entire matrix that defined the LP. It seems that none of these algorithms (the Ellipsoid method,
the Simplex, the Interior points method) can possibly succeed in a scenario when the matrix is
distributed among processors that share no common memory, each keeping only a tiny fraction of
the matrix, and with only a scarce communication between them.

Though understanding the distributed complexity of solving general LPs is an outstanding open
problem, there are currently available distributed algorithms for solving LPs of certain particularly
important type, so-called positive LPs. Positive LPs are LPs that are defined by matrices and
vectors that satisfy that all their entries are non-negative. LPs of this type are also often called
fractional covering or packing (depending on the form of the particular LP, see below) LP. Positive
LPs were intensively studied [25, 30, 7, 11, 12] in the course of the last decade. Many important
combinatorial problems, such as the minimum vertex cover, the minimum dominating set, the
maximum matching, can be modeled by a positive LP.

Papadimitriou and Yannakakis [27] were the first to show that positive LPs can be approximated
rather well even if the matrix is distributed among multiple processors that are not allowed to
communicate. Further, Bartal et al. [1] have shown that in the distributed setting (that is, when
the processors are allowed to communicate), this approximation can be achieved rather efficiently.
More recently, Kuhn and Wattenhofer [19, 20] have improved and generalized the results of [1], and
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have used these LP-solving algorithms for providing efficient distributed approximation algorithms
for the minimum vertex cover, the minimum dominating set, the maximum matching problems.

In the rest of this section we will describe in detail the O(kΔ2/k log Δ)-approximation algorithm
of [19] for the MDS problem. Δ is the maximum degree of the input graph, and k = 1, 2, . . . is
a parameter that determines the running time of the algorithm. (Specifically, the running time is
O(k2)).

For a graph G = (V,E), and a vertex v, let Γ(v) = {v} ∪ {u | {u, v} ∈ E}. A subset S ⊆ V of
vertices is a dominating set if it satisfies that V =

⋃
v∈S Γ(v). The MDS problem asks to compute

a dominating set of minimum size.
Let V = {1, 2, . . . , N} (we also use [N ] to denote {1, 2, . . . , N}), and let A denote the adjacency

matrix of the graph G. The MDS problem can now be modeled by the integer program

min
∑N

i=1 xi (IP-MDS)
s.t. Ax ≥ 1, x ∈ {0, 1}N ,

and relaxed by the same program (denoted (LP-MDS)) with the condition x ∈ {0, 1}N replaced by
x ≥ 0.

LPs of this form are called covering LPs. Since A = AT , the dual LP (denoted (DLP-MDS)) is
given by

max
N∑

i=1

yi s.t. Ay ≤ 1, y ≥ 0 .

LPs of this form are called packing LPs.
For a vertex i ∈ V , let δ(1)(i) denote the maximum degree in Γ(i), and δ(2)(i) denote the

maximum degree in the 2-neighborhood of i, that is, δ(2)(i) = max{δ(1)(i) | j ∈ Γ(i)}. We need the
following standard fact.

Fact 2.1 For any dominating set S ⊆ V ,

N∑
i=1

1
δ(1)(i) + 1

≤ |S| .

(Note that the assignment yi = 1
δ(1)(i)+1

for every i ∈ V satisfies the (DLP-MDS). The fact now
follows from the LP-duality theorem.)

2.1 Rounding Algorithm

We next show that a solution for (LP-MDS) can be efficiently distributively rounded to a solution
for (IP-MDS).

Let x be a feasible solution for (LP-MDS), and suppose that every vertex i ∈ V knows xi. The
vertex i also maintains a boolean indicator variable Si which will be eventually set to 1 if the vertex
i will end up in the returned dominating set S, and will be set as 0 otherwise.

The vertex i starts the algorithm by setting Si as 1 with probability pi = min{1, xi · ln(δ(2)
i +1)},

and sets it as 0 otherwise. Then the vertex i sends Si to each of its neighbors. Then it checks
whether one of his neighbors j set his Sj to 1, and if it is not the case, the vertex i sets its Si

to 1 (independently of the random coin that was tossed with probability pi). This concludes the
rounding algorithm.
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Note that the last step of the algorithm ensures that S is a valid dominating set. Note also that
the algorithm requires only a constant number of rounds of communication. To provide an upper
bound on the expected size of S, note that |S| ≤ X + Y , where X is the number of vertices i who
set their variable Si as 1 as result of the coin toss, and Y is the number of vertices i that discovered
that none of their neighbors set Si to 1.

Observe that

IE(X) =
N∑

i=1

pi ≤
N∑

i=1

xi · ln(δ(2)
i + 1) ≤ (ln(Δ + 1))

N∑
i=1

xi .

Let Xi be the indicator random variable that reflects the result of the coin toss of the vertex i, and
Yi be the indicator random variable that is set to 1 only if for every j ∈ Γ(i) the variable Xj is
equal to 0. Then

IE(Yi) = Πj∈Γ(i)(1 − IP(Xj = 1)) = Πj∈Γ(i)(1 − pj)

≤ Πj∈Γ(i)(1 − xj ln(δ(2)
j + 1)) ≤ Πj∈Γ(i)(1 − xj ln(δ(1)

i + 1))

≤ e−
P

j∈Γ(i) xj ln(δ
(1)
i +1) ≤ e− ln(δ

(i)
i +1) =

1

δ
(1)
i + 1

.

(The first inequality is because if for some j ∈ Γ(i), pj = 1, then IE(Yi) = 0. The last inequality is
because x is a feasible solution for (LP-MDS).)

Consequently, IE(Y ) ≤∑N
i=1

1

δ
(1)
i +1

≤ |S′|, for any dominating set S′ (by Fact 2.1). Particularly,

IE(Y ) ≤ |S∗|, where S∗ is the minimum dominating set. Hence IE(|S|) ≤ IE(X) + IE(Y ) ≤ (ln(Δ +
1))(

∑N
i=1 xi) + |S∗|.

If x is an optimum solution for (LP-MDS) then obviously
∑N

i=1 xi ≤ |S∗|, and consequently
IE(|S|) ≤ (ln(Δ + 1) + 1)|S∗|. Note also that if x is an α-approximate solution for (LP-MDS) for
some α > 1, then the expected size of S is at most (α ln(Δ + 1) + 1)|S∗|.

Consequently, any distributed O(kΔ2/k)-approximation algorithm for (LP-MDS) can be con-
verted into an O((log Δ)kΔ2/k)-approximation algorithm for the minimum dominating set problem
with essentially the same running time.

2.2 Approximation Algorithm for (LP-MDS)

We next describe the approximation algorithm of [19] for the (LP-MDS).
During the algorithm every vertex i maintains a few local variables, specifically, the eventual

output x, the color color , the dynamic degree δ̃, and two additional variables A and z. The variable
x is initialized as 0, and is eventually returned as the ith coordinate of the solution of (LP-MDS)
produced by the algorithm. The value of x never decreases, and never becomes greater than 1
(from obvious reasons). color is a boolean variable that is initially set as “white”, and it is changed
to “gray” essentially right after the condition

∑
j∈Γ(i) xj ≥ 1 is satisfied. The variable δ̃ reflects the

number of white-colored neighbors that the vertex has.
The general structure of the algorithm is a double loop. On each iteration � of the outer loop

the value of the variable x may increase. All vertices whose variables x grow on iteration � are
called active with respect to iteration �. The variable A of the vertex i counts the number of active
neighbors that the vertex has on the current iteration. This variable is used only for the convenience
of the analysis, and an actual implementation of the algorithm can do without it. The same is true
for the variable z. Every increase in the value of the variable x = x(i) of the vertex i is distributed
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equally between the variables z of the vertices of Γ(i) that had white color prior to the increase
of x(i). This way the increase of the value of x(i) is charged to its neighbors. It turns out that
the variable z changes “more smoothly” than the variable x, making the analysis of

∑
i∈V z(i)

technically easier than that of
∑

i∈V x(i).
The formal description of the algorithm follows.

Algorithm 1 The algorithm of [19] for approximating (LP-MDS).

1: x := 0; δ̃ := deg(v);
2: for � := k − 1, . . . , 0 do
3: z := 0; A := 0;
4: for h := k − 1, . . . , 0 do
5: send color to all neighbors;
6: update δ̃;
7: if δ̃ ≥ (Δ + 1)�/k then
8: x := max{x, 1

(Δ+1)h/k };
9: end if

10: send x to all neighbors;
11: update color , z and A;
12: end for
13: end for

Note that the algorithm assumes that every vertex knows the maximum degree Δ of the graph;
it is, however, shown in [19] that the algorithm can be adapted to work with essentially the same
running time and provide the same approximation guarantee even when the vertices do not know
Δ in advance. (This adaptation is, however, not trivial. An interested reader should consult [19].)

The algorithm is designed to ensure that

1. The dynamic degree δ̃ is at most (Δ + 1)
�+1

k in the beginning of iteration � of the outer loop.

2. The variable A that counts the number of active vertices in the neighborhood is at most
(Δ + 1)

h+1
k at the beginning of iteration h of the inner loop.

3. At the end of iteration � of the outer loop z ≤ (Δ + 1)−
�−1

k .

The first two properties follow in a rather simple way from the algorithm. The third property
requires a more delicate argument, which we next describe.
Proof: (of (3)) Let t ∈ {0, 1, . . . , k− 1} be the index of the iteration of the inner loop on which the
vertex i becomes gray. (If the vertex i does not become gray on iteration � of the outer loop, then
the proof is simpler; see below.) Observe that z may grow only on iterations h ∈ {k−1, k−2, . . . , t}.
We analyze separately the growth of z on iterations h ∈ {k − 1, k − 2, . . . , t + 1}, and its growth on
iteration t (of the inner loop).

By definition, for h ∈ {k − 1, . . . , t + 1}, ∑j∈Γ(i) x(j) < 1, and for every active vertex j,
δ̃(j) ≥ (Δ + 1)�/k. Since the value of the variable z = z(i) of the vertex i grows only when x(j)
grows for some neighbor j ∈ Γ(i), it follows that

z(i) <
∑

j∈Γ(i)

x(j)
δ̃(j)

≤
∑

j∈Γ(i) x(j)

(Δ + 1)�/k
<

1
(Δ + 1)�/k

. (1)
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The last inequality holds for the value of the variable z(i) at the end of iteration t + 1 of the inner
loop. If the vertex i does not become gray on iteration � of the outer loop, then this completes the
proof.

We next analyze the increase of z(i) on iteration t. Recall that a vertex is active if its dynamic
degree is at least (Δ+1)�/k. The quantity (Δ+1)�/k is constant during iteration � of the outer loop,
and the dynamic degrees may only decrease. Hence all the vertices j that were active on iteration
t + 1 of the inner loop, are active on iteration t as well. Hence step 8 of the algorithm ensures that
for every vertex j that is active on iteration t, x(j) ≥ 1

(Δ+1)
t+1

k

. On step 8 of iteration t the value

of x(j) either stays unchanged, or grows to at most 1
(Δ+1)t/k . Hence the increase in x(j), denoted

d(x(j)), is at most

d(x(j)) ≤ 1
(Δ + 1)t/k

− 1
(Δ + 1)(t+1)/k

=
Δ

(Δ + 1)(t+1)/k
.

Since δ̃(j) ≥ (Δ + 1)�/k, and since the increase d(x(j)) is distributed equally among the active
neighbors of j, the vertex j may contribute an additional value of at most d(x(j))

(Δ+1)�/k = Δ

(Δ+1)
t+1+�

k

to the value of the variable z = z(i) of the vertex i. The overall increase in the value of z(i) (that
comes from all the active neighbors of i) is consequently at most

Δ

(Δ + 1)
t+1+�

k

· A ≤ Δ
(Δ + 1)�/k

, (2)

where A is the value the variable A(i) of the vertex i in the beginning of iteration t of the inner
loop. (By (2), A(i) ≤ (Δ + 1)

t+1
k .)

Combining the inequalities (1) and (2) we get the desired bound of 1

(Δ+1)
�−1

k

.

Direct inspection shows that the running time of the algorithm is O(k2). It is also easy to
see that it returns a feasible solution for (LP-MDS). It remains to argue that its approximation
guarantee is at most k(Δ + 1)2/k.

Theorem 2.2 [19] The algorithm provides a (k(Δ+1)2/k)-approximation guarantee for (LP-MDS).

Proof: By properties (1) and (3), at the beginning of iteration � of the outer loop, δ̃ ≤ (Δ + 1)
�+1

k

and at the end of this iteration z ≤ (Δ + 1)−
�−1

k . Since z can only increase as the algorithm
proceeds, it follows that z ≤ (Δ + 1)−

�−1
k during the iteration as well. Hence∑

j∈Γ(i)

z(j) ≤ δ̃ · max{z(j) | j is an active neighbor of i} ≤ (Δ + 1)2/k .

Set y = z
(Δ+1)2/k , and consider the vector y = (y1, y2, . . . , yN ). Note that y is feasible for (DLP-

MDS) because
∑

j∈Γ(i)
zj

(Δ+1)2/k ≤ 1
(Δ+1)2/k

∑
j∈Γ(i) zj ≤ 1, for every i ∈ V .

Let OPT be the value of optimal solution for (LP-MDS). Then, by duality of LP,

N∑
i=1

zi = (Δ + 1)2/k
N∑

i=1

yi ≤ (Δ + 1)2/k · OPT .
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For � ∈ {0, 1, . . . , k − 1}, let Z(�) =
∑N

i=1 zi be the sum of the values of all the variables z at the
end of the �th iteration of the outer loop. Note that

N∑
i=1

xi =
k−1∑
�=0

Z(�) ≤ k · (Δ + 1)2/k · OPT .

In [17] Kuhn et al. use a similar technique to devise an O(Δ1/k)-approximation algorithm for
the minimum vertex cover and maximum (unweighted) matching problems. The running time of
their algorithm is O(k). In [20] Kuhn and Wattenhofer generalize all the upper bounds of [19, 17]
and devise an efficient distributed approximation algorithm for solving positive LPs. Another
distributed approximation algorithm (with somewhat inferior performance) for solving positive
LPs was devised by Bartal et al. [1].

3 Lower Bounds

3.1 The MST Problem

We start with describing the lower bound of [9] on the approximability of the minimum spanning
tree (MST ) problem. This lower bound is based on the lower bound of Peleg and Rubinovich [29]
for the exact MST problem.

The lower bound is proven in two stages. The first stage is the lower bound on the complexity
of the so-called CorruptedMail problem, which we will define shortly. The second stage is the
reduction from the CorruptedMail problem to the approximate MST problem. This reduction
shows that any algorithm that constructs a spanning tree of weight at most H times greater than

the weight of the MST requires T = Ω
(√

N
H·B

)
rounds in the worst case, where B is the bandwidth

parameter of the model. The result applies even to graphs of diameter Λ that satisfy Λ � T , and it
applies to randomized (both Las-Vegas and Monte-Carlo) algorithms as well. Note that the results
can be expressed as a lower bound on the time-approximation tradeoff, specifically, T 2·H = Ω(N ·B).

We next describe the CorruptedMail problem. The problem is defined on graphs G = (V,E)
of the following form. Let Γ, m and p be positive integer parameters that satisfy p ≥ log N and

(m + 1)Γ + (m+1)
1+ 1

p −1

(m+1)
1
p −1

= N . Let d = (m + 1)1/p. (For simplicity, we assume that all the algebraic

expressions such as (m + 1)
1
p and (m+1)

1+ 1
p −1

(m+1)
1
p −1

are integer.)

The graph G has the following structure. It contains a d-regular tree τ of depth p, with m + 1
leaves, z0, z1, . . . , zm. These leaves, in turn, are the centers of the stars S0, S1, . . . , Sm, and each
star Si contains in addition zi also the vertices v

(i)
j , j = 1, 2, . . . ,Γ, for every index i = 1, 2, . . . ,m.

The edges of the star Si are {{zi, v
(i)
j } | j = 1, 2, . . . ,Γ}. Also, for every index j = 1, 2, . . . ,Γ,

the vertices v
(i)
j are connected in such a way that they form a path Pj . Specifically, the edges

{v(0)
j , v

(1)
j }, {v(1)

j , v
(2)
j }, . . . , {v(m−1)

j , v
(m)
j } all belong to the path Pj . See Figure 1.

The leaves z0 and zm have special mission. Specifically, the leaf z0 is also called the sender,
and is denoted s = z0. The leaf zm is called the receiver, and is denoted by r = zm. The sender s
accepts as input a bit string χ, and the goal of the network is to deliver this string to the receiver r.
To facilitate the delivery, the network is allowed to corrupt the message to some extent. The lower
bound that we will show will naturally depend on the extent to which the string can be corrupted.
In fact, obviously if the network is allowed to corrupt the string to an arbitrarily large extent,
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Figure 1: The graph G = (V,E).

then the string can be “delivered” in zero time. (Because in this case the receiver r can return an
arbitrary bit string χ′ without any communication whatsoever.)

To formally define the CorruptedMail problem we need two additional parameters α and β,
0 < α < β < 1, that will be fixed later. For a bit string χ ∈ {0, 1}Γ and an index j = 1, 2, . . . ,Γ,
let χj denote the jth bit of χ. The Hamming weight of χ, denoted hwt(χ), is the number of indices
j = 1, 2, . . . ,Γ such that χj = 1. For two bit strings χ, χ′ ∈ {0, 1}Γ, the string χ′ is said to dominate
χ if for each j = 1, 2, . . . ,Γ, χj = 1 implies χ′

j = 1. Consider some mapping φ : {0, 1}Γ → {0, 1}Γ,
and suppose φ(χ) = χ′.

CorruptedMail(α, β) problem is defined on the graph G. The input to this problem is a bit
string χ ∈ {0, 1}Γ of length Γ with Hamming weight hwt(χ) = αΓ. The input is provided to the
sender s only. The output, returned by the vertex r, is a string χ′ ∈ {0, 1}Γ of Hamming weight at
most βΓ, and it is required that the output string χ′ will dominate the input string χ.

Observe that the restriction that χ′ should dominate χ guarantees that the errors that are done
throughout the delivery of the bit string χ are one-sided (i.e., zeroes can become ones, but not vice
versa).

Let �(α, β) denote the expression

�(α, β) = (β − α) log(β − α) − (1 − α) log(1 − α) − β log β . (3)

The following lemma can be proven by direct calculation.

Lemma 3.1 For any deterministic protocol Π for the CorruptedMail(α, β) problem, its set of all
possible outputs {Π(χ) | χ ∈ {0, 1}Γ, hwt(χ) = αΓ} contains at least Ω(2�(α,β)Γ) elements.

We next show that for any protocol Π with worst-case running time at most t for t in certain
range, its set of possible outputs (over all possible inputs) is at most exponential in t. (To argue
this we use the determinism of the protocol, and the fact that the vertex r that returns the output
could not get “too much” information about the input.) It will follow that the running time t of the
protocol Π cannot be too small, unless Π is incorrect. To prove an upper bound on the size of the
set of possible outputs of any correct protocol, we show that the set of all possible configurations
of the vertex r in terms of t is relatively small.
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Consider some fixed (deterministic) protocol Π, and an execution ϕχ of this protocol on a fixed
bit string χ. The configuration of the vertex v on round t of the execution ϕχ, denoted C(v, t, χ), is
the record of all the messages that the vertex v has received on previous rounds. For the sender s,
its configuration also contains the input string χ. For a subset U ⊆ V of vertices, its configuration
C(U, t, χ) is the concatenation of the configurations of all the vertices of U (in some fixed order).
Let C(U, t) = {C(U, t, χ) | χ ∈ {0, 1}Γ}, and ρ(U, t) = |C(U, t)|. In other words, ρ(U, t) is the
number of all possible different configurations of the subset U on round t over all possible input
strings χ.

Cast to this terminology, our goal is to provide an upper bound in terms of t on ρ({r}, t). For this
purpose we define a sequence of tail sets T0, T1, . . . , Tm, that satisfy V ⊇ T0 ⊇ T1 ⊇ . . . ⊇ Tm 
 r,
and provide an upper bound on ρ(Tt, t), for each t = 0, 1, . . . ,m− 1. Consequently, the same upper
bound applies to ρ({r}, t).

Recall that the graph G contains as a subgraph the d-regular rooted tree (τ, rt) of height p,
with m + 1 leaves s = z0, z1, . . . , zm = r. For i = 0, 1, 2, . . . ,m, let τ(i) denote the connected
subtree of τ with minimal number of vertices, such that its set of leaves, Leaves(τ(i)), is equal to
{zi, zi+1, . . . , zm}. Let the root of τ(i), denoted rt(τ(i)), be the closest vertex of τ(i) to the root rt
of the tree τ . We define the tail sets, T0, T1, . . . , Tm as follows. The tail set T0 contains the entire
vertex set V of G except the vertex s, i.e., T0 = V \ {s}. For i = 1, 2, . . . ,m, Ti = {v(i′)

j | j =
1, 2, . . . ,Γ, i′ = i, i + 1, . . . ,m} ∪ V (τ(i)).

Assume (for convenience) that the rounds are indexed 0, 1, 2, . . .. At the beginning of round
t = 0, i.e., at the beginning of the execution of the protocol, all the vertices except s are in some
fixed initial state, that is independent of the input bit string χ. Hence, ρ(T0, 0) = ρ(V \{s}, 0) = 1.
We next prove an upper bound on the number of configurations of the tail set Tt, after a relatively
small number of rounds t ≤ m − 1.

Lemma 3.2 For t = 0, 1, . . . ,m − 1, ρ(Tt, t) ≤ (2B+1 − 1)t·p·d.

Proof: The proof is by induction on t. The induction base was argued above. We next prove
the induction step. Observe that T0 ⊇ T1 ⊇ . . . ⊇ Tm. Suppose we are given a configuration
C ∈ C(Ti, i). Note that C uniquely determines the messages that are sent at round i by vertices
of Ti. Therefore, the only messages that are not yet determined are those that are sent by the
vertices of V \ Ti to the vertices of Ti+1. Denote this set of edges by Ei,i+1. Observe that the
edges of the paths P1, P2, . . . , PΓ do not belong to

⋃m−1
i=0 Ei,i+1. It follows that Ei,i+1 ⊆ E(τ), for

i = 0, 1, . . . ,m − 1. For i = 0, clearly, E0,1 = {{z0, w}}, where w is the parent of z0 in the tree
τ . More generally, Ei,i+1 is a subset of edges of E(τ) that are incident both to V (τ(i + 1)) and to
V \ V (τ(i)), i = 0, 1, . . . ,m − 1. See Figure 2 for an illustration.

Let Cut i denote the subset of edges of E(τ) that are in the cut between V (τ(i)) and the rest
of V (τ), for i = 1, 2, . . . ,m. It follows that Ei,i+1 ⊆ Cut i+1, for i = 0, 1, . . . ,m − 1. We need an
upper bound on the size of this cut.

Lemma 3.3 For i = 1, 2, . . . ,m, |Cut i| ≤ p · d.
The (technically not hard) proof of this lemma is omitted (see [9]).
It follows that |Ei,i+1| ≤ p · d for i = 0, 1, . . . ,m − 1. In other words, for i = 0, 1, . . . ,m − 1,

there are at most p · d edges that are incident to the tail set Ti+1, such that given a configuration
C in C(Ti, i) of the vertices of Ti at the beginning of round i, the messages that are sent over these
edges at round i are not determined by this configuration.

Recall that at most B bits can be delivered through an edge in each round. Therefore, the
number of possible messages that may be sent through an edge in a given direction in one round is

12



El2

El1
w

i+1ziz

Figure 2: The sets V (τ) \ V (τ(i)) and V (τ(i + 1)) are depicted by ellipses El1 and El2, respectively.
Edges of Ei,i+1 are depicted by thick solid lines. Note that the edge (zi, w) does not belong to Ei,i+1,
because zi ∈ V (τ(i)).

at most
∑B

�=0 2� = 2B+1 − 1. Observe that there is only one relevant direction of sending messages
in our case, that is, towards the vertices of the tail set Ti+1. Hence, the number of possible messages
that may be sent through at most p · d edges in one round is at most (2B+1 − 1)p·d. It follows that
for i = 0, 1, . . . ,m − 1, ρ(Ti+1, i + 1) ≤ (2B+1 − 1)p·d · ρ(Ti, i).

Lemma 3.4 The deterministic complexity of CorruptedMail problem is Ω(min{m, Γ
p·B·m1/p · α ·

log(1/β)}).
Proof: Consider a protocol Π for the CorruptedMail problem, and let t denote its worst-case
running time on inputs of fixed size Γ. By Lemma 3.2, it follows that if t ≤ m − 1 then ρ(Tt, t) ≤
(2B+1−1)t·p·d. On the other hand, observe that the number of possible configurations of the vertex
r upon the termination of the protocol Π is at least the cardinality of some subset Υ′ ⊆ Υ of a
subset of bit strings that dominates A. By Lemma 3.1, |Υ′| = Ω(2�(α,β)Γ). It follows that the
(worst-case) running time t of the protocol Π for the CorruptedMail problem is either at least
t ≥ m rounds, or it satisfies the the following inequality

Ω(2�(α,β)Γ) = |Υ′| ≤ ρ({r}, t) ≤ ρ(Tt, t) ≤ (2B+1 − 1)t·p·d . (4)

Hence, Ω(�(α, β)Γ) − O(1) ≤ t · p · d · B. I.e., t = Ω(�(α, β) · Γ/(p · d · B)). In other words, in both
cases t = Ω(min{m, (�(α, β) · Γ)/(p · d ·B)}). Recall that N = O(Γm), and d = (m + 1)1/p. Hence,

t = Ω(min{m, �(α, β)
N

p · m1+1/p · B }) . (5)

Recall that �(α, β) is given by (3). For small α > 0,

�(α, β) = α · log(1/β) + o(α) . (6)

(When α does not tend to 0 when N grows to infinity, the inequality (6) may no longer hold, but
the inequality �(α, β) = Ω(α log(1/β)) obviously holds, as both sides are independent of N .) Set
β to be a constant between 0 and 1. For α either constant or tending to 0 when N grows, we get
t = Ω(min{m, N ·α

p·m1+1/p·B}).

Finally, set m =
(

N ·α
p·B
)1/2− 1

2(2p+1) . It follows that

t = Ω

((
N · α
p · B

)1/2− 1
2(2p+1)

)
. (7)
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It follows that any deterministic protocol Π that solves the CorruptedMail problem on every input

bit string χ requires Ω
((

N ·α
p·B
)1/2− 1

2(2p+1)

)
rounds in the worst case.

Furthermore, this statement readily generalizes to randomized protocols using Yao’s Minimax
theorem [33].

We next describe the reduction from the CorruptedMail(α, β) problem to the β
α -approximate

MST problem. The protocol ΠCorr for the CorruptedMail(α, β) problem proceeds in the following
way. Given an instance (G,χ), G ∈ G, χ ∈ {0, 1}Γ, of the CorruptedMail problem, the vertex s

computes the weights of edges {s, v(0)
j }, j = 1, 2, . . . ,Γ, in the following way. If χj = 0 then the

weight of the edge {s, v(0)
j } is set to zero, otherwise it is set to infinity. The weights of the other

edges are set as follows. The edges of the paths P1, P2, . . . , PΓ, as well as the edges of the tree τ ,
are all assigned weight zero. The edges of the stars Si for i = 1, 2, . . . ,m− 1 are all assigned weight
infinity. All the edges of the star Sm are assigned unit weight. This setting of weights is performed
locally by every vertex, and requires no distributed computation.

Next, the vertices invoke β
α -approximation protocol Π for the obtained instance G(χ) of the

MST problem. Upon the termination of the protocol, each vertex v knows which edges among the
edges that are incident to v belong to the approximate MST tree τ0 for G(χ), that was constructed
by the protocol. The vertex r calculates the output bit string χ′ ∈ {0, 1}Γ in the following way.
For each index j = 1, 2, . . . ,Γ, if the edge {r, v(m)

j } belongs to the tree τ0, the vertex r sets χ′
j = 1.

Otherwise, it sets χ′
j = 0. Finally, the vertex r returns the bit string χ′.

Observe that whenever the construction of the approximate MST tree τ0 is completed, the com-
putation of the bit string χ′ is performed locally by the vertex r, and requires no distributed compu-
tation. It follows that the running time of the obtained protocol ΠCorr for the CorruptedMail(α, β)
problem is precisely equal to the running time of the β

α -approximation protocol Π for the MST
problem.

The proof of the validity of this reduction is straightforward, and is omitted. Together with the
lower bound on the complexity of CorruptedMail(α, β) problem it implies the following theorem.

Theorem 3.5 [9] Any randomized H-approximation protocol for the MST problem on graphs of

diameter at most Λ for Λ = 4, 6, 8, . . . requires T = Ω
((

N
H·Λ·B

)1/2− 1
2(Λ−1)

)
rounds of distributed

computation. I.e., T 2+ 2
Λ−2 · H = Ω

(
n

Λ·B
)

.

Substituting Λ = log N
H·B implies the lower bound of T = Ω

(√
N

H·B·log N

)
. A more delicate

argument (see [9]) enables to get rid of the logarithmic factor in the denominator.

3.2 The Minimum Vertex Cover Problem

In this section we describe the lower bound of Kuhn et al. [18] on the approximability of the
minimum vertex cover and the minimum dominating set problems. This lower bound states that
(Δ1/k/k)-approximation for either of these problems require Ω(k) rounds. Furthermore, (N1/k2

/k)-
approximation for either of these problems requires Ω(k) rounds as well. Unlike the lower bound
of [9] for the MST problem that was discussed in the previous section, these lower bounds are
meaningful even when the bandwidth parameter B is equal to infinity.

Consider the following recursive construction of the rooted edge-labeled tree τk. The labels
of the edges belong to the set {0, 1, . . . , k}. Let τ1 = {V1, E1}, V1 = {v0, v1, v2, v3}, E1 =
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{{v0, v1}, {v0, v2}, {v1, v3}}, �({v0, v1}) = �({v1, v2}) = 0, �({v0, v3}) = 1. The vertex v0 is consid-
ered to be the root of τ1.

A vertex of degree 1 is called a leaf; a non-leaf vertex is called an internal vertex.
Given τk−1 the tree τk is constructed by:

1. For each internal vertex v, add a new vertex w, connect v to w, and label the new edge {v,w}
by k.

2. For each leaf z of τk−1 whose only incident edge is labeled by p, add k new vertices z′j ,
j ∈ {0, 1, . . . , k} \ {p + 1}, connect z to each z′j, and label each edge {z, z′j} by j.

3. The root of τk is the root of τk−1.

See Figure 3 for an illustration of τ2 and τ3.
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Figure 3: The trees τ2 and τ3.

We now form the graph CTk based on τk = (Vk, Ek) in the following way. Let δ be a positive
integer parameter. Replace each vertex v ∈ Vk by a subset C(v) of vertices. The subsets C(v) will
be also called clusters. The size of C(v) is a function of δ, and of the location of v in τk, and will
be determined shortly. Consider an edge {v,w} ∈ Ek. Let p = �(e) ∈ {0, 1, . . . , k} be the label
of the edge {v,w}. The analogue of the edge e = {v,w} in the graph CTk is the bipartite graph
G(e) = (C(v), C(w), C(e)). The degree of each vertex x ∈ C(v) will be δp, and the degree of each
vertex y ∈ C(w) will be δp+1.

To complete the description of the graph CTk we need only to specify the sizes of the clusters
C(v) for each vertex v ∈ Vk, and to argue that for each edge e ∈ Ek, the bipartite left- and
right-regular graph E(e) with left degree δ�(e) and right degree δ�(e)+1 exists.

Observe that the depth of τk, that is, the maximum (unweighted) distance between the root to
a leaf, is k + 1. For j = 0, 1, . . . , k + 1, the jth level of τk is the set of vertices at distance j from
the root. Consider some leaf z of τk. By construction, the label p = �(ez) of the edge ez = {w, z}
that is incident to z is at most k. Consequently, the degrees of the vertices of C(w) in the bipartite
graph C(ez) is δp ≤ δk. Hence we need to guarantee that |C(z)| ≥ δk. We set the sizes of clusters
of level k + 1 to δk.

Observe that for any edge {u,w} ∈ Ek of τk with u being the parent of w in the tree, the degree
of the vertices of C(u) is set to be smaller by a factor of δ than the degree of the vertices of C(w).
Consequently, |C(u)| = δ · |C(w)|. In other words, setting the sizes of the leaf-clusters of level k +1
determines uniquely the sizes of all the other clusters of CTk. Particularly, the size of the cluster
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C(v0) that corresponds to the root v0 is δ2k+1, and the size of the cluster C(v1) (that corresponds
to the vertex v1 such that �({v0, v1}) = 0) is δ2k.

Consider an edge e = {u,w} ∈ Ek such that u is the parent of w. Let h = 0, 1, . . . , k be the
level of the parent u. Note that |C(u)| = δ2k+1−h, |C(w)| = δ2k−h. Let p = �(e) ∈ {0, 1, . . . , k}
be the label of e. To construct a bipartite left- and right-regular graph G(e) with δ2k+1−h vertices
on the left-hand side and δ2k−h vertices on the right-hand side, and with left degree δp and right
degree δp+1, just insert δ2k−h−p complete bipartite graphs with δp+1 vertices on the left-hand side
and δp on the right-hand side. Note that assuming that δ > k + 1, the number of vertices N in the
graph CTk is smaller than δ2k+2. Its maximum degree is Δ = δk+1.

Let τ ′
k be the tree τk with each edge e = {u,w} replaced by two arcs (u,w) and (w, u). The

arc (u,w) retains the label �(e) of the edge e, and the arc (w, u) is assigned the label �(e) + 1. For
a vertex v, let Γk(v) be the arborescence of depth k rooted in v formed in the following way. Its
vertex set is the set of all (not necessarily simple) paths in τk of length at most k that start in v.
There is an arc from a path P1 = (v = x0, x1, . . . , xh) to a path P2 = (v = x0, x1, . . . , xh, xh+1) if
and only if there is an arc (xh, xh+1) in τk. See Figure 4 for illustration of Γ1(v0) and Γ2(v0).

v v0 0

0 0

00

1 1

1

2

3
2 12

Figure 4: The neighborhoods Γ1(v0) and Γ2(v0).

It is not hard to verify that the arborescences Γk(v0) and Γk(v1) are identical. Intuitively,
this observation suggests that the k-neighborhoods of vertices of C(v0) and C(v1) in CTk should
be identical as well. This, however, is not obvious, as each arc of τk is implemented in CTk

by a dense bipartite graph. To ensure that the k-neighborhoods of the vertices of C(v0) and
C(v1) will have tree-like structure (and, actually, stronger than that: they all will be isomorphic
to Γk(v0) = Γk(v1)), Kuhn et al. [18] use the so-called Lazebnik-Ustimenko (henceforth, LU)
transformation (see [22]). This transformation, applied to CTk converts it into a graph Gk with
the same cluster structure that satisfies girth(Gk) ≥ 2k + 1.

In other words, for each cluster C(v) of CTk, Gk has a cluster C ′(v). For every left- and
right-regular bipartite graph G(e) = (C(v), C(w), C(e)), e = {v,w} ∈ E(τk), the graph Gk has a
left- and right-regular bipartite graph (C ′(v), C ′(w), C ′(e)) that has the same left and right degrees
as the graph G(e). However, the ”price” for the magical increase of girth is that the number of
vertices grows exponentially in k. Specifically, the overall number N of vertices in the graph Gk

obtained after this transformation is at most 2O(k)δO(k2). For the details of LU transformation and
its analysis see [22, 18].

Given the girth property it can now be shown that the k-neighborhoods of the vertices of the
set C ′(v0)∪C ′(v1) are all isomorphic to Γk(v0) (and to Γk(v1)). The proof of this claim is not hard,
but quite technical, and is omitted (see [18]).

Observe that the behavior of a distributed algorithm on a graph G may depend not only on
the graph itself, but rather also on the assignment of identities, henceforth referred as the id-
assignment, to the vertices of the graph G. We now argue that for every deterministic algorithm
A with running time at most k there is an id-assignment to the vertices of Gk so that either the
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algorithm does not construct a valid vertex cover for Gk, or the size of this vertex cover is more
than δ/(2k) times greater than the size of the minimum one.

For an algorithm A and an id-assignment I to the vertices of Gk, let V C(A, I) denote the
vertex cover returned by the algorithm for this instance. Suppose that the id-assignment I is
chosen uniformly at random, and consider the random variable X = |V C(A, I) ∩ C ′(v0)|. Let
x0 ∈ C ′(v0), x1 ∈ C ′(v1) be two adjacent vertices of the graph Gk. For any id-assignment I, either
x0 or x1 must end up in the vertex cover. Consequently,

IEI(x0 ∈ V C(A, I)) + IEI(x1 ∈ V C(A, I)) ≥ 1 .

Also, since the k-neighborhoods of x0 and x1 are isomorphic, it follows that IEI(x0 ∈ V C(A, I)) =
IEI(x1 ∈ V C(A, I)) ≥ 1/2. Hence

IEI(X) =
∑

x0∈C′(v0)

IE(x0 ∈ V C(A, I) ≥ |C ′(v0)|/2 .

Hence there exists an id-assignment I to the vertices of Gk for which the algorithm A takes into the
vertex cover one half or more vertices of C ′(v0). Observe that V (Gk) \ C ′(v0) is a vertex cover as
well, and its size is more than by a factor δ/2k smaller than the size of C ′(v0). Consequently, the
vertex cover provided by the algorithm A on the instance (Gk, I) is not a (δ/(2k))-approximation
of the minimum vertex cover.

Simple calculation now implies the main theorem of this section.

Theorem 3.6 [18] For every deterministic algorithm with running time k there exist instances of
vertex cover with N vertices and maximum degree Δ on which the approximation guarantee of A is

at least NΩ(1/k2)

k and Ω(Δ1/k

k ).

It is not hard to see that the same argument generalizes to randomized algorithms. Furthermore,
the same result applies to the minimum dominating set problem as well. This can be shown via a
simple reduction from the minimum vertex cover problem. Kuhn et al. [17] have also applied this
technique to the maximum matching problem, and derived analogous results.

4 Open Problems

The distributed approximability of many important problems, such as minimum and maximum cut
and bisection, maximum independent set, maximum clique, minimum coloring, and other, remains
unresolved. There is no satisfactory approximation algorithm for the MST problem. There is a
significant gap between the state-of-the-art upper and lower bounds for the minimum dominating
set, minimum vertex cover, and maximum matching problems.

No less interesting direction is to divide the distributed approximation problems into complexity
classes, and to establish links between those classes and the classical complexity classes.

The author also wishes to draw attention to two problems in the message-passing model. Though
these problems do not belong to the realm of distributed approximation, but rather have to do with
the classical distributed computing, the author believes that their resolution would be instrumental
for distributed approximation as well.

1. Consider a complete network of N processors in the message-passing model. Each edge
of this clique is assigned a weight, but the weights do not affect the communication (i.e.,
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delivering a short message through an edge requires one round independently of the weight
of the edge). The bandwidth parameter B is log N . Prove a non-trivial (ω(1)) lower bound
on the complexity of the single-source distance computation in this model. A lower bound
on the all-pairs-shortest-paths problem in this model will be most interesting as well.

2. (This problem was suggested by Vitaly Rubinovich in a private conversation with the author
few years ago.)

What is the complexity of the shortest-path-tree problem in the message-passing model with
small bandwidth parameter B (i.e., B = log N)?

A lower bound of Ω(
√

N
B ) [29, 9] is known. No non-trivial upper bound is currently known.

(The trivial one is O(N).)
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