
Event Dissemination in High-Mobility Ad-hoc Networks

Masataka Kan Rahul Pande Patrick Vinograd Hector Garcia-Molina
Stanford University

Computer Science Department
353 Serra Mall, Stanford CA 94305-9025

masa@db.stanford.edu, {rpande,patrickv,hector}@cs.stanford.edu

Abstract

We focus on effective event dissemination in vehicular
environments. In particular, without relying on any fixed in-
frastructure, what is an efficient way to propagate an event
amongst a collection of (fast) moving cars? In this paper we
propose a general-purpose flooding-based event dissemina-
tion framework for such an environment, and describe two
protocols that implement its broadcast mechanism. In par-
ticular, one of the schemes called SR is a new very simple
algorithm that gives surprisingly good results. We present
an evaluation framework for the analysis, and conduct a
thorough evaluation of the algorithms.

1. Introduction

As wireless devices become more ubiquitous, automo-
biles will soon be able to communicate wirelessly with
nearby cars. Currently, cars can already use the cellular in-
frastructure (e.g., with OnStar passengers can communicate
with remote operators). However, a peer-to-peer approach,
where cars communicate directly with other cars, may be
more cost effective, and can be used in environments where
emergency conditions or underdevelopment make relying
on a fixed infrastructure impossible. With peer-to-peer com-
munication, equipped cars could inform enabled neighbor-
ing vehicles of road conditions or emergency situations,
while children could play interactive games with remote
passengers. In addition, cars could pick up news (e.g., game
scores, weather reports) as they passed certain base stations,
and then relay the data to other vehicles.

Our paper focuses on how to effectively disseminate
events in such a highly mobile vehicle environment. For ex-
ample, given a weather report or news of an accident, what
is an effective way to communicate it to the largest number
of cars in the area using solely peer-to-peer communica-
tion? The broadcast primitive we study is also important

because it can form the basis of a more general publish-
subscribe system for a vehicular network.

The main constraint faced by an event dissemination
scheme in such a setting is that the amount of inherent
motility precludes the use of state-based routing techniques
(such as those used by most wireless applications). The
high flux makes it difficult to justify the use of even ad-hoc
routing methods that assume limited mobility – there is not
enough stability to maintain a route even for the short pe-
riod of time required by algorithms such as AODV [9] and
DSR [6].

In this paper, therefore, we study if a flooding-based pro-
tocol can be used to effectively disseminate events (mes-
sages) in a dynamic environment. The dynamism intro-
duces several interesting aspects, not seen in traditional
static flooding scenarios:

• In a static network where neighbors are fixed, a node
might as well immediately retransmit a received event
as soon as it gets it. However, in a dynamic network,
it may be advantageous to have a car (node) delay re-
transmission, giving it a chance to travel to a region
where the event has not been heard.

• Similarly, in a static network, once a node re-transmits
an event, there is no sense in re-transmitting later on.
However, in a dynamic environment where the topol-
ogy changes constantly, the same car can re-transmit
the same event multiple times, since each time it may
be heard by new neighbors.

• In a dynamic environment, cars may frequently depart
(or turn off) and arrive. This churn makes it harder to
achieve high coverage. It also makes it more challeng-
ing to properly define “coverage,” since we do not want
to penalize a protocol for not delivering a message to
cars that have no way of receiving an event.

To handle the dynamic flooding, in this paper we present
two algorithms. The first is a variation of the tradi-



tional TTL scheme (time-to-live), where each event is re-
transmitted a fixed number of times. In our case, we de-
lay each transmission to optimize coverage. The second
scheme is a new algorithm we call SR (send-receive). The
SR algorithm is extremely simple: each car can re-transmit
an event a fixed number of times, independent of how many
times the event has been retransmitted. In spite of its sim-
plicity, SR performs surprisingly well, giving better cover-
age with less overhead than TTL in many scenarios. Fur-
thermore, selecting the right SR threshold (number of times
a car retransmits an event) is often simpler than selecting
the right TTL.

In summary, the main contributions of this paper are as
follows:

• We present two tunable dissemination algorithms (De-
lay TTL and SR) for a highly dynamic vehicular net-
work.

• We present a detailed simulation model for studying
the algorithms. While the model is relatively simple,
it captures many of the key factors such as car density,
road layout and transmission radius.

• We propose metrics, such as coverage, overhead and
latency, that are specifically targeted to a highly dy-
namic vehicular network.

• We present a thorough experimental evaluation and
comparison of the algorithms.

2. Related Work

The large body of work related to mobile and ad hoc net-
working is obviously relevant to our work. Much of this
work still assumes a lesser degree of mobility than we do;
routing algorithms such as AODV [9] and DSR [6] still
rely on the ability to establish a route, even if that route
is not long-lived. There is also work being done related to
wireless communications between moving automobiles and
fixed base stations[8]. This work indicates that the physical
layer allows fast-moving network entities to communicate
successfully.

Epidemic and gossip algorithms are used in a variety of
settings, such as database replication [4], news dissemina-
tion, and multicast routing. Gossip typically refers to one
entity picking another entity at random, and the two ex-
changing any information not known by both, thus simu-
lating the spread of gossip in a social network. Such ran-
domness could be added to the protocols we present in this
paper.

Publish-Subscribe systems dynamically route events
from the source (publisher) to any party that is interested
(subscriber), where interest is determined by either the

meta-data or content of an event. In most cases these sys-
tems work by establishing a structure of intermediary en-
tities, or brokers, between event sources and destinations.
Much of the work related to mobility in publish-subscribe
systems [5] refers to the ”access-point” model of mobility
where an endpoint is mobile but the majority of brokers re-
main fixed. In a highly mobile environment like the one
we study, a publish-subscribe mechanism would most likely
use broadcast primitives like the ones we study in this paper.

Regional Alert systems are the closet in flavor to what
we are trying to create. These protocols rely on peer-to-peer
communication to inform vehicles in the neighborhood of a
source about the event being broadcasted [11, 3, 1]. Unlike
our work though, these schemes assume that event informa-
tion is location-sensitive and so concentrate on ensuring that
all peers that come within a certain distance from the source
are informed of the event in a timely manner; they do not
focus on the general issue of efficient event dissemination
to all peers.

3. Event Dissemination

As described in the introduction, our environment com-
prises a collection of moving automobiles that communicate
with each other without relying on any fixed infrastructure.
We assume that the region that these peers can travel in is of
a finite (but arbitrary) size; new peers, however, will be able
to enter and existing peers be able to leave this area along
its boundary. Since cars are constantly moving, any cached
state based routing information will quickly become stale.

In order to propagate a message the sender has to rely on
peer-to-peer transmissions, i.e., the sender will broadcast
a message to some/all of its neighbors which in turn, will
rebroadcast it to some/all of their neighbors . . . until the
intended recipient is eventually reached. We do not allow
cars to speed up/ slow down/ change paths in order to has-
ten/ slow the spread of messages. We assume that each car
has a small broadcast footprint relative to size of the region
in which it can move – so it is unlikely that a sender will be
able to reach its intended recipient with a single broadcast.

As the cars are independent entities, we allow a peer to
have access to local information (such as its previously sent
messages, what time it got a particular message, whether
there are any peers within its communication radius, . . .),
but not to global information (such as how many peers have
received copies of a message, the location of other peers,
. . .). For this paper we assume that each peer does not
have the means to determine its own location. There is a
large body of work in ad-hoc vehicular networks that does
posit that cars are able to determine their position [11, 3, 1],
generally via GPS. The algorithms we present here could
be extended to exploit location information in an analogous
fashion.



In our model designated sources periodically generate
events – atomic pieces of information (e.g. a report that
an accident has occurred) – that must be disseminated to
as many peers in the system as possible. Each event will
be broadcasted by its source only once, i.e., after the origi-
nal broadcast, the only way an event can spread through the
system is if the peers that receive it retransmit it efficiently.
Since messages carry events, in this paper we use the terms
interchangeably.

Except for Section 5.6, in this paper we focus on the dis-
semination of a single event, in order to understand clearly
how the broadcast primitive works. However, in Section 5.6
we briefly study a multiple event scenario, where the source
originates a sequence of related events. For example, the
source could be transmitting partial results of a baseball
game, so that the newer events supersede the older ones.

The objective of the dissemination algorithm is to have
an event reach as many peers as possible (high coverage),
as quickly as possible (low latency), with as little overhead
as possible. In Section 4.1 we define these metrics more
precisely. For now, we simply note that in many cases it is
impossible to achieve high coverage, regardless of the algo-
rithm. For example, if car density is very low, the propaga-
tion of an event may “die out” because there are no nearby
peers. Similarly, it may be impossible to reach peers that
only show up for brief periods of time. Even though cover-
age may be low, we still want an algorithm that can do as
well as possible, given the circumstances.

3.1. Event Dissemination Algorithm

The high rate of motility inherent in the environment
and the requirement that the maximum number of cars
be informed of a broadcasted event (i.e. the coverage be
high) forces the event dissemination mechanism to rely on
a flooding-based approach. The characteristics of a vehicle
network, however, makes flooding-based communication a
much richer area of study than it is in a fixed network.

As mentioned earlier, when flooding in a fixed network
there is little incentive to delay rebroadcasting an event
(other than perhaps to avoid collisions on a shared medium);
similarly, there is no sense in forwarding an event multi-
ple times, since the topology is unlikely to change. In con-
trast consider a vehicle network: When a peer receives an
event, it can retransmit it immediately, but it is fairly likely
that many of its current neighbors received the same ini-
tial broadcast. Instead, the peer can wait for some period
of time during which it is likely that it will encounter new
neighbors who are have not seen the event. After the initial
rebroadcast, the peer continues to move around and poten-
tially encounter new neighbors, so there is a good chance
that if it receives a copy of an event it has previously trans-
mitted, forwarding it again will be useful.

We next present our dissemination algorithm, which is
based on this intuition. The algorithm uses three functions,
which as we discuss below can be implemented in differ-
ent ways to achieve different effects: (i) a delay function,
which is used by a peer to pick an interval to wait before
transmitting; (ii) a suppression function which is used to de-
cide whether to forward the message at all, or to drop it for
the time being (if it receives another copy of the message, it
might decide to forward it later); and (iii) a broadcast func-
tion which transmits the event.

Each time a peer receives an event e (message), it goes
through the following process. (Note that this description is
conceptual; an actual implementation may do things differ-
ently.)

1. Use the suppression function to decide if e (or perhaps
a copy of e in the pending queue) is discarded.

2. If e was not discarded, it is added to the queue of pend-
ing events and its delay d is calculated using the delay
function.

3. Wait for d seconds.

4. Use the broadcast function to transmit e, and remove e
from the queue of pending events. (In some cases, we
may add e to a cache of already transmitted events, see
below).

3.1.1 Suppression, Delay and Broadcast Functions

For the suppression mechanism we consider two options:

• TTL (HOP COUNT): Each event is created with some
initial TTL value. When a peer receives an event e, it
decrements the TTL by 1, and if the TTL reaches 0,
the event is dropped.

If TTL is non-zero and e is added to the queue, we
check if any copy of the event, e ′ is found in the pend-
ing queue. If so, we discard e ′ (leaving e in). (When
two copies of an event are received in close proxim-
ity, it means there are multiple cars in the area. In this
case, we have found it is best to only consider the copy
that arrived the latest.)

• SR (Send/Receive) Count: This is a new suppression
scheme that we created specifically for this protocol.
Each peer maintains a local cache of previously trans-
mitted events, and how many times it has broadcast
each. Once this local count has reached some threshold
value, the event is dropped, as are any future instances
of same event. The rationale here is that if a peer re-
ceives an event several times, it is likely that most of
the peers around it have already received the event.



After an event e is added to the pending queue (its
count was below the threshold), we check for dupli-
cates (as we did for TTL). That is, we remove any
copies e′, leaving only the latest copy e in the pend-
ing queue.

The SR scheme does require a cache of previously
broadcast events (unlike TTL). However, we do not ex-
pect the cache to be large: Entries can be purged after
an event is expected to be fully disseminated. Further-
more, each entry only need consist of a hash of the
event, to distinguish it with high probability from other
events.

A variety of delay functions can be used, although in this
paper we only experiment with the first one:

• FIXED(n,m): Upon receiving a message, the peer
waits for a period selected uniformly from the interval
[n, m] time units.

• VARIABLE(n,m): The delay interval grows larger for
events with larger SR count (or smaller TTL). The in-
tuition is that peers with a larger SR count (or smaller
TTL) may have received several transmissions from
nearby and so should wait longer before retransmis-
sion.

• INVERSE(n,m): The delay interval grows shorter for
events with larger SR count (or smaller TTL). In this
case peers with a low SR count (or high TTL) are al-
lowed to move further away from the source before
rebroadcasting.

The broadcast function can implement a variety of opti-
mizations. For example, if a collision occurs during trans-
mission, the event can be re-transmitted soon after. Simi-
larly, if we can tell that no cars are within range, we can
postpone the transmission briefly until cars appear. For our
evaluation, we assume that both of these optimizations are
in place.

4. Modeling a Vehicle Network

In order to test and parameterize our event dissemina-
tion scheme, we use a simplified simulation model of auto-
mobiles moving around in physical space, as well as for
the wireless communication and data exchange. To be
tractable, the model must be simple, but it must still cap-
ture the essential features of the environment. We believe
that the model we will present makes the right tradeoffs: it
allows us to study the interesting aspects of the algorithms,
while avoiding the details that do not affect relative perfor-
mance. (The omitted details may affect performance over-
all, but we believe do not shed light of the differences be-
tween approaches.)

0.1

0.05
0.1

0.7

A

D B

C

Figure 1. Our model.

We consider the area in which the cars move around, or
map, to be a regular two dimensional grid (see Figure 1).
The size and scale of the grid can be adjusted. Each inter-
section of the grid is a location (representing some stretch of
road in real space) where zero or more cars may be present
at a given time. Cars may move along the edges between
locations according to one of the mobility models described
below. We can eliminate some edges (dotted lines in Fig-
ure 1), thus creating potentially interesting road layouts that
we wish to study.

We use a biased random mobility model to describe the
motion of cars on the map. Cars move from location to loca-
tion at regular intervals. A car is more likely to move in the
same direction that it moved during the last interval, but has
some fixed probability of turning right or left, reversing, or
not moving at all. (For example, Peer A in Figure 1 moves
up with probability 0.7, moves left or right with probability
0.1, moves down with probability 0.05, and stays in place
with probability 0.05.) In our present configuration all cars
(independently) chose whether to move/not to move at the
same time intervals.

When a car reaches the edge of a map, it can turn and re-
main on the map or carry on and exit the simulation. Once
a car leaves it cannot reenter the simulation at some later
time. As we want the density of cars on the map at any
given time to be fairly constant, we model departures by
having an entry onto the map scheduled for some random
interval after a car leaves the map. This simulates an ap-
proximately steady state level of automobile traffic, which
seems like a reasonable assumption over the time intervals
we are interested in.

When a peer transmits a message, it is heard by all the
peers at neighboring locations out to some radius (barring
collisions). (For example, in Figure 1, Peer B has a commu-
nication radius of 1, so Peers C and D hear its broadcast.)
The transmission has a duration directly proportional to the
number of bytes in the message. At a given location, trans-
missions from two or more peers might overlap in time, in
which case a collision results and neither transmission is re-



ceived by any of the peers at that location. For handling
collisions, we initially use a basic CSMA MAC protocol; a
peer that wants to transmit will do so if it detects that the
channel is clear. This obviously makes the system suscep-
tible to collisions due to the hidden terminal problem. A
more sophisticated MAC such as CSMA/CA[12] (or one of
the many other alternatives [7, 2, 10]) could be used, but we
do not believe it will make a significant difference in our
results.

As mentioned earlier, in this paper we study the dissemi-
nation of a single event. (Multiple events are studied briefly
in Section 5.6.) Each new event is broadcast by a source
only once – to ensure that it is not lost, the source makes
this initial transmission only when there is at least one peer
in its vicinity (it should be noted though, that event genera-
tors can also be event recipients – so even though a source
can generate an event only once, it can forward it more than
once – potentially one for each time it is notified about it
from its neighbors). Peers will then relay the event to oth-
ers by sending additional messages containing the event. In
our results graphs, each data point represents the average
of 10 experiments, where one event is disseminated in each
experiment.

4.1. Metrics

The efficacy of each dissemination scheme was gauged
on the basis its of the coverage, message overhead and to
some extent its latency.

Event Coverage. Since peers can exit the map during
a simulation, we weight each peer by the length of time
that it spends on the map. Weighting is necessary as our
experiments have indicated that on average a peer stays in
the map for only 1

3 of the total simulation time, with a large
chunk of the vehicles in the simulation leaving the map after
only a few moves. If the peers are not weighted therefore
we would expect the algorithm to achieve a high coverage
only if it can notify nearly all peers about an event – even
though many of them are on the map for only a few time
units. This is clearly unrealistic.

Under the weighting scheme, if peers with a high weight
hears news of an event, the coverage is increased by a
greater amount than if a peer with a low weight is informed
of the event. The intuition behind this is that the protocol
has no excuse for not notifying peers with high weights (be-
cause they were always on the map), but can still be “good”
and miss peers with low weights simply because they were
barely present.

More formally, let the weight of Peeri for Eventj be
wi,j :

wi,j =
‖Time Peeri is in simulation‖j

‖Total simulation time‖j

Covj =
∑

i wi,j ∗ 1j{Peeri}∑
i wi,j

Coverage =

∑
j Covj

Number of events

where

‖Time period T‖j =
Number of time units of T
that occur after Eventj is
generated

1j{Peeri} =

⎧⎨
⎩

1 Peeri heard about
Eventj

0 otherwise

Event Number of Transmissions. The Event Num-
ber of Transmission (or simply the Number of Transmis-
sions/Overhead) is the total number of messages broad-
casted for the one source event throughout the simulation.
We do not weight the peers in calculating this metric as even
if a peer that is on the map for a short time receives notifi-
cation of an event and rebroadcasts it, we would want to
count its transmissions towards the overhead the same way
as we count the transmissions made by a peer that was in
the simulation for a long time.

Event Latency. We define event latency to be the av-
erage number of time units required by a peer to first hear
about a generated event. More formally:

Latj =
∑

i ti,j
Number of peers notified of Eventj

Latency =

∑
j Latj

Number of events

where

ti,j =

⎧⎪⎪⎨
⎪⎪⎩

Time taken for Peeri to be first no-
tified about Eventj

0 (if Peeri is not notified about
Eventj)

It should be noted that peers are not weighted in the cal-
culation of this metric. This is because weighting is only
required to account for the fact that all peers do not have
equal amount of time to hear about an event; only peers that
have heard about the event are included in the latency cal-
culation though, so there is no bias to adjust for.

4.2 Simulation Framework

We have developed a discrete event simulator that imple-
ments the above model. There are a number of experimen-
tal parameters that we can vary: Scenario parameters refer



Figure 2. City Block map layout

to those variables that can be used to describe the environ-
ment in which the simulation was conducted. They are con-
sidered to be out of the control of the event dissemination
mechanism. Algorithm parameters, on the hand, comprise
of the variables which directly affect the functioning of the
flooding protocol and can be tuned by it. In this section we
describe the scenario parameters; algorithm parameters (de-
lay start, delay end, TTL, and SR threshold) were discussed
in Section 3.

• Map size Some mechanisms are more effective at
propagating events over wide areas, so at times we vary
the size of the map. We describe the map size either
in terms of the number of reachable locations (where a
car might be present), or in terms of overall dimensions
(say, a 20x20 grid), depending on which factor is rele-
vant to the discussion. By default our map is a 41x41
grid in ‘city block’ layout (refer next paragraph).

• Map layout The choice of map layout primarily af-
fects the rate of peer circulation, which may have bear-
ing on the choice of delay factor, for instance. By de-
fault we use a ‘city block’ layout, illustrated in Fig-
ure 2, which is a large grid simulating the regular lay-
out of streets in, for example, downtown Manhattan,
where each block is five map locations per side. Cars
are allowed to enter and leave the simulation on the
boundaries of the map where the streets intersect the
roads. Any other map layouts that we used are de-
scribed where relevant.

• Car density This parameter is expressed in cars per
road location. Since a map layout might include
unreachable locations (corresponding to areas with-
out roads), we only consider the number of locations
where a car can be present. By default, we set the car
density to 1.

• Simulation time This is the total amount of time that

Name Default Value

Map Size 41x41 grid
Map layout city-block layout
Car Density 1.0
Simulation time 150,000 ticks
Communication radius 2 map squares
Communication bandwidth 1000 bits/tick
Number of events 1
Event generation frequency 5000 ticks

Table 1. Scenario Parameters

the simulation is run for measured in ticks (1000 ticks
= 1 second). This parameters plays an important role
in determining the efficacy of certain time sensitive
suppression schemes e.g. TTL. Unless otherwise men-
tioned, all experiments in this paper had a simulation
time of 150,000 ticks. To give a clearer picture of the
scale, the maximum speed of a car in our model is 1
grid square every 1000 ticks.

• Communications radius The range of radio commu-
nications; by default we use a range of 2 map squares,
meaning the message is visible to any car at a location
within a Manhattan distance of 2 from the sender.

• Communications bandwidth We model limited com-
munication bandwidth by varying how long a message
takes to transmit. Given a bandwidth B bits/ticks, and
a message of b bits, a transmission will use the wire-
less medium for b/B ticks. As by default the message
size used was 10240 bits, and the bandwidth was set
to 1000 bits/tick, unless otherwise mentioned it should
be assumed that each message used the transmission
medium for approx 10 ticks.

The default values of the scenario parameters used in the
experiments are summarized in Table 1. It is important to
note that the absolute values for the parameters are not as
important as their relationship to other parameters. Also,
note that we vary many of the default values in our experi-
ments.

5. Results

We begin by evaluating the two suppression schemes
(TTL and SR) under different fixed delay intervals. After
obtaining baseline measurements, we compare the cover-
age generated and the overhead requirements of TTL and
SR. After establishing that both suppression schemes work
well in general, we conclude by varying the scenario pa-
rameters and gauging their effect on the efficacy of these



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35

W
ei

gh
te

d 
C

ov
er

ag
e 

(%
)

TTL Count

delay 5000-5500 ticks
delay 6000-6500 ticks
delay 8000-8500 ticks

delay 10000-10500 ticks

Figure 3. TTL vs. coverage

suppression schemes. Unless otherwise mentioned, the sce-
nario parameters for each experiment are configured to their
default values (summarized in Table 1).

5.1. Coverage and Overhead using TTL

The relationship between the suppression count, the de-
lay interval, the coverage, the overhead and the latency for
TTL is captured by Figures 3, 4 and 5.

Figure 3 plots the effect of varying the delay start time
and the TTL count on coverage. The graph shows that as
the TTL count increases the coverage also grows, with algo-
rithms with high TTL counts markedly outperforming those
with low counts (e.g., at a delay interval of 8000 -8500 ticks
the coverage is 10% when the TTL count is 2, but around
90% when the TTL count is 32). The direct relationship
between the TTL count and coverage is in line with our ex-
pectations – as the degree of suppression is decreased an
event is forwarded a greater number of times. This will in-
crease the probability that a new peer will hear at least one
of the transmissions and thus increase the number of peers
notified of the event.

The graph also shows that varying the delay significantly
affects the coverage, e.g., at a TTL of 16 increasing the de-
lay from around 5000 ticks to 10000 ticks improves the cov-
erage from 65% to 85% – a 30% jump. The reason for this
is that long delays gives recipients more time to move away
from the location where they originally received the broad-
cast. This increases the likelihood of their retransmissions
reaching previously unnotified neighbors. The fact that de-
lay can affect the coverage in this environment should be
contrasted with static systems where delaying a transmis-
sion plays a almost no role in improving the efficacy of a
broadcast

Figure 4 is an analog of Figure 3 with the y-axis now
giving the number of transmissions generated by the broad-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  5  10  15  20  25  30  35

O
ve

rh
ea

d 
(m

sg
s)

TTL Count

delay 5000-5500 ticks
delay 6000-6500 ticks
delay 8000-8500 ticks

delay 10000-10500 ticks

Figure 4. TTL vs. overhead

casted event. The graph indicates that the while the over-
head increases with the TTL count, it is virtually invari-
ant to the amount of delay (the different saturation points
at high TTL counts are artifacts of the simulation running
for a finite time i.e. algorithms with high delays do not have
enough time to forward an event the provided TTL count
times). This is consistent with our model of TTL: reducing
the amount of suppression will obviously increase the num-
ber of messages, but as the suppression is not dependant on
the number of peers that have been informed of the event,
the overhead will not depend on factors that can affect cov-
erage (such as the delay). As we will see shortly for SR, the
near independence between the overhead and the coverage
is not always the case.

The above two graphs imply, that for TTL, increasing the
delay tends to lead to favorable results – the coverage tends
to increase whilst the overhead remains unchanged. Unfor-
tunately, there is a tradeoff in making the delay too large:
As the next figure will show, if the delay is incremented by
too large an amount peers will be notified of events very
slowly – even if the TTL count is high.

Figure 5 plots the effect of varying the TTL count on the
latency. The plot shows that as the TTL count is increased
a peer tends to hear about the broadcasted event faster, with
TTL configurations with short delays providing lower la-
tencies than those with higher delays. This makes intuitive
sense: higher TTL counts result in a more messages being
broadcasted while shorter delay intervals ensure that these
messages are broadcasted more immediately – algorithms
having both high counts and low delays will therefore en-
sure that its peers will hear about events faster than those
with high delays and low counts. The initial hump in the
graph appears to be an exception to the observation that la-
tency increases with TTL count – it occurs because at low
TTL values messages do not spread far from the source (the
coverage is very low); so even though the peers that hear of



 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 0  5  10  15  20  25  30  35

La
te

nc
y 

(t
ic

ks
)

TTL Count

delay 5000-5500 ticks
delay 6000-6500 ticks
delay 8000-8500 ticks

delay 10000-10500 ticks

Figure 5. TTL vs. latency

the event will do so quickly, their population is so small the
latency measure is not really meaningful.

It should be noted that latency for each delay interval
tend to saturate at high TTL counts – this implies that
even though incrementing the TTL count helps to reduce
latency, the main determinant of this metric is the delay in-
terval. As these saturation values ranges from twice (for
delay of [5000,5500] ticks) to 1.5 times the delay (delay
[10000,10500] ticks), on average it will take 1.5 - 2 hops for
an event to reach a peer for the first time (i.e. if most peers
first heard about the event from their initial set of neighbors,
the latency would be very close to the delay interval). The
fact that latencies for higher delay intervals are smaller mul-
tiples of the delays also implies that high delays are more
efficient at spreading events – even though they are slower,
they require fewer broadcasts to notify peers – than shorter
delays.

A discerning reader may note that in the graphs above
we varied the delay start time (from 5000 to 10000 ticks),
but not the delay increment – it was fixed in all simulations
to 500 ticks. This is because our experiments indicated that
the size of the delay interval had little impact on the cover-
age and number of transmissions – its main purpose (analo-
gous to static systems) is to reduce the number of collisions
between neighboring peers.

5.2. Coverage and Overhead using SR

Analogous to the experiments in the previous section, we
now study the effect of varying the suppression count and
delay start on the coverage, overhead and latency using the
SR protocol. Figure 6 plots the relationship between the
coverage and SR count at different delay intervals, Figure
7 graphs this for the number of transmissions metric, while
Figure 8 plots this for the latency.

Figure 6 indicates that, like the TTL protocol, as the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18

W
ei

gh
te

d 
C

ov
er

ag
e 

(%
)

SR Count

delay 3000-3500 ticks
delay 4000-4500 ticks
delay 5000-5500 ticks
delay 7000-7500 ticks

Figure 6. SR vs. coverage

SR count is increased the coverage also increases, but un-
like TTL the coverage for SR quickly saturates to a (high
– around 90%) constant value. Also unlike TTL, in this
scheme lower delays in general lead to better coverages than
higher delays (95% for the lowest delay as opposed to 90%
for the highest delay).

The reason behind these disparities lies in the funda-
mental difference between SR and TTL. In TTL a count
of 2, say, means that each message can be broadcasted a
maximum of two times, in SR on the other hand, a count
of 2 means that each peer can forward the message two
times. This implies that for the same suppression count
an SR scheme will always broadcast more messages than
TTL. The large number of messages that even a small SR
count can generate implies that the coverage will saturate
relatively quickly for the SR suppression protocol.

The better coverage for the SR protocol at lower rather
than higher delay’s is a result of the large number of mes-
sages that SR generates. As peers enter and leave the map
frequently, if one waits for too long before retransmitting
many peers would have left the map and therefore have no
chance of being informed of the broadcasted event. When
they are sufficient messages, therefore, lower delays will
lead to a better coverage as they will reduce the chance of
a peer entering and leaving the map within the same delay
interval. This effect was not present in TTL as fewer mes-
sages are generated, and therefore even though more peers
leave the grid at higher delays it is still more efficient to
ration out the broadcasts by waiting to maximize the num-
ber of new peers encountered. More differences between
the SR and TTL suppression scheme are studied in the next
section.

Figure 7 captures the effect of varying the SR count on
the number of transmissions at different delay intervals. We
immediately notice that unlike TTL, in the SR protocol, the
message overhead is strongly correlated with the delay – a



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  2  4  6  8  10  12  14  16  18

O
ve

rh
ea

d 
(m

sg
s)

SR Count

delay 3000-3500 ticks
delay 4000-4500 ticks
delay 5000-5500 ticks
delay 7000-7500 ticks

Figure 7. SR vs. overhead

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  2  4  6  8  10  12  14  16  18

La
te

nc
y 

(t
ic

ks
)

SR Count

delay 3000-3500 ticks
delay 4000-4500 ticks
delay 5000-5500 ticks
delay 7000-7500 ticks

Figure 8. SR vs. latency

delay of 3000 ticks leads to an overhead of 3700 messages
(at an SR count of 18), more than double the overhead of
1700 messages at a delay of 7000 ticks (for the same SR
count). This is because, unlike TTL, the number of mes-
sages generated in SR is highly dependant on the coverage:
If the SR count is k and m peers are notified about the event,
then the message overhead will be around k ∗m – each peer
will make approx k forwards, and they are m peers (this is
only a very rough estimate as it does not account the fact
that a peer may not receive a message k times – to then re-
forward it k times). Factors that increase coverage (like low
delays), will therefore, in this protocol, also noticeably in-
crease the number of transmissions. The converse will hold
for factors that decrease the coverage (such as high delays).

Figure 8 plots the relationship between the SR count and
the latency. Analogous to TTL, we notice that that the la-
tency again tends to decrease as the SR count is increased
(the initial hump is because at low SR counts only a few
peers hear of an event – so even though these peers will be
notified of the event quickly, their number is so small the la-

 0

 500

 1000

 1500

 2000

 2500

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

O
ve

rh
ea

d 
(m

sg
s)

Weighted Coverage (%)

SR with delay 5000-5500 ticks
TTL with delay 5000-5500 ticks
TTL with delay 8000-8500 ticks

Figure 9. TTL vs. SR

tency measure is bereft of any quantitative meaning). Also,
similar to TTL we notice that the delay interval is the main
factor determining the latency – at high SR counts the la-
tency tends to saturate to values 1.5-2 times the delay. If
we compare TTL and SR side by side though (graph not
shown) we notice that SR has a slightly lower latency than
TTL (e.g., for a delay interval of 5000-5500 ticks SR tends
to converge to a latency of 7500 ticks while TTL converges
to a latency of 8500 ticks) – this is mainly because SR as
tends to broadcast more messages than TTL, peers can hear
about an event faster.

5.3. Comparison of SR vs. TTL

Now that we understand the effect of algorithm parame-
ters on the TTL and SR schemes, we would like to compare
them side-by-side. The sections following this one study the
effect of varying different scenario parameters on the TTL
and SR suppression schemes; we start, however, by compar-
ing the TTL and SR protocols in the default setting used in
the previous experiments. We do not include latency com-
parisons for any of these experiments as, as mentioned pre-
viously, our main focus is the coverage and overhead (that
being said SR tends to equal or have a lower latency than
TTL in the presented environments).

Each point in Figure 9 gives the coverage and overhead
for a given SR or TTL count. Ideally we would like as
many data points as possible in the lower left hand quad-
rant of the figure – simulations in this position will have low
overhead and high coverage. To compare TTL and SR, we
selected the delay setting that made each scheme perform
best. That is, we used delays of [5000, 5500] for SR, and
of [8000, 8500] for TTL. These configurations results in a
high coverage with a reasonable overhead for each suppres-
sion scheme (refer previous section). The additional TTL
contour was configured with a delay of [5000, 5500 ticks] –



 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

O
ve

rh
ea

d 
(m

sg
s)

Weighted Coverage (%)

SR 2 delay 5000-5500 ticks
SR 4 delay 5000-5500 ticks

TTL 4 delay 8000-8500 ticks
TTL 10 delay 8000-8500 ticks

TTL 26 delay 8000-8500 delay

Figure 10. Effect of map size

this was to facilitate direct comparison with the SR scheme.
As we travel the SR plot from left to right (Figure 9),

the SR count increases from 1 to 18. Similarly, as we fol-
low the TTL plot from left to right the TTL count increases
from 2 to 32 (in increments of 2). The graph shows that
even though on average each TTL contour has fewer broad-
casts than SR, the best coverage achievable by SR exceeds
that of TTL (95% for SR vs. 90% for TTL). In addition,
it is possible to parameterize the SR algorithm such that it
gives a higher coverage and lower overhead than that of any
TTL configuration (e.g., SR = 3 has a coverage of 92% and
only a 1000 message overhead – far superior to any TTL pa-
rameterization). The results indicate that even though SR in
general can be configured to greatly outperform TTL, TTL
may be preferable in settings where a very low overhead is
required and a medium level of coverage (50% - 70%) is
acceptable.

Note that SR tends to saturate very quickly (coverage
wise). This implies that the SR protocol is very useful in
situations when the optimal algorithm parameters are not
known in advance: The coverage for even a bad choice will
be (most of the time) close to optimal – the overhead may
be high though. TTL, on the other hand, does not level-
off as fast as SR – it is maybe relevant therefore in envi-
ronments where a finer level of control is required on the
coverage/overhead tradeoff.

5.4. Effect of Map size on SR and TTL

We now vary different scenario parameters and analyze
their effect on the SR and the TTL suppression schemes.
We do this as we are interested in evaluating the differences
between the TTL scheme and the SR protocol in disparate
environments. We start by modifying the size of the map.

Figure 10 graphs the effect of varying the map size on the
SR and TTL protocols’ coverage and number of transmis-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1000  2000  3000  4000  5000  6000

O
ve

rh
ea

d 
(m

sg
s)

Number of Cars Reached

SR 2 delay 5000-5500 ticks
SR 4 delay 5000-5500 ticks

TTL 4 delay 8000-8500 ticks
TTL 10 delay 8000-8500 ticks

TTL 26 delay 8000-8500 delay

Figure 11. Cars reached

sions. The bottom-most point of each plot gives the cov-
erage and overhead for a map of size 21 x 21. The other
extreme for each plot represents the coverage and number
of transmissions for a 101 x 101 grid. Each point in between
corresponds to a map 20 units longer than the preceding one
(i.e. the next map after the 21 x 21 grid is one of length 41).
Both SR schemes used (with SR counts of 2 and 4) were
parameterized with a delay interval of 5000 to 5500 ticks;
the three TTL schemes used (TTL count 4, 10 and 26) were
configured with a delay interval of 8000 to 8500 ticks (i.e.
both protocols had favorable delay intervals).

The graph shows that the coverage for SR is largely in-
variant to the map size, the coverage for low TTL counts,
on the other hand, is very sensitive to the size of the map
(we also expect TTL 26 to also be affected by the map size
when the maps used are bigger than those graphed). The
number of transmissions for both protocols increase with
the map size – this is simply the effect of larger maps having
more cars (as the car density is held constant, and also be-
cause larger maps have more entry/exit points than smaller
maps so they will have more cars over the course of the sim-
ulation), and therefore more retransmissions, than smaller
maps than anything else. In summary, SR is a much more
robust scheme since it can be used, with good results, when
the map size is not known in advance.

To analyze the trends more closely, we now plot in Fig-
ure 11 the number of cars reached (i.e. the coverage not
normalized by the total number of peers in the simulation)
versus the overhead for the same map sizes. (As we move
from left to right along each line, the map size increases
from a 21x21 grid to a 101x101 grid.) Both figures indicate
that even though TTL can be configured to alert as many
cars as SR, the cost of the TTL scheme (in terms of over-
head) will be much larger. The reason for this is that as
TTL fixes the number of times an event can be rebroadcast
it in essence defines a hop radius around the event outside



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

O
ve

rh
ea

d 
(m

sg
s)

Weighted Coverage (%)

SR 2 delay 5000-5500 ticks
SR 4 delay 5000-5500 ticks

TTL 4 delay 8000-8500 ticks
TTL 10 delay 8000-8500 ticks
TTL 26 delay 8000-8500 ticks

Figure 12. Effect of car density

which the peers cannot receive notification because the TTL
count has expired. For larger maps to have a good coverage
(i.e. more peers to hear about the event) we therefore have
to make the TTL count very large. This in turn leads to a
large overhead due to redundant transmissions (i.e. trans-
missions to peers who already know about the event). The
SR scheme does not suffer from this drawback as we only
limit the number of times a car can forward an event, and
not the number of times the event in general can be retrans-
mitted. This will allow even small SR counts to efficiently
allow for a good coverage.

5.5. Effect of Car Density on SR and TTL

The previous sections have indicated that SR is efficient
because it encourages each car to broadcast received events
many times. As long as the number of cars is ‘reasonable’
(as in the previous sections) therefore, SR will do well. We
would, however, like to design a scheme where the dissem-
ination mechanism gives good performance results even in
areas of low traffic. We therefore test the efficacy of our sup-
pression schemes under different car densities – as the map
size is fixed, this directly corresponds to varying the average
number of cars present in the simulation at any one time. It
should be noted that as the TTL count is suppressed on an
event basis (and not on a peer basis like SR), we would not
expect it to be greatly disadvantaged by varying the num-
ber of cars in the system (in fact with fewer cars we would
expect TTL to give a better coverage as there will be fewer
broadcasts close to the source so notification of the event
can spread further out).

Each line in Figure 12 corresponds to the cover-
age/overhead for a given SR or TTL scheme at a certain
density. As before as we move along each contour from left
to right the car density increases – the leftmost point cor-
responds to a car density of 1

3 , the rightmost point on each

line a car density 7
3 , with increments of 1

3 . As before, the
SR schemes are parameterized with a delay interval of 5000
to 5500 ticks, and the TTL schemes with a delay interval of
8000 to 8500 ticks i.e. both protocols are configured with
delay intervals that lead to favorable results.

The plot indicates that, barring the lowest density of 1
3 ,

SR results in a better coverage than TTL. Moreover, even
for TTL configurations that give good results in low densi-
ties (e.g., TTL counts of 10 and 26), SR (for all but a density
of 1

3 ) requires a lower overhead to give the same or better
coverage. The graph, however, also shows that while SR
tends to outperform TTL, it is hard to throttle coverage wise
. TTL therefore may be useful in varying density conditions
where the course-grain nature of the SR protocol is not ap-
propriate.

5.6 Related Events

In this section we briefly study the performance of the
dissemination schemes when a sequence of events is trans-
mitted by the source. In particular, we assume that the
events in the sequence are related, so the recipient may not
need to get all of them, just one or just a few. For example,
the source may send out a sequence of alerts regarding a
particular accident, so it may not be essential to receive all
related events.

There are many ways to model and evaluate such a sce-
nario; here we discuss only one option. We refer to the se-
quence of events as a topic, and we assume that a car need
only get one of the events on the topic. Thus, we modify
our coverage metric accordingly:

w′
i =

Time Peeri is in simulation
Total simulation time

Topic Coverage =
∑

i w′
i ∗ 1′{Peeri}∑

i w′
i

where

1′{Peeri} =

⎧⎨
⎩

1 Peeri heard about at least
one event in the topic

0 otherwise

The TTL dissemination scheme treats each event from a
topic as independent, since it is hard to implement a “com-
bined TTL” across events. However, the overhead of the SR
scheme can be reduced by treating events on the same topic
as copies, but this change would impact coverage.

To keep our comparison simple, here we compare the un-
modified algorithms as applied to topic dissemination. In
particular, the source transmits an event every 5000 ticks,
for a total of 10 events, and the cars disseminate each event
independently.



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

O
ve

rh
ea

d 
(m

sg
s)

Weighted Topic Coverage (%)

SR with delay 5000-5500 ticks
TTL with delay 5000-5500 ticks
TTL with delay 8000-8500 ticks

Figure 13. Topics

Figure 13 shows the topic coverage (as defined above)
versus the total overhead (for all events), for the TTL and
SR schemes. (All other parameters are as before.) As we
move from left to right the SR count increases from 1 to 18
and the TTL count increases from 2 to 32 (in increments of
2).

The graph indicates that even with topic dissemination,
the SR protocol outperforms TTL, i.e., the SR plot is always
to the left of the TTL contours (implying that its coverage
is always higher than TTL for the same overhead). In this
particular scenario, TTL (with a count of about 6) may be
preferable to SR: even though the coverage will be lower
(around 80% as compared to 90%) the overhead will be sig-
nificantly lower (around 2000 messages).

Comparing Figure 13 to Figure 9, we see that coverage is
not markedly improved over the single event scenario, even
though the overhead is significantly higher. This is because
in our scenario, the single event broadcast reaches most cars
that can be reached. However, note that coverage improves
faster as SR (and TTL) increase. For example, when the SR
threshold is 2 in Figure 9, coverage is about 0.87. In the
same situation, the topic coverage in Figure 13 is 0.92.

6. Conclusion

Although we did not show results for a traditional dis-
semination algorithm, it is easy to see that it would have
much less coverage than our mobile dissemination algo-
rithms. Our mobile dissemination algorithms take advan-
tage of the car’s motion and changing topology, to carry
events further and to more cars. Our results show that our
new SR algorithm performs significantly better that a TTL-
based scheme, while still being very simple to implement.
Since flooding-based dissemination is a key function for
highly dynamic networks, we believe that the SR algorithm
can play a significant role in such an environment. In ad-

dition, the framework and evaluation metrics we have in-
troduced can be useful for studying other algorithms in this
dynamic environment.

References

[1] A. Bachir and A. Benslimane. A multicast protocol in ad
hoc networks inter-vehicle geocast. In Vehicular Technology
Conference, Spring 2003.

[2] V. Bharghavan, A. J. Demers, S. Shenker, and L. Zhang.
MACAW: A media access protocol for wireless LAN’s. In
SIGCOMM, pages 212–225, 1994.

[3] L. Briesemeister and G. Hommel. Role-based multicast in
highly mobile but sparsely connected ad hoc networks. In
International Symposium on Mobile Ad Hoc Networking and
Computing, pages 45–50. IEEE Press, 2000.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson.
Epidemic algorithms for replicated database maintenance.
In Proceedings of the sixth annual ACM Symposium on Prin-
ciples of distributed computing, pages 1–12. ACM Press,
1987.

[5] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mo-
bile enviroment. In Second ACM international workshop on
Data engineering for wireless and mobile access, pages 27–
34. ACM Press, 2001.

[6] D. Johnson and D. Maltz. Dynamic source routing in ad hoc
wireless networks. In Computer Communications Review –
Proceedings of SIGCOMM ’96, August 1996.

[7] P. Karn. MACA - a new channel access method for packet
radio. In ARRL/CRRL Amateur Radio 9th Computer Net-
working Conference, pages 134–140, 1990.

[8] K. Murauyama, M. Tanizaki, and S. Shimada. Evaluation of
ip handover for dsrc network, 2002.

[9] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance
vector routing. In Proceedings of the Second IEEE Work-
shop in Mobile Computing, 1999.

[10] S. Singh and C. Raghavendra. PAMAS: Power aware multi-
access protocol with signalling for ad hoc networks, 1999.

[11] Q. Sun and H. Garcia-Molina. Using ad-hoc inter-vehicle
networks for regional alerts, 2005.

[12] J. Weinmiller, H. Woesner, and A. Wolisz. Analyzing
and improving the IEEE 802.11-MAC protocol for wireless
LANs.


