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We describe how a set of mobile robots can arrange themselves on any specified curve on the
plane in the presence of dynamic changes both in the underlying ad hoc network and the set of

participating robots. Our strategy is for the mobile robots to implement a self-stabilizing virtual

layer consisting of mobile client nodes, stationary Virtual Nodes (VNs), and local broadcast
communication. The VNs are associated with predetermined regions in the plane and coordinate

among themselves to distribute the client nodes relatively uniformly among the VNs’ regions.

Each VN directs its local client nodes to align themselves on the local portion of the target curve.
The resulting motion coordination protocol is self-stabilizing, in that each robot can begin the

execution in any arbitrary state and at any arbitrary location in the plane. In addition, self-

stabilization ensures that the robots can adapt to changes in the desired target formation.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of

Computation–Interactive and Reactive Computation; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed applications

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: cooperative mobile robotics, distributed algorithms, pattern
formation, self-stabilization

1. INTRODUCTION

In this paper, we study the problem of coordinating the behavior of a set of au-
tonomous mobile robots in the presence of changes in the underlying communication
network as well as changes in the set of participating robots. Consider, for example,
a system of firefighting robots deployed throughout forests and other arid wilder-
ness areas. Significant levels of coordination are required in order to combat the
fire: to prevent the fire from spreading, it has to be surrounded; to put out the
fire, firefighters need to create “firebreaks” and spray water; they need to direct
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the actions of (potentially autonomous) helicopters carrying water. All this has
to be achieved with the set of participating agents changing and with unreliable
(possibly wireless) communication between agents. Similar scenarios arise in a va-
riety of contexts, including search and rescue, emergency disaster response, remote
surveillance, and military engagement, among many others. In fact, autonomous
coordination has long been a central problem in mobile robotics.

We focus on a generic coordination problem that, we believe, captures many of the
complexities associated with coordination in real-world scenarios. We assume that
the mobile robots are deployed in a large two-dimensional plane, and that they can
coordinate their actions by local communication using wireless radios. The robots
must arrange themselves to form a particular pattern, specifically, a continuous
curve drawn in the plane. The robots must spread themselves uniformly along
this curve. In the firefighting example described above, this curve might form the
perimeter of the fire.

These types of coordination problems can be quite challenging due to the dynamic
and unpredictable environment that is inherent to wireless ad hoc networks. Robots
may be continuously joining and leaving the system, and they may fail. In addition,
wireless communication is notoriously unreliable due to collisions, contention, and
various wireless interference.

Recently, virtual infrastructure has been proposed as a new tool for building re-
liable and robust applications in unreliable and unpredictable wireless ad hoc net-
works (e.g., [Dolev et al. 2003; Dolev et al. 2005; Chockler et al. 2008]). The basic
principle motivating virtual infrastructure is that many of the challenges resulting
from a dynamic networks could be obviated if there were reliable network infrastruc-
ture available. Unfortunately, in many contexts, such infrastructure is unavailable.
The virtual infrastructure abstraction emulates real reliable infrastructure in ad hoc
networks. Thus, it provides a programming abstraction for developing applications
that assumes reliable communication infrastructure. It has already been observed
that virtual infrastructure simplifies several problems in wireless ad hoc networks,
including distributed shared memory implementations [Dolev et al. 2003], tracking
mobile devices [Nolte and Lynch 2007b], geographic routing [Dolev et al. 2005b],
and point-to-point routing [Dolev et al. 2004].

In this paper, we rely on a virtual infrastructure known as the Virtual Station-
ary Automata Layer (VSA Layer) [Dolev et al. 2005a; Nolte and Lynch 2007a].
In the VSA Layer, each robot is modelled as a client ; clients interact with vir-
tual stationary automata (VSAs) via a (virtual) communication service. VSAs are
distributed throughout the world, each assigned to its own unique region. VSAs
remain always at a known and predictable location, and they are less likely to fail
than any individual mobile robot. Notice that the VSAs do not actually exist in
the real world; they are emulated by the underlying mobile robots. The VSA layer
is envisioned as a programming abstraction emulated by some underlying set of
broadcast-equipped physical devices, such as mobile robots, with access to a time
and location information.

Our main contribution is that we show how to use the VSA Layer to implement
a reliable and robust protocol for coordinating mobile robots. The protocol relies
on the VSAs to organize the mobile robots in a consistent fashion. Each VSA must
ACM Journal Name, Vol. V, No. N, Month 20YY.
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decide based on its own local information which robots to keep in its own region,
and which to assign to neighboring regions; for each robot that remains, the VSA
determines where on the curve the robot should reside. In order that the robot
coordination be truly robust, our coordination protocol is self-stabilizing, meaning
that each robot can begin in an arbitrary state, in an arbitrary location in the
network, and yet the distribution of the robots will still converge to the specified
curve. When combined with a self-stabilizing implementation of the VSA Layer, as
is presented in [Dolev et al. 2005a; Nolte and Lynch 2007a], we end up with entirely
self-stabilizing solution for the problem of autonomous robot coordination.

Self-stabilization provides many advantages. First, given the unreliable nature of
wireless networks, it is possible that occasionally (due to aberrant interference)
a significant fraction of messages may be lost, disrupting the protocol; a self-
stabilizing algorithm can readily recover from this. Second, a self-stabilizing al-
gorithm can cope with more dynamic coordination problems. In real-life scenarios,
the required formation of the mobile nodes may change. In the firefighting ex-
ample above, as the fire advances or retreats, the formation of firefighting robots
must adapt. A self-stabilizing algorithm can adapt to these changes, continually
re-arranging the robots along the newly chosen curve.

A second technical contribution of this paper is the exemplification of a proof
technique for showing self-stabilization of systems implemented using virtual infras-
tructure. The proof technique has three parts. First, using invariant assertions and
standard control theory results we show that from any initial state, the application
protocol, in this case, the motion coordination algorithm converges to an acceptable
state. Next, we show that the algorithm always reaches a legal state even when it
starts from some arbitrary state after failures. From any legal state the algorithm
gets to an acceptable state provided there are no further failures. Finally, using a
simulation relation we show that the above set of legal states is in fact equal to the
set of reachable states of the complete system—the coordination algorithm com-
posed with the VSA layer. It has already been shown in [Dolev et al. 2005a; Nolte
and Lynch 2007a] that the VSA layer itself is self-stabilizing. Thus, combining the
stabilization of the VSA layer and the application protocol, we are able to conclude
self-stabilization of the complete system.

The remainder of this paper is organized as follows. First, in Section 2, we
discuss some of the related work. Next, in Section 3, we introduce the underlying
mathematical model used for specifying the VSA layer. In Section 4 we discuss the
VSA Layer model. In Section 5 we describe the motion coordination problem, and
our algorithm that solves it. In Section 6, we show that the algorithm is correct,
and in Section 7, we show that the algorithm is self-stabilizing.

2. RELATED WORK

In the distributed computing literature, a self-stabilizing system is one which re-
gains normal functionality and behavior sometime after disturbances, such as node
failures and message losses cease [Dolev 2000]. The idea of self-stabilization has
been widely employed for designing resilient distributed systems over unreliable
communication and computing components (see [Herman 1996] for a comprehen-
sive list of applications).
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The problem of motion coordination has been studied in a variety of contexts, fo-
cusing on several different goals: flocking [Jadbabaie et al. 2003]; rendezvous [Ando
et al. 1999; Lin et al. 2003; Martinez et al. 2005]; aggregation [Gazi and Passino
2003]; deployment and regional coverage [Cortes et al. 2004]. Control theory lit-
erature contains several algorithms for achieving spatial patterns [Fax and Murray
2004; Clavaski et al. 2003; Blondel et al. 2005; Olfati-Saber et al. 2007]. These algo-
rithms assume that the agents process information and communicate synchronously,
and hence, they are analyzed based on differential or difference equations models of
the system. Convergence of this class of algorithms over unreliable and delay-prone
communication channels have been studied recently in [Chandy et al. 2008].

Geometric pattern formation with vision-based models for mobile robots have
been investigated in [Suzuki and Yamashita 1999; Prencipe 2001; Flocchini et al.
2001; Efrima and Peleg 2007; Prencipe 2000; Défago and Konagaya 2002]. In these
weak models, the robots are oblivious, identical, anonymous, and often without
memory of past actions. For the memoryless models, the algorithms for pattern
formation are often automatically self-stabilizing. In [Défago and Konagaya 2002;
Défago and Souissi 2008], for instance, a self-stabilizing algorithm for forming a
circle has been presented. These weak models have been used for characteriz-
ing the class of patterns that can be formed and for studying the computational
complexity of formation algorithms, under different assumptions about the level of
common knowledge amongst agents, such as, knowledge of distance, direction, and
coordinates [Suzuki and Yamashita 1999; Prencipe 2000].

We have previously presented a protocol for coordinating mobile devices using
virtual infrastructure in [Lynch et al. 2005]. The paper described how to implement
a simple asynchronous virtual infrastructure, and proposed a protocol for motion
coordination. This earlier protocol relies on a weaker (i.e., untimed) virtual layer
(see [Dolev et al. 2005a; Nolte and Lynch 2007a]), while the current relies on a
stronger (i.e., timed) virtual layer. As a result, our new coordination protocol is
somewhat simpler and more elegant than the previous version. Moreover, the new
protocol is self-stabilizing, which allows both for better fault-tolerance, and also
the ability to tolerate dynamic changes in the desired pattern of motion. Virtual
infrastructure has also been considered in [Brown 2007] for collision prevention of
airplanes.

3. PRELIMINARIES

In this paper we mathematically model the the virtual infrastructure, the motion of
the robots, and the motion coordination protocols using the Timed Input/Output
Automata (TIOA) framework. TIOA is a formal modelling framework for real-
time, distributed systems where computing and physical processes interact. Here
we define the key concepts in the framework and refer the reader to [Kaynar et al.
2005] for details.

3.1 Timed I/O Automata

A Timed I/O Automaton is a non-deterministic state transition system in which
the state may change either (a) instantaneously through a transition, or (b) contin-
uously over an interval of time following a trajectory . Let V be a set of variables.
Each variable v ∈ V is associated with a type which defines the set of values v
ACM Journal Name, Vol. V, No. N, Month 20YY.
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can take. The set of valuations of V is denoted by val(V ). Each variable may be
discrete or continuous. Discrete variables are used to model protocol state, data
structures, while continuous variables are used to model physical quantities such as
time, position, and velocity.

The semi-infinite real line R≥0 is used to model time. A trajectory for a set of
variables V maps a left-closed interval of R≥0 with left endpoint 0 to val(V ). It
models continuous evolution of values of the variables. The domain τ is denoted
by τ.dom. A trajectory is closed if τ.dom = [0, t] for some t ∈ R≥0, in which case
we define τ.ltime ∆= t and τ.lstate ∆= τ(t).

Definition 3.1. A TIOA A = (X,Q,Θ, A,D, T ) consists of (a) A set X of vari-
ables. (b) A set Q ⊆ val(V ) of states. (c) A set Θ ⊆ S of start states. (d) A set A
of actions partitioned into input, output and internal actions I, O, and H, (e) A
set D ⊆ S×A×S of discrete transitions. An action a ∈ A is said to be enabled at
x iff (x, a,x′) ∈ D, and we write this as x a→ x′. (f) A set T of trajectories for V
that is closed1 under prefix, suffix and concatenation. In addition, A must be input
action and input trajectory enabled.

For a TIOA A, we refer to its components X,Q,D, etc., by XA, QA,DA, respec-
tively. And for TIOA A1, we refer to the components by X1, Q1,D1, etc.

Executions. An execution of A records the valuations of all its variables and
the occurrences of all actions over a particular run. An execution fragment of
A is a finite or infinite sequence τ0a1τ1a2 . . ., such that for all i in the sequence,
τi.lstate

ai+1→ τi+1(0). An execution fragment is an execution if τ0(0) ∈ Θ. The first
state of α, α.fstate, is τ0(0), and for a closed α, its last state, α.lstate, is the last
state of its last trajectory. The limit time of α, α.ltime, is defined to be

∑
i τi.ltime.

The set of executions and reachable states of A are denoted by ExecsA and ReachA.
A nonempty set of states L ⊆ QA is said to be a legal set for A if it is closed

under the transitions and the closed trajectories of A. That is, (a) if x a→ x′ and
x ∈ L, then x′ ∈ L, and (b) if τ ∈ TA, τ is closed, and τ(0) ∈ L then τ.lstate ∈ L.
A set of states I ⊆ S is said to be an invariant of A iff ReachA ⊆ I. An invariant
set I captures the notion that the states outside I are never reached by the TIOA
A. It is easy to check that if L is a legal and ΘA ⊆ L, then L is an invariant.

Traces. Often we are interested in studying the externally visible behavior of a
TIOA A, instead of its execution. The visible behavior or the trace corresponding
to a given execution α is obtained by (a) removing all internal actions, and (b) re-
placing each trajectory with just its domain. Thus, the trace of an execution α,
denoted by trace(α), has information about input/output actions and the duration
of time that elapses between the occurrence of successive actions. The set of traces
of A is defined as TracesA

∆= {β | ∃α ∈ ExecsA, trace(α) = β}.

Implementation. Our proof techniques often rely on showing that any behavior
of a given TIOA A is externally indistinguishable from some behavior of another
TIOA B. This is formalized by the notion of implementation which we define next.
Two TIOAs are said to be comparable if their external interfaces are identical, that

1See Sections 3-4 of [Kaynar et al. 2005] for formal definitions of these closure properties.
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is, they have the same input and output actions. Given two comparable TIOAs A
and B, A is said to implement B, if TracesA ⊆ TracesB. The standard technique for
proving that A implements B is to come up with a simulation relation R ⊆ QA×QB
which satisfies the following condition: if xRy, then every one-step move of B from
a state y, can be simulated by some execution fragment of A starting from x, such
that (a) the corresponding final states are also related by R, and (b) the traces of
the moves are identical (see [Kaynar et al. 2005] for the formal definition).

Composition. It is convenient to model a complex system, such as our VSA
layer, as a collection of TIOAs running in parallel and interacting through input
and output actions. A pair of TIOAs are said to be compatible if they do not share
variables, internal actions, or output actions. Given compatible TIOAs A and B,
their composition is another TIOA which is denoted by A‖B.

3.2 Failure transform for TIOAs

In order to model failure of robots and self-stabilization in the face of failures and
recoveries, we introduce a general failure transformation of TIOAs, such that the
transformed TIOAs can be crashed and restarted.

A TIOA A is said to be is fail-transformable if it does not have any variable
called failed, and it does not have actions called fail and restart. The transformed
automaton Fail(A) has one additional discrete state variable, failed, indicating
whether or not the machine is failed, and two additional input actions, fail and
restart. The states of the new automaton are states of the old automaton, together
with a valuation of failed. The start states are defined to be ones where failed
is arbitrary, but if failed is false then the rest of the variables are set to values
consistent with a start state of A. The transitions for Fail(A) are derived from
those of A as follows: (a) transitions on input actions from a failed state leaves
the state unchanged, (b) transitions from unfailed states remain the same as in A,
(c) a fail action sets failed to true, (d) if a restart action occurs at a failed state
then failed is set to false and all other state variables are set to arbitrary initial
values, otherwise it does not change the state. The set of trajectories of Fail(A)
can be divided into two sets of trajectories based on the value of the failed variable.
If failed is false over the course of the trajectory τ , then τ is such that τ restricted
to XA is a trajectory of A. While Fail(A) is not failed its trajectories basically
look like those of A with the value of the failed variable remaining constant. If the
machine is failed then all variables are constant over trajectories. This means that
if the machine is failed, then its state variables are frozen. This does not constrain
time from passing– any constant trajectory is allowed.

Performing a Fail -transform on the composition A1‖A2 of two automata results
in a TIOA whose executions constrained to actions and variables of Fail(A1) or
Fail(A2) are executions of Fail(A1) or Fail(A2) respectively.

3.3 Self-Stabilization of TIOAs

A self-stabilizing system is one which regains normal functionality and behavior
sometime after disturbances cease. For a given TIOA A, suppose L is a legal set
and further, assume that all execution fragments starting from L correspond to
normal behavior. Then, A is self-stabilizing with respect to L if any execution
ACM Journal Name, Vol. V, No. N, Month 20YY.
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fragment of A starting from an arbitrary state ultimately reaches some state in L.
Starting from arbitrary states captures the possibility of starting from states where
disturbances, such as failures and restarts, have just occurred.

Throughout this section A,A1, A2, etc., are sets of actions and V is a set of
variables. An (A, V )-sequence is a (possibly infinite) alternating sequence of actions
in A and trajectories of V . An (A, V )-sequence is closed if it is finite and its final
trajectory is closed.

Definition 3.2. Given (A, V )-sequences α, α′ and t ≥ 0, α′ is a t-suffix of α if
there exists a closed (A, V )-sequence α′′ of duration t such that α = α′′α′. α′ is a
state-matched t-suffix of α if it is a t-suffix of α, and α′.fstate equals the α′′.lstate.

Informally, α′ is a state-matched t suffix of α if there exists a closed fragment of
duration t, with the same last state as the first state of α′ and which when prefixed
to α′ equals to α. One set of executions or traces (say, behavior including failures
and message losses) self-stabilizes to another set (say, desirable behavior) in time
t if each state-matched t-suffix of each behavior in the former set is included the
latter set.

Definition 3.3. Given a set of (A1, V )-sequences S1, a set of (A2, V )-sequences
S2, and t ≥ 0, S1 is said to stabilize in time t to S2 if each state-matched t-suffix
α of each sequence in S1 is in S2.

The stabilizes to relation is transitive as stated by the following lemma.

Lemma 3.4. Let Si be a set of (Ai, V )-sequences, for i ∈ {1, 2, 3}. If S1 stabilizes
to S2 in time t1, and S2 stabilizes to S3 in time t2, then S1 stabilizes to S3 in time
t1 + t2.

The following definitions are necessary for starting TIOAs at arbitrary states: For
any L ⊆ QA, Start(A, L) is defined to be the TIOA that is identical toA except that
ΘStart(A,L) = L. We define U(A) ∆= Start(A, QA) and R(A) ∆= Start(A,ReachA).
It is straightforward to check that for any TIOA A, Fail and U operators are
interchangeable. Finally we define self-stabilization of composed TIOAs.

Definition 3.5. Let B and A be compatible TIOAs, and L be a legal set for the
composed TIOA A‖B. A self-stabilizes in time t to L relative to B if the set of
executions of U(A)‖B stabilizes in time t to executions of Start(A‖B, L).

4. VIRTUAL STATIONARY AUTOMATA

The Virtual Stationary Automata (VSA) infrastructure has been presented ear-
lier in [Dolev et al. 2005a; Nolte and Lynch 2007a]. The VSA infrastructure can
be seen as an abstract system model implemented in middleware, thus provid-
ing a simpler and more predictable programming model for the application devel-
oper. The main components of the VSA layer are (1) Virtual Stationary Automata
(V SA), (2) Client Nodes, (3) Real world (RW ) and Virtual World (VW ) automata,
(4) V BDelay buffers, and (5) V Bcast broadcast service. The interaction of these
components shown in Figure 1. Each of these components are formally modeled as
TIOAs, and the complete system is the composition of the component TIOAs or
the corresponding fail transformed TIOAs, as the case may be. First, we informally
describe the architecture of this layer and then briefly sketch its implementation.
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V Bcast

VNu

VNv

CNp

CN q

VWRW

VBDelayu

V BDelayv

V BDelayp

V BDelayq

GPSupdatep
GPSupdateq

vcastp vcast′p

vrcvp

vcastq vcast′q

vrcvq

failp, restartp

failq, restartq

failv, restartv, timev

failu, restartu, timeu

vcastvvcast′v

vrcvv

vcastuvcast′u

vrcvu

Fig. 1. Virtual Stationary Automata layer.

4.1 VSA Architecture

For the remainder of this paper, we fix R to be a closed, bounded and connected
subset of R2, U to be a totally ordered index set, and P to be another index set.
R models the physical space in which the robots reside; we call it the deployment
space. U and P serve as the index sets for regions in R and for the participating
robots, respectively.

Network tiling. A network tiling divides the deployment space R into a set of
regions {Ru}u∈U , such that: (i) for each u ∈ U , Ru is a closed, connected subset
of R, and (ii) for any u, v ∈ U , Ru and Rv may overlap only at their boundaries.
For any u, v ∈ U , the corresponding regions are said to be neighbors if Ru ∩ Rv 6=
∅. This neighborhood relation, nbrs, induces a graph on the set of regions. We
assume that the network tiling divides R in such a way that the resulting graph is
connected. For any u ∈ U , we denote the ids of its neighboring regions by nbrs(u),
and nbrs+(u) ∆= nbrs(u) ∪ {u}. We define the distance between two regions u and
v, denoted by regDist(u, v), as the number of hops on the shortest path between
u and v in the graph. The diameter of the graph, i.e., the distance between the
farthest regions in the tiling, is denoted by D, and the largest Euclidean distance
between any two points in any region is denoted by r.

One example of a network tiling is the grid tiling , where R is divided into b× b
square regions, for some constant b > 0. Non-border regions in this tiling have have
eight neighbors. For a grid tiling with a given b, r could be any value greater than
or equal to 2

√
2 b.

Real World (RW ) Automaton. RW is an external source of occasional but reli-
able time and location information for participating robots. The RW automaton
is parameterized by: (a) vmax > 0, a maximum speed, and (b) εsample > 0, a
ACM Journal Name, Vol. V, No. N, Month 20YY.
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maximum time gap between successive updates for each robot. The RW automa-
ton maintains three key variables: (a) a continuous variable now representing true
system time; now increases monotonically at the same rate as real-time starting
from 0. (b) An array vel[P → R ∪ {⊥}]; for p ∈ P , vel(p) represents the current
velocity of robot p. Initially vel(p) is set to ⊥, and it is updated by the robots when
their velocity changes. (c) an array loc[P → R]; for p ∈ P , loc(p) represents the
current location of robot p. Over any interval of time, robot p may move arbitrarily
in R provided its path is continuous and its maximum speed is bounded by vmax.
Automaton RW performs the GPSupdate(l, t)p action, l ∈ R, t ∈ R≥0, p ∈ P , to
inform robot p about its current location and time. For each p, some GPSupdate(, )p
action must occur every εsample time.

Virtual World (VW ) Automaton. VW is an external source of occasional but
reliable time information for VSAs. Similar to RW ’s GPSupdate action for clients,
VW performs time(t)u output actions notifying VSA u of the current time. One
such action occurs at time 0, and they are repeated at least every εsample time
thereafter. Also, VW nondeterministically issues failu and restartu outputs for each
u ∈ U , modelling the fact that VSAs may fail and restart.

Mobile client nodes. For each p ∈ P , the mobile client node CN p is a TIOA
modeling the client-side program executed by the robot with identifier p. CN p has
a local clock variable, clock that progresses at the rate of real-time, and is initially
⊥. CN p may have arbitrary local non-failed variables. Its external interface at
least includes the GPSupdate inputs, vcast(m)p outputs, and vrcv(m)p inputs. CN p

may have additional arbitrary non-fail and non-restart actions. An example of a
client node appears in Figure 2.

Virtual Stationary Automata (VSAs). A VSA is a clock-equipped abstract vir-
tual machine. For each u ∈ U , there is a corresponding VSA VN u which is associ-
ated with the geographic region Ru. VN u has a local clock variable clock which pro-
gresses at the rate of real-time (it is initially ⊥ before the first time input). VN u has
only the following external interface: (a) Input time(t)u, t ∈ R≥0: models a time
update at time t; it sets node VN u’s clock to t. (b) Output vcast(m)u,m ∈Msg:
models VN u broadcasting message m; (c) Input vrcv(m)u,m ∈Msg: models VN u

receiving a message m. VN u may have additional arbitrary non-failed variables and
non-fail and non-restart internal actions. All such actions must be deterministic.

VBDelay Automata. Each client and each VSA node, is associated with a VB-
Delay buffer that delays messages when they are broadcast for up to e time. This
buffer takes as input a vcast(m) from the node, and passes the message on to the
VBcast service after some interval of time at most e. In the case of VSA nodes,
the message is passed on immediately to the VBcast service with no delay.

VBcast Automaton. Each client and virtual node has access to the virtual local
broadcast communication service VBcast. The service is parameterized by a con-
stant d > 0 which models the upper bound on message delays. VBcast takes each
vcast′(m, f)i input from client and virtual node delay buffers and delivers the mes-
sage m via vrcv(m) at each client or virtual node. It delivers the message to every
client and VSA that is in the same region as the initial sender, when the message
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was first sent, along with those in neighboring regions. The VBcast service guaran-
tees that in each execution α of VBcast there is a correspondence between vrcv(m)
actions and vcast′(m, f)i actions, such that: (i) each vrcv occurs after and within
d time of the corresponding vcast′, (ii) at most one vrcv at a particular process
is mapped to each vcast′. (iii) a message originating from some region u must be
received by all robots that are in Ru or its neighbors throughout the transmission
period.

A VSA layer algorithm or a V -algorithm is an assignment of a TIOA program to
each client and VSA. We denote the set of all V-algorithms is as V Algs. Since we
are interested in providing this layer using failure-prone robots, we then define a
VLayer, a VSA layer with failure-prone clients and VSAs, i.e., one in which each
client is modified so as to fail by crashing.

Definition 4.1. Let alg be an element of V algs. V LNodes[alg], the fail-transformed
nodes of the VSA layer parameterized by alg, is the composition of Fail(alg(i)) with
a VBDelay buffer, for all i ∈ P ∪ U . V Layer[alg], the VSA layer parameterized
by alg, is the composition of V LNodes[alg] with RW‖VW‖V Bcast.

4.2 VSA Layer Implementation

In [Dolev et al. 2005a; Nolte and Lynch 2007a], we show how mobile nodes can emu-
late the VSA Layer in a wireless network; additional details of this implementation
are in the [Nolte 2008]. The emulation algorithm is based on a replicated-state-
machine paradigm, where there is a leader (i.e., a “primary”) that is responsible for
maintaining the state, and that the replicas alternate being the leader. The key fea-
ture of our replicated state machine is that it guarantees certain timing properties,
and therefore, the emulation algorithm has to ensure that these timing properties
are respected.

Mobile robots in a regionRu use a leader-based emulation algorithm to implement
the region u’s virtual node. Each mobile robot runs a totally ordered broadcast
service, TOBcast , leader election service, and a Virtual Node Emulation (VNE )
algorithm, for each virtual node. The TOBcast service ensures that each VNE in
the same region receives the same set of messages in the same order. Assuming
mobile robots are equipped with a real local broadcast service Pbcast , with com-
munication radius Rp ≥

√
5b and message delay dp, TOBcast is implemented using

a hold strategy for received messages, where robots do not “receive” a message until
enough (dp + ε, ε small) time has passed that all other robots in the region will
have received the message as well. Each VNE then independently maintains the
state of the region’s virtual node.

Periodically a leader is selected in a zone by the leader election service. This
service is implemented by having each mobile robot in a region periodically send
out a message indicating its id, its region, and whether or not it is currently par-
ticipating in the emulation of the region’s VSA. The leader of a region is selected
from amongst these processes in its region based first on whether it is participating
in the region’s VSA emulation (robots that indicate they are participating have
priority), and then on the basis of process id (robots with lower process ids are
preferred).
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A leader is responsible for both broadcasting the messages that would have been
sent by the virtual machine in its region in the last e time, where e is the V BDelay
buffer delay parameter, and broadcasting an up-to-date version of the VSA state.
This broadcast is used to both stabilize the state of the emulation algorithm, forcing
all emulators in the same region to have the same virtual machine state, and to allow
newly joining emulators (those that have just restarted or moved into the region) to
start participating in emulation. This virtual machine state is frozen from the point
of the sending of this virtual machine state message, until the mobile robots again
participate in the leader election service. During that time, the virtual machine runs
at an accelerated pace, simulating the receipt of messages received from TOBcast
while doing so, until the machine is caught up with real-time and the next leader
is chosen. Any broadcasts that this emulation of the virtual machine produces are
stored in a local outgoing queue for broadcast if the emulator becomes a leader.

5. MOTION COORDINATION USING VIRTUAL NODES

In this paper we fix Γ : A → R to be a simple, differentiable curve on R that is
parameterized by arc length. The domain set A of parameter values is an interval
in the real line. We also fix a particular network tiling given by the collection
of regions {Ru}u∈U such that each point in Γ is also in some region Ru. Let
Au

∆= {p ∈ A : region(Γ(p)) = u} be the domain of Γ in region u. We assume that
Au is convex for every region u; it may be empty for some u. The local part of the
curve Γ in region u is the restriction Γu : Au → Ru. We write |Au| for the length
of the curve Γu. We define the quantization of a real number x with quantization
constant σ > 0 as qσ(x) = d xσ eσ. We fix σ, and write qu as an abbreviation for
qσ(|Au|), qmin for the minimum nonzero qu, and qmax for the maximum qu.

5.1 Problem Statement

Our goal is to design an algorithm for mobile robots such that, once the failures
and recoveries cease, within finite time all the robots are located on Γ and as time
progresses they eventually become equally spaced on Γ. Formally, if no fail and
restart actions occur after time t0, then:

(1) there exists a constant T , such that for each u ∈ U , within time t0 +T the set of
robots located in Ru becomes fixed and its cardinality is roughly proportional
to qu; moreover, if qu 6= 0 then the robots in Ru are located on2 Γu, and

(2) in the limit, as time goes to infinity, all robots in Ru are uniformly spaced3 on
Γu.

5.2 Overview of Solution: Motion Coordination Algorithm (MC )

The VSA Layer is used as a means to coordinate the movement of client nodes, i.e.,
robots. A VSA controls the motion of the clients in its region by setting and broad-
casting target waypoints for the clients: VSA VN u, u ∈ U , periodically receives

2For a given point x ∈ R, if there exists p ∈ A such that Γ(p) = x, then we say that the point x

is on the curve Γ; abusing the notation, we write this as x ∈ Γ.
3A sequence x1, . . . , xn of points in R is said to be uniformly spaced on a curve Γ if there exists
a sequence of parameter values p1 < p2 . . . < pn, such that for each i, 1 ≤ i ≤ n, Γ(pi) = xi, and

for each i, 1 < i < n, pi − pi−1 = pi+1 − pi.
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information from clients in its region, exchanges information with its neighbors,
and sends out a message containing a calculated target point for each client node
“assigned” to region u. VN u performs two tasks when setting the target points:
(1) it re-assigns some of the clients that are assigned to itself to neighboring VSAs,
and (2) it sends a target position on Γ to each client that is assigned to itself. The
objective of (1) is to prevent neighboring VSAs from getting depleted of robots and
to achieve a distribution of robots over the regions that is proportional to the length
of Γ in each region. The objective of (2) is to space the nodes uniformly on Γ within
each region. The client algorithm, in turn, receives its current position information
from RW and computes a velocity vector for reaching its latest received target
point from a VSA.

Each virtual node VN u uses only information about the portions of the target
curve Γ in region u and neighboring regions. For the sake of simplicity, we assume
that all client nodes know the complete curve Γ. We could as well have modeled the
client nodes in u as receiving external information about the nature of the curve in
region u and neighboring regions only.

5.3 Client Node Algorithm (CN )

The algorithm for the client node CN (δ)p, p ∈ P (see Figure 2) follows a round
structure, where rounds begin at times that are multiples of δ. At the beginning
of each round, a CN stops moving and sends a cn-update message to its local VSA
(that is, the VSA in whose region the CN currently resides). The cn-update message
tells the local VSA the CN ’s id and its current location in R. The local VN then
sends a response to the client, i.e., a target-update message. Each such message
describes the new target location x∗p for CN p, and possibly an assignment to a
different region. CN p computes its velocity vector vp, based on its current position
xp and its target position x∗p, as vp = (xp−x∗p)/||xp−x∗p|| and communicates vmaxvp
to RW . As a result then RW moves the position of CN p (with maximum velocity)
towards x∗p.

5.4 Virtual Stationary Node Algorithm (VN )

The algorithm for virtual node VN (k, ρ1, ρ2)u, u ∈ U , appears in Figure 3, where
k ∈ Z+ and ρ1, ρ2 ∈ (0, 1) are parameters of the TIOA. VN u collects cn-update
messages sent at the beginning of the round from CN ’s located in region Ru, and
aggregates the location and round information in a table, M . When d + ε time
passes from the beginning of the round, VN u computes from M the number of
client nodes assigned to it that it has heard from in the round, and sends this
information in a vn-update message to all of its neighbors.

When VN u receives a vn-update message from a neighboring VN , it stores the
CN population information in a table, V . When e+ d+ ε time from the sending of
its own vn-update passes, VN u uses the information in its tables M and V about
the number of CN s in its and its neighbors’ regions to calculate how many CN s
assigned to itself should be reassigned and to which neighbor. This is done through
the assign function, and these assignments are then used to calculate new target
points for local CN s through the calctarget function (see Figure 4).

If the number of CN s assigned to VN u exceeds the minimum safe number k, then
assign reassigns some CN s to neighbors. Let Inu denote the set of neighboring VN s
ACM Journal Name, Vol. V, No. N, Month 20YY.
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1 Signature:

Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

3 Input vrcv(m)p, m ∈ {target-update} ×(P → R)
Output vcast(〈cn-update, p, l〉)p, l ∈ R

5 Output velocity(v)p, v ∈ R2

7 State:

analog clock: R≥0∪ {⊥}, initially ⊥
9 analog x ∈ R ∪ {⊥}, location, initially ⊥

x∗ ∈ R ∪ {⊥}, target point, initially ⊥
11 v ∈ {⊥, 0} ∪ {v : R2 | |v| = 1}, initially ⊥

13 Trajectories:
evolve

15 if clock 6= ⊥
then d(clock) = 1 else d(clock) = 0

17 if v 6= ⊥
then d(x) = v · vmax else d(x) = 0

19 stop when [x 6= ⊥ ∧ x∗ 6= ⊥
∧ clock mod δ = 0 ]

21 ∨ [x 6= ⊥ ∧ x∗ 6= ⊥ ∧ v||x∗ − x|| 6= x∗ − x ]
∨ [(x = x∗∨ x = ⊥ ∨ x∗ = ⊥) ∧ v 6= 0 ]

23

Transitions:

26Effect
if 〈x, clock〉6= 〈l, t〉∨

28‖x∗-l‖≥ vmax(δdt/δe-t-dr) ∨
x∗= ⊥∨ t mod δ/∈ (e+2d+2ε, δ-dr)

30then x, x∗ ← l; clock ← t
v ← ⊥

32

Input vrcv(〈target-update, target〉)p
34Effect

if ‖target(p)-x‖< vmax(δd clockδ e-clock-dr)

36∧ clock mod δ > e + 2d + 2ε
then x∗ ← target(p)

38

Output vcast(〈cn-update, p, x〉)p
40Precondition

x= x 6= ⊥∧ clock mod δ = 0 ∧ x∗ 6= ⊥
42Effect

x∗ ← ⊥
44

Output velocity(v)p
46Precondition

v = vmax · (x∗ − x)/||x∗ − x||
48∨ (v= 0∧ [x = x∗ ∨ x∗= ⊥∨ x= ⊥ ])

Effect
50v ← v / vmax

Fig. 2. Client node CN (δ)p automaton.

1 Signature:

Input time(t)u, t ∈ R≥0

3 Input vrcv(m)u,
m ∈ ({cn-update} ×P ×R) ∪ ({vn-update} ×

U ×N)
5 Output vcast(m)u,

m ∈ ({vn-update} ×{u} ×N) ∪
({target-update} ×(P → R))

7

State:

9 analog clock: R≥0∪ {⊥}, initially ⊥.
M:P→R, initially ∅.

11 V : U → N, initially ∅.

13 Trajectories:
evolve

15 if clock 6= t
then d(clock) = 1 else d(clock) = 0

17 stop when Any precondition is satisfied.

19 Transitions:
Input time(t)u

21 Effect

22if clock 6= t ∨ t mod δ /∈ (0, e + 2d + 2ε ]
then M, V ← ∅; clock ← t

24

Input vrcv(〈cn-update, id, loc〉)u
26Effect

if u = region(loc) ∧ clock mod δ ∈ (0, d ]
28then M(id) ← loc; V ← ∅

30Output vcast(〈vn-update, u, n〉)u
Precondition

32clock mod δ = d+ε
n= |M|6= 0∧V6= {〈u, n〉}

34Effect
V ← {〈u, n〉}

36

Input vrcv(〈vn-update, id, n〉)u
38Effect

if id ∈ nbrs(u) then V(id) ← n
40

Output vcast(〈target-update, target〉)u
42Precondition

clock mod δ = e + 2d + 2ε ∧M 6= ∅
44target = calctarget(assign(id(M), V), M)

Effect
46M, V ← ∅

Fig. 3. VN (k, ρ1, ρ2)u TIOA, with parameters: safety k, and damping ρ1, ρ2.

of VN u that are on the curve Γ and yu(g), denote the number num(Vu(g)) of CN s
assigned to VN g, where g is either u or a neighbor of u. If qu 6= 0, meaning VN u is
on the curve then we let loweru denote the subset of nbrs(u) that are on the curve
and have fewer assigned CN s than VN u has after normalizing with qg

qu
. For each

g ∈ loweru, VN u reassigns the smaller of the following two quantities of CN s to
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function assign(assignedM: 2P , y: nbrs+(u) → N) =
2assign: P → U , initially {〈i, u〉} for each i ∈ assignedM

n: N, initially y(u); ra: N, //initially 0
4if y(u) > k then

if qu 6= 0 then

6let lower = {g ∈ nbrs(u):
qg
qu
y(u) > y(g)}

for each g ∈ lower

8ra ← min(bρ2 · [
qg
qu
y(u)− y(g)]/2(|lower|+1)c, n− k)

update assign by reassigning ra nodes from u to g
10n ← n− ra

else if {v ∈ nbrs(u): qv 6= 0} = ∅ then
12let lower = {g ∈ nbrs(u) : y(u) > y(g)}

for each g ∈ lower
14ra ← min(bρ2 · [y(u)− y(g)]/2(|lower|+1)c, n− k)

update assign by reassigning ra nodes from u to g
16n ← n− ra

else ra ← b (y(u) -k)/ |{v ∈ nbrs(u): qv 6= 0}| c
18for each g ∈ {v ∈ nbrs(u): qv 6= 0}

update assign by reassigning ra nodes from u to g
20return assign

22function calctarget(assign: P → U , locM: P → R) =
seq, indexed list of pairs in A× P , initially the list,

24for each i ∈ P : assign(i)= u ∧ locM(i) ∈ Γu, of 〈p, i〉
where p= Γ−1

u (locM(i)), sorted by p, then i
26for each i ∈ P : assign(i) 6= null

if assign(i) = g 6= u then locM(i) ← og
28else if locM(i) /∈ Γu then locM(i) ← choose {minx∈Γu{dist(x, locM(i))}}

else let p = Γ−1
u (locM(i)), seq(k) = 〈p, i〉

30if k = first(seq) then locM(i) ← Γu(inf(Au))
else if k = last(seq) then locM(i) ← Γu(sup(Au))

32else let seq(k − 1) = 〈pk−1, ik−1〉,
seq(k + 1) = 〈pk+1, ik+1〉

34locM(i) ← Γu(p + ρ1 · (
pk−1+pk+1

2 − p))
return locM

Fig. 4. VN (k, ρ1, ρ2)u TIOA functions.

VN g: (1) ra = ρ2 · [ qgqu yu(u) − yu(g)]/2(|loweru| + 1), where ρ2 < 1 is a damping
factor , and (2) the remaining number of CN s over k still assigned to VN u.

If qu = 0, meaning VN u is not on the curve, and VN u has no neighbors on the
curve (lines 11–15), then we let loweru denote the subset of nbrs(u) with fewer
assigned CN s than VN u. For each g ∈ loweru, VN u reassigns the smaller of the
following two quantities of CN s: (1) ra = ρ2 · [yu(u)−yu(g)]/2(|loweru|+1) and (2)
the remaining number of CN s over k still assigned to VN u. VN u is on a boundary
if qu = 0, but there is a g ∈ nbrs(u) with qg 6= 0. In this case, yu(u)− k of VN u’s
CN s are assigned equally to neighbors in Inu (lines 17–19).

The calctarget function assigns to every CN p assigned to VN u a target point
locMu(p) in region Rg, where g = u or it is one of u’s neighbors. The target point
locMu(p) is computed as follows: If CN p is assigned to VN g, g 6= u, then its target
is set to the center og of region g (line 27); if CN p is assigned to VN u but is not
located on the curve Γu then its target is set to the nearest point on the curve,
nondeterministically choosing one if there are several (line 28); if CN p is either the
first or last client node on Γu then its target is set to the corresponding endpoint of
Γu (lines 30–31); if CN p is on the curve but is not the first or last client node then
ACM Journal Name, Vol. V, No. N, Month 20YY.
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its target is moved to the mid-point of the locations of the preceding and succeeding
CN s on the curve (line 34). For the last two computations a sequence seq of nodes
on the curve sorted by curve location is used (line 25).

Lastly, VN u broadcasts new waypoints for the round via a target-update message
to its CN s.

5.5 Complete System

The complete algorithm, MC, is the instantiation of each component in Figure 1
with fail-transformed CN and VN algorithms. Formally, it is the parallel composi-
tion of the following TIOAs: (a) RW , (b) VW , (c) VBcast , (d) Fail(V BDelayp‖CNp),
one for each p ∈ P , and (e) Fail(V BDelayu‖V Nu). Recall that Fail(A) denotes
the fail-transformed version of TIOA A.

Round length. Given the maximum Euclidean distance, r, between points in
neighboring regions, it can take up to r

vmax
time for a client to reach its target.

Also, after the client arrives in the region it was assigned to, it could find the local
VN has failed. Let dr be the time it takes a VN to startup, once a new node enters
the region. To ensure a round is long enough for a client node to send the cn-update,
allow VN s to exchange information, allow clients to receive a target-update mes-
sage and arrive at new assigned target locations, and be sure virtual nodes are alive
in their region before a new round begins, we require that δ, the CN parameter,
satisfy δ > 2e+ 3d+ 2ε+ r/vmax + dr.

6. CORRECTNESS OF ALGORITHM

In this section, we show that starting from an initial state the system described
in Section 5.2, satisfies the requirements specified in Section 5.1. In the following
section we show self-stabilization. The proofs of the results in this section parallel
those presented in [Lynch et al. 2005], albeit the semantics of the Virtual Layers
used here is different. Here we describe the key ideas; some of the detailed proofs
appear in the Appendix.

We define round t as the interval of time [δ(t−1), δ ·t). That is, round t begins at
time δ(t− 1) and is completed by time δ · t. We say CN p, p ∈ P , is active in round
t if node p is not failed throughout round t. A VN u, u ∈ U , is active in round t if
there is some active CN p such that region(xp) = u for the duration of rounds t− 1
and t. Thus, by definition, none of the VN s is active in the first round. We also
define the following notation:

- In(t) ⊆ U is the subset of VN ids that are is active in round t and qu 6= 0;
- Out(t) ⊆ U is the subset of VN s that are active in round t and qu = 0;
- C(t) ⊆ P is the subset of active CN s at round t;
- Cin(t) ⊆ P is the set of active CN s located in regions with id in In(t) at the

beginning of round t;
- Cout(t) ⊆ P is subset of active CN s located in regions with id in Out(t) at the

beginning of round t.

For every pair of regions u,w and for every round t, we define y(w, t)u to be
the value of V (w)u (i.e., the number of clients u believes are available in region w)
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immediately prior to VN u performing a vcastu in round t, i.e., at time e+ 2d+ 2ε
after the beginning of round t. If there are no new client failures or recoveries
in round t, then for every pair of regions u,w ∈ nbrs+(v), we can conclude that
y(v, t)u = y(v, t)w, which we denote simply as y(v, t). We define ρ3

∆= q2
max

(1−ρ2)σ . The
rate ρ3 effects the rate of convergence, and will be used in the analysis. Notice that
ρ3 > 1. Notice that for any v, w ∈ nbrs(u) ∪ {u}, in the absence of failures and
recoveries of CN s in round t, yv,t = yw,t; we write this simply as yh(t).

6.1 Approximately Proportional Distribution

For the rest of this section we fix a particular round number t0 and assume that,
for all p ∈ P , no failp or recoverp events occur at or after round t0. The first lemma
states some basic facts about the assign function.

Lemma 6.1. In every round t ≥ t0: (1) If y(u, t) ≥ k for some u ∈ U , then
y(u, t+ 1) ≥ k; (2) In(t) ⊆ In(t+ 1); (3) Out(t) ⊆ Out(t+ 1).

Proof. We fix round t ≥ t0.

(1) From line 4 of the assign function (Figure 4) it is clear that VN u, u ∈ U ,
reassigns some of its CN s in round t only if y(u, t) > k. And if a CN is not
reassigned and does not fail, it remains active in the same region.

(2) For any VN u, u ∈ In(t), if y(u, t) < k then VN u does not reassign CN s,
and y(u, t + 1) = y(u, t). Otherwise, from line 8 of Figure 4 it follows that
y(u, t+ 1) ≥ k. In both cases u ∈ In(t+ 1).

(3) For any VN u, u ∈ Out(t), if y(u, t) < k then VN u does not reassign CN s,
and y(u, t + 1) = y(u, t). Otherwise, from line 14 and line 17 of Figure 4 it
follows that y(u, t+ 1) ≥ k. In both cases u ∈ Out(t+ 1).

We now identify a round t1 ≥ t0 after which the set of regions In(t) and Out(t)
remain fixed.

Lemma 6.2. There exists a round t1 ≥ t0 such that for every round t ∈ [t1, t1 +
(1 + ρ3)m2n2]: (1) In(t) = In(t1); (2) Out(t) = Out(t1); (3) Cin(t) ⊆ Cin(t + 1);
and (4) Cout(t+ 1) ⊆ Cout(t).

Proof. By Lemma 6.1, Part 2, we know that the set In(t) ⊆ U is non-decreasing
as t increases. From Part 3, we know that set Out(t) ⊆ U is non-decreasing as t
increase. Since U is finite, we conclude from this that there is some round t1 after
which no new regions u ∈ U are added to either In(t) or Out(t). Thus we have
satisfied Parts 1 and 2. Notice that this occurs no later than round t0 + 2m2 · (1 +
ρ3)m2n2.

For Part 3, consider a client CN p, p ∈ Cin(t), that is currently assigned in round
t to VN u, u ∈ In(t). From lines 5–9 of Figure 4 we see that CN p is assigned to
some VNw, w ∈ nbrs+(u) where qw 6= 0. If VNw is inactive in round t + 1, then
client CN p remains in VNw until it becomes active, resulting in VNw being added
to In(t), thus contradicting the fact that for every round t′ ≥ t1, In(t′) = In(t1).
We conclude that VNw is active in round t, and hence round t+ 1, from which the
claim follows.
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For Part 4, notice that since there are no failures and recoveries of CN s, C(t) =
C(t+ 1). By definition, Cin(t) ∪ Cout(t) = C(t), Cin(t) ∩ Cout(t) = ∅, and Cin(t+
1) ∪ Cout(t + 1) = C(t + 1), Cin(t + 1) ∩ Cout(t + 1) = ∅. The result follows from
Part (3).

Fix t1 for the rest of this section such that it satisfies Lemma 6.2. The next lemma
states that eventually, regions bordering on the curve stop assigning clients to
regions that are on the curve. That is, assume that u is a region where qu = 0, but
that u has a neighbor v where qv 6= 0; then, eventually, from some round onwards,
u never again assigns clients to v.

Lemma 6.3. There exists some round t2 ∈ [t1, t1 + (1 + ρ3)m2n2] such that for
every round t ∈ [t2, t2 + (1 + ρ3)m2n]: if u ∈ Out(t) and v ∈ In(t) and if u and v
are neighboring regions, then u does not assign any clients to v in round t.

Proof. Notice that if u assigns a client to v, then Cout decreases by one. Dur-
ing the interval [t1, t1 + (1 + ρ3)m2n2], we know that Cout is non-increasing by
Lemma 6.2. Thus, eventually, there is some round t2 after which either Cout = ∅ or
after which no further clients are assigned from a region Out(·) to a region In(·).
Since there are at most n clients, we can conclude that this occurs at latest by
round t1 + n · [(1 + ρ3)m2n].

Fix t2 for the rest of this section such that it satisfies Lemma 6.3. Lemma 6.2
implies that in every round t ≥ t1, In(t) = In(t1) and Out(t) = Out(t1); we denote
these simply as In and Out . The next lemma states a key property of the assign
function after round t1. For a round t ≥ t1, consider some VN u, u ∈ Out(t), and
assume that VNw is the neighbor of VN u assigned the most clients in round t.
Then we can conclude that VN u is assigned no more clients in round t + 1 than
VNw is assigned in round t. A similar claim holds for regions in In(t), but in this
case with respect to the density of clients with respect to the quantized length of
the curve. The proof of this lemma (see the Appendix) is based on careful analysis
of the behavior of the assign function.

Lemma 6.4. In every round t ∈ [t2, t2+(1+ρ3)m2n], for u, v ∈ U and u ∈ nbrs(v):

(1 ) If u, v ∈ Out(t) and y(v, t) = maxw∈nbrs(u)∩Out(t) y(w, t) and y(u, t) < y(v, t),
then y(u, t+ 1) < y(v, t).

(2 ) If u, v ∈ In(t) and y(v, t)/qv = maxw∈nbrs(u)∩In(t) [y(w, t)/qw] and y(u, t)/qu <
y(v, t)/qv, then:

y(u, t+ 1)
qu

≤ y(v, t)
qv

− (1− ρ2)
σ

q2
max

.

The next lemma states that there exists a round Tout such that in every round
t ≥ Tout, the set of CN s assigned to region u ∈ Out(t) does not change.

Lemma 6.5. There exists a round Tout ∈ [t2, t2 + m2n such that in any round
t ≥ Tout, the set of CN s assigned to VN u, u ∈ Out(t), is unchanged.

Proof. First, we show that there exists some round Tout such that the aggregate
number of CN s assigned to VN u remains the same in both Tout and Tout + 1 for
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all u ∈ Out(t2). We then show that the actual assignment of individual clients
remains the same in Tout and Tout + 1.

We consider a vector E(t) that represents the distribution of clients among regions
in Out(t). That is, the first element in E(t) represents the largest number of clients
in any region; the second element in E(t) represents the second largest number of
clients in any region; and so forth. We then argue that, compared lexicographically,
E(t + 1) ≤ E(t). Since the elements in E(t) are integers, we conclude from this
that eventually the distribution of clients becomes stables and ceases to change.

We proceed to define E(t) as follows for t ≥ t2. Let Nout = |Out |. Let Π(t) be a
permutation of Out that orders the regions by the number of assigned clients, i.e.,
if u precedes v in Π(t), then y(u, t) ≤ y(v, t). When we say that some region u has
index k, we mean that Π(t)k = u. Define E(t) as follows:

E(t) = 〈y(Π(t)Nout , t), y(Π(t)Nout−1, t), . . . , y(Π(t)1, t)〉 .

We use the notation E(t)` to refer to the `th component of E(t) counting from the
right, i.e., it refers to Π(t)`. Any two vectors E(t) and E(t + 1) can be compared
lexicographically, examining each of the elements in turn from left to right, i.e.,
largest to smallest.

We now consider some round t ∈ [t2, t2 +m2n], and show that E(t) ≥ E(t+ 1).
Consider the case where E(t) 6= E(t + 1), and let u be the region with maximum
index that assigns clients to another region. Let k be the index of region u.

First, we argue that for every region v with index ≤ k, we can conclude that
y(v, t + 1) < y(u, t). Consider some particular region v. Notice that v has no
neighbors in Out that are assigned more than y(u, t) clients in round t; otherwise,
such a neighbor would assign clients to v, contradicting our choice of u. Thus,
by Lemma 6.4, Part 1, we can conclude that y(v, t + 1) < y(u, t) (as long as
t ∈ [t2, t2 + 2m2n], which we will see to be sufficient).

Since this implies that there are at least k regions assigned fewer than y(u, t) =
E(t)k clients in round t+1, we can conclude that E(t+1)k < E(t)k. In order to show
that E(t+ 1) < E(t), it remains to show that for every k′ > k, E(t)k′ = E(t+ 1)k′ .

Consider some region v with index > k. By our choice of u, it is clear that v is not
assigned any clients by a region with index > k. It is also easy to see that v is not
assigned any clients by a region w with index ≤ k, since y(v, t) ≥ y(u, t) ≥ y(w, t);
as per line 12, region w does not assign any clients to a region with ≥ y(w, t) clients.
Thus no new clients are assigned to region v. Moreover, by choice of u, region v
assigns none of its clients elsewhere. Finally, since t ≥ t0, none of the clients fail.
Thus, y(v, t) = y(v, t+ 1).

Since the preceding logic holds for all Nout − k + 1 regions with index > k, and
all have more than y(u, t) > y(u, t + 1) clients, we conclude that for every k′ > k,
E(t)k′ = E(t+ 1)k′ , implying that E(t) > E(t+ 1), as desired.

Since E(·) is non-increasing, and since it is bounded from below by the zero
vector, we conclude that eventually there is a round Tout such that for all t ≥ Tout,
E(t) = E(t+ 1).

Now suppose the set of clients assigned to region u changes in some round t ≥
Tout. The only way the set of clients assigned to region u could change, without
changing y(u, t) and the set Cout, is if there existed a cyclic sequence of VN s with
ids in Out in which each VN gives up c > 0 CN s to its successor VN in the
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sequence, and receives c CN s from its predecessor. However, such a cycle of VN
s cannot exist because the lower set imposes a strict partial ordering on the VN s.

Finally, we observe that if E(t) = E(t + 1) for any t, then the assignment of
clients does not change from that point onwards: since all the clients remained in
the same regions in E(t) and E(t + 1), we can conclude that the assign function
produced the same assignment in E(t + 1) as in E(t). Since the vector E(·) has
at most m2 elements, each with at most n values, we can conclude that Tout is at
most m2n rounds after t2.

For the rest of the section we fix Tout to be the first round after t0, at which the
property stated by Lemma 6.5 holds. Lemma 6.5, together with Lemmas 6.1, 6.2,
and 6.3, imply that in every round t ≥ Tout, CIn(t) = CIn(t1) and COut(t) =
COut(t1); we denote these simply as CIn and COut . The next lemma states a
property similar to that of Lemma 6.5 for VN u, u ∈ In, and the argument is
similar to the proof of Lemma 6.5, and uses Part (2) of Lemma 6.4.

Lemma 6.6. There exists a round Tstab ∈ [Tout, Tout + ρ3m
2n] such that in every

round t ≥ Tstab, the set of CN s assigned to VN u, u ∈ In, is unchanged.

Proof. We proceed to define E(t) as follows for t ≥ Tout. Let Nin = |In|. Let
Π(t) be a permutation of In that orders the regions by the density of assigned
clients, i.e., if u precedes v in Π(t), then y(u, t)/qu ≤ y(v, t)/qv. When we say that
some region u has index k, we mean that Π(t)k = u. Define E(t) as follows:

E(t) =

〈
y(Π(t)Nin , t)
qΠ(t)Nin

,
y(Π(t)Nin−1, t)
qΠ(t)Nin−1

, . . . ,
y(Π(t)1, t)
qΠ(t)1

〉
.

We use the notation E(t)` to refer to the `th component of E(t) counting from the
right, i.e., it refers to Π(t)`. Any two vectors E(t) and E(t + 1) can be compared
lexicographically, examining each of the elements in turn from left to right, i.e.,
largest to smallest.

We now consider some round t ≥ Tout, and show that E(t) ≥ E(t+ 1). Consider
the case where E(t) 6= E(t+ 1), and let u be the region with maximum index that
assigns clients to another region. Let k be the index of region u.

First, we argue that for every region v with index ≤ k, we can conclude that
y(v, t+ 1)/qv ≤ y(u, t)/qu− ζ for some constant ζ. Consider some particular region
v. Notice that v has no neighbors in In that have density greater than y(u, t)/qu
in round t; otherwise, such a neighbor would assign clients to v, contradicting our
choice of u. Thus, by Lemma 6.4, Part 2, we can conclude that y(v, t + 1)/qv ≤
y(u, t)/qu − ζ where ζ = (1− ρ2) σ

q2
max

(as long as t ∈ [t2, t2 + (1 + ρ3)m2n], which
we will see to be sufficient).

Since this implies that there are at least k regions assigned fewer than y(u, t) =
E(t)k clients in round t + 1, we can conclude that E(t + 1)k ≤ E(t)k − ζ. In
order to show that E(t + 1) < E(t), it remains to show that for every k′ > k,
E(t)k′ = E(t+ 1)k′ .

Consider some region v with index > k. By our choice of u, it is clear that v is not
assigned any clients by a region with index > k. It is also easy to see that v is not
assigned any clients by a region w with index ≤ k, since y(v, t)/qv ≥ y(u, t)/qu ≥
y(w, t)/qw; as per line 6, region w does not assign any clients to a region with a
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density ≥ y(w, t)/qw. Thus no new clients are assigned to region v. Moreover, by
choice of u, region v assigns none of its clients elsewhere. Finally, since t ≥ t0, none
of the clients fail. Thus, y(v, t)/qv = y(v, t+ 1)/qv.

Since the preceding logic holds for all Nin − k + 1 regions with index > k, and
all have more than y(u, t)/qu clients, we conclude that for every k′ > k, E(t)k′ =
E(t+ 1)k′ , implying that E(t) > E(t+ 1), as desired.

Since E(·) is non-increasing, and since it decreases by at least a constant ζ in
every round in which it decreases, and since it is bounded from below by the zero
vector, we conclude that eventually there is a round Tstab such that for all t ≥ Tstab,
E(t) = E(t+ 1).

Now suppose the set of clients assigned to region u changes in some round t ≥
Tstab. The only way the set of clients assigned to region u could change, without
changing y(u, t)/qu and the set Cin, is if there existed a cyclic sequence of VN s
with ids in In in which each VN gives up c > 0 CN s to its successor VN in
the sequence, and receives c CN s from its predecessor. However, such a cycle of
VN s cannot exist because the lower set imposes a strict partial ordering on the
VN s.

Finally, we observe that if E(t) = E(t + 1) for any t, then the assignment of
clients does not change from that point onwards: since all the clients remained in
the same regions in E(t) and E(t + 1), we can conclude that the assign function
produced the same assignment in E(t+ 1) as in E(t). Since the vector E(·) has at
most m2 elements, each with at most n q2

max

(1−ρ)σ values, we can conclude that Tstab is
at most ρ3m

2n rounds after Tout, and hence at most (1 + ρ3)m2n rounds after t2,
as needed.

For the rest of the section we fix Tstab to be the first round after Tout, at which
the property stated by Lemma 6.6 holds. The next lemma states that the number
of clients assigned to each VN u, u ∈ In, in the stable assignment after Tstab is
proportional to qu within a constant additive term. The proof follows by induction
on the number of hops from between any pair of VN s.

Lemma 6.7. In every round t ≥ Tstab, for u, v ∈ In(t):∣∣∣∣y(u, t)
qu

− y(v, t)
qv

∣∣∣∣ ≤ [10(2m− 1)
qminρ2

]
.

6.2 Uniform Spacing

From line 28 of Figure 4, it follows that by the beginning of round Tstab + 2, all
CN s in Cin are located on the curve Γ. Thus, the algorithm satisfies our first goal.
The next lemma states that the locations of the CN s in each region u, u ∈ In, are
uniformly spaced on Γu in the limit, and it is proved by analyzing the behavior of
calctarget as a discrete time dynamical system.

Lemma 6.8. Consider a sequence of rounds t1 = Tstab, . . . , tn. As n → ∞, the
locations of CN s in u, u ∈ In, are uniformly spaced on Γu.

Proof. From Lemma 6.6 we know that the set of CN s assigned to each VN u,
u ∈ In, remains unchanged. Then, at the beginning of round t2, every CN assigned
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to VN u is located in region u and is on the curve Γu. Assume w.l.o.g. that VN u

is assigned at least two CN s. Then, at the beginning of round t3, one CN is
positioned at each endpoint of Γu, namely at Γu(inf(Pu)) and Γu(sup(Pu)). From
lines 30–31 of Figure 4, we see that the target points for these endpoint CN s are
not changed in successive rounds.

Let sequ(t2) = 〈p0, i(0)〉, . . . , 〈pn+1, i(n+1)〉, where yu = n+ 2, p0 = inf(Pu), and
pn+1 = sup(Pu). From line 34 of Figure 4, for any i, 1 < i < n, the ith element in
sequ at round tk, k > 2, is given by:

pi(tk+1) = pi(tk) + ρ1

(
pi−1(tk) + pi+1(tk)

2
− pi(tk)

)
.

For the endpoints, pi(tk+1) = pi(tk). Let the ith uniformly spaced point on the
curve Γu between the two endpoints be xi. The parameter value p̄i corresponding
to xi is given by p̄i = p0 + i

n+1 (pn+1 − p0). In what follows, we show that as
n→∞, the pi converge to p̄i for every i, 0 < i < n+ 1, that is, the location of the
non-endpoint CN s are uniformly spaced on Γu. The rest of this proof is exactly
the same as the proof of Theorem 3 in [Goldenberg et al. 2004] in which the authors
prove convergence of points on a straight line with uniform spacing.

Observe that p̄i = 1
2 (p̄i−1 + p̄i+1) = (1 − ρ1)p̄i + ρ1

2 (p̄i−1 + p̄i+1). Define error
at step k, k > 2, as ei(k) = pi(tk) − p̄i. Therefore, for each i, 2 ≤ i ≤ n − 1,
ei(k + 1) = pi(tk+1) − p̄i = (1 − ρ1)ei(k) + ρ1

2 (ei−1(k) + ei+1(k)), e1(k + 1) =
(1 − ρ1)e1(k) + ρ1

2 e2(k), and en(k + 1) = (1 − ρ1)en(k) + ρ1
2 en−1(k). The matrix

for this can be written as: e(k + 1) = Te(k), where T is an n× n matrix:
1− ρ1 ρ1/2 0 0 . . . 0
ρ1/2 1− ρ1 ρ1/2 0 . . . 0
· · · · · ·
0 . . . 0 ρ1/2 1− ρ1 ρ1/2
0 . . . 0 0 1− ρ1 ρ1/2

 .
Using symmetry of T , ρ1 ≤ 1, and some standard theorems from control theory, it
follows that the largest eigenvalue of T is less than 1. This implies limk→∞T

k = 0,
which implies limk→∞e(k) = 0.

Thus we conclude by summarizing the results in this section:

Theorem 6.9. If there are no fail or restart actions for robots at or after some
round t0, then within a finite number of rounds after t0:

(1 ) The set of CN s assigned to each VN u, u ∈ U , becomes fixed, and the size of
the set is proportional to the quantized length qu, within an a constant additive
term 10(2m−1)

qminρ2
.

(2 ) All client nodes in a region u ∈ U for which qu 6= 0 are located on Γu and
uniformly spaced on Γu in the limit.

7. SELF-STABILIZATION OF ALGORITHM

In this section we show that the VSA-based motion coordination scheme is self-
stabilizing. Specifically, we show that when the VSA and client components in the
VSA layer start out in some arbitrary state owing to failures and restarts, they
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eventually return to a reachable state. Thus, the traces of V Layer[MC] running
with some reachable state of V bcast‖RW‖VW , eventually, becomes indistinguish-
able from a reachable trace of V Layer[MC]. Recall Definition 4.1 and note that
the virtual layer algorithm alg is instantiated here with the motion coordination
algorithm MC of Section 5.

We first show that our motion coordination algorithm V LNodes[MC] is self-
stabilizing to some set of legal states LMC . Then, we show that these legal states
correspond to reachable states of V Layer[MC]; hence, the traces of our motion co-
ordination algorithm, where clients and VSAs start in an arbitrary state, eventually
look like reachable traces of the correct motion coordination algorithm.

An emulation is a kind of implementation relationship between two sets of TIOAs.
A VSA layer emulation algorithm is a mapping that takes a VSA layer algorithm,
alg, and produces TIOA programs for an underlying system consisting of emulator
physical nodes (corresponding to clients), such that when those programs are run
with external oracles such as RW the resulting system has traces that are closely
related to the traces of a VSA layer. In particular, the traces restricted to non-
broadcast actions at the client nodes are the same.

In [Dolev et al. 2005a; Nolte and Lynch 2007a] we have shown how to implement
a self-stabilizing VSA Layer. In particular, that implementation guarantees that (1)
each algorithm alg ∈ V Algs stabilizes in some tV stab time to traces of executions
of U(V LNodes[alg])‖R(RW‖VW‖V bcast), and (2) for any u ∈ U , if there exists
a client that has been in region u and alive for dr time and no alive clients in the
region failed or left the region in that time, then VSA Vu is not failed. Thus, if
the coordination algorithm MC is such that V LNodes[MC] self-stabilizes in some
time t to LMC relative to R(RW‖VW‖V bcast), then we can conclude that physical
node traces of the emulation algorithm on MC stabilize in time tV stab + t to client
traces of executions of the VSA layer started in legal set LMC and that satisfy the
above failure-related properties.

7.1 Legal Sets

First we describe two legal sets for V Layer[MC], L1
MC and LMC . The first legal

set L1
MC describes a set of states that result after the first GPSupdate occurs at

each client node and the first timer occurs at each virtual node.

Definition 7.1. A state x of V Layer[MC] is in L1
MC iff the following hold:

(1 ) xdXV bcast‖RW‖VW ∈ ReachV bcast‖RW‖VW .
(2 ) ∀u ∈ U : ¬failedu : clocku ∈ {RW.now,⊥} ∧ (Mu 6= ∅ ⇒ clocku mod δ ∈

(0, e+ 2d+ 2ε]).
(3 ) ∀p ∈ P : ¬failedp ⇒ vp ∈ {RW.vel(p)/vmax,⊥}.
(4 ) ∀p ∈ P : ¬failedp ∧ xp 6= ⊥:

(a) xp = RW.loc(p) ∧ clockp = RW.now.
(b) x∗p ∈ {xp,⊥} ∨ ||x∗p − xp|| < vmax(δdclockp/δe − clockp − dr).
(c) V bcast.reg(p) = region(xp)∨ clock mod δ ∈ (e+2d+2ε, δ−dr + εsample).

Part (1) requires that x restricted to the state of V bcast‖RW‖VW to be a
reachable state of V bcast‖RW‖VW . Part (2) states that nonfailed VSAs have
clocks that are either equal to real-time or ⊥, and have nonempty M only after the
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beginning of a round and up to e+ 2d+ 2ε time into a round. Part (3) states that
nonfailed clients have velocity vectors that are equal either to ⊥ or equal to the
client’s velocity vector in RW , scaled down by vmax. Finally, Part (4) states that
nonfailed clients with non-⊥ positions have: (4a) positions equal to their actual
location and local clocks equal to the real-time, (4b) targets that are one of ⊥, the
location, or a point reachable from the current location within dr before the end
of the round, and (4c) V bcast last region updates that match the current region
or the time is within a certain time window in a round. It is routine to check that
L1
MC is indeed a legal set for VLayer[MC].
Now we describe the main legal set LMC for our algorithm. First we describe a

set of reset states, states corresponding to states of V Layer[MC] at the start of a
round. Then, LMC is defined as the set of states reachable from these reset states.

Definition 7.2. A state x of V Layer[MC] is in ResetMC iff:

(1 ) x ∈ L1
MC .

(2 ) ∀p ∈ P : ¬failedp ⇒
[to send−p = to send+

p = λ ∧ (xp = ⊥ ∨ (x∗p 6= ⊥ ∧ vp = 0))].
(3 ) ∀u ∈ U : ¬failedu ⇒ to sendu = λ.
(4 ) ∀〈m,u, t, P ′〉 ∈ vbcastq : P ′ = ∅.
(5 ) RW.now mod δ = 0 ∧ ∀p ∈ P : ∀〈l, t〉 ∈ RW.updates(p) : t < RW.now.

LMC is the set of reachable states of Start(V Layer[MC], ResetMC).

ResetMC consists of states in which (1) in L1
MC , (2) nonfailed clients have empty

queues in its V BDelay and either has a position variable equal to ⊥ or has both
a non-⊥ target and 0 velocity, (3) nonfailed VSA’s have an empty queue in its
V BDelay, (4) there are no still-processing messages in V bcast, and (5) the time
is the starting time for a round and that no GPSupdates have yet occurred at this
time. Once again, it is routine to check that that LMC is a legal set for VLayer[MC].

7.2 Stabilization to LMC

First, we state following the stabilization result. To see this, consider the moment
after each client has received a GPSupdate and each virtual node has received a
timer, which takes at most εsample time.

Lemma 7.3. V LNodes[MC] is self-stabilizing to L1
MC in time t > εsample relative

to the automaton R(V bcast‖RW‖VW ).

Next we show that starting from a state in L1
MC , we eventually arrive at a state

in ResetMC , and hence, a state in LMC .

Lemma 7.4. Executions of V Layer[MC] started in states in L1
MC stabilize in time

δ + d+ e to executions started in states in LMC .

Proof. It suffices to show that for any length-δ+ d+ e prefix α of an execution
fragment of V Layer[MC] starting from L1

MC , α.lstate ∈ LMC . By the definition
of LMC , it suffices to show that there is at least one state in ResetMC that occurs
in α.

Let t0 be equal to α.fstate(RW.now), the time of the first state in α. We consider
all the “bad” messages that are about to be delivered after α.fstate. (1) There
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may be messages in V bcast.vbcastq that can take up to d time to be dropped
or delivered at each process. (2) There may be messages in to send− or to send+

queues at clients that can submitted to V bcast and take up to d time to be dropped
or delivered at each process. And (3), there may be messages in to send queues at
VSAs that can take up to e time to be submitted to V bcast and an additional d
time to be dropped or delivered at each process. We know that all “bad” messages
will be processed (dropped or delivered at each process) by some state x in α such
that x(RW.now) = t1 = t0 + d+ e.

Consider the state x∗ at the start of the first round after state x. Since x∗(RW.now) =
δ(bt1/δc+1), we have that x∗(RW.now)−t0 = x∗(RW.now)−t1 +e+d ≤ δ+e+d.
The only thing remaining to show is that x∗ is in ResetMC . It’s obvious that x∗

satisfies (1) and (5) of Definition 7.2. Code inspection tells us that for any state in
L1
MC , and hence, for any state in α, any new vcast transmissions of messages will

fall into one of three categories:

(1) Transmission of cn-update by a client at a time t such that t mod δ = 0. Such
a message is delivered by time t+ d.

(2) Transmission of vn-update by a virtual node at a time t such that t mod δ =
d+ ε. Such a message is delivered by time t+ d+ e.

(3) Transmission of target-update by a virtual node at a time t such that t mod δ =
2d+ e+ 2ε. Such a message is delivered by time t+ d+ e.

In each of these cases, any vcast transmission is processed before the start of the
next round. Thus, x∗ satisfies properties (2), (3), and (4) of Definition 7.2. To
check (2), we just need to verify that for all nonfailed clients if xp is not ⊥ then x∗p
is not ⊥ and vp is 0. It suffices to show that at least one GPSupdate occurs at each
client between state x and state x∗. (Such an update at a nonfailed client would
update x∗p to be xp for clients with x∗p = ⊥ or x∗p too far away from xp to arrive
at x∗p before x∗. Any subsequent receipts of target-update messages will only result
in an update to x∗p if the client will be able to arrive at x∗p before x∗. This implies
that vp can only be ⊥ or 0, and since no GPSupdates could have occurred at the
same time as x∗, stopping conditions ensure that vp 6= ⊥.)

To see that at least one GPSupdate occurs at each client between state x′ and
state x∗, we need that x∗(RW.now)−x′(RW.now) > εsample. Since x∗(RW.now)−
x′(RW.now) = δ − (x′(RW.now) mod δ) ≥ δ − e− 2d− 2ε, δ > e+ 2d+ 2ε+ dr,
and dr > εsample it follows that δ > e+ 2d+ 2ε+ εsample.

Combining our stabilization results we conclude that V LNodes[MC] started in
an arbitrary state and run with R(V bcast‖RW‖VW ) stabilizes to LMC in time
δ + d + e + εsample. From transitivity of stabilization and 7.4, the next result
follows.

Theorem 7.5. V LNodes[MC] is self-stabilizing to LMC in time δ+d+e+εsample
relative to R(V bcast‖RW‖VW ).

7.3 Relationship between LMC and reachable states

In the previous section we showed that V LNodes[MC] is self-stabilizing to LMC

relative to R(V bcast‖RW‖VW ). In order to conclude anything about the traces of
V Layer[MC] after stabilization, however, we need to show that traces of V Layer[MC]
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starting in a state in LMC are reachable traces of V Layer[MC]. This is accom-
plished by first defining a simulation relation RMC on the states of V Layer[MC],
and then proving that for each state x ∈ LMC , there exists a state y ∈ ReachV Layer[MC]

such that x and y are related by RMC . This implies that the trace of any execu-
tion fragment starting with x is the trace of an execution fragment starting with y,
which is a reachable trace of V Layer[MC]. We define the candidate relation RMC
and prove that it is indeed a simulation relation.

Definition 7.6. RMC is a relation between states of V Layer[MC] such for any
states x and y of V Layer[MC], xRMCy iff the following conditions are satisfied:

(1 ) x(RW.now) = y(RW.now) ∧ x(RW.loc) = y(RW.loc).
(2 ) For all p ∈ P , y(vel(p)) ∈ {x(vel(p)),⊥} ∧
{t ∈ R≥0 | ∃l ∈ R : 〈l, t〉 ∈ x(RW.updates(p))}
= {t ∈ R≥0 | ∃l ∈ R : 〈l, t〉 ∈ y(RW.updates(p))}.

(3 ) x(VW ) = y(VW ) ∧ x(V bcast.now) = y(V bcast.now).
(4 ) x(V bcast.reg) = y(V bcast.reg) ∧
{〈m,u, t, P ′〉 ∈ x(V bcast.vbcastq) | P ′ 6= ∅}
= {〈m,u, t, P ′〉 ∈ y(V bcast.vbcastq) | P ′ 6= ∅}.

(5 ) For all i ∈ P ∪ U , x(failedi) = y(failedi).
(6 ) For all u ∈ U : ¬x(failedu):

(a) x(clocku) = y(clocku) ∧ x(Mu) = y(Mu)
∧ [x(Mu) 6= ∅ ⇒ ∀v ∈ nbrs+(u) : x(Vu(v)) = y(Vu(v))].

(b) |x(to sendu)| = |y(to sendu)|∧∀i ∈ [1, |x(to sendu)|] : ∀〈m, t〉 = x(to sendu[i]) :
y(to sendu[i]) = 〈m, t+ y(rtimeru)− x(rtimeru)〉.

(7 ) For all p ∈ P : ¬x(failedp):
(a) x(CNp) = y(CNp) ∨ [x(xp) = y(xp) = ⊥ ∧ x(vp) = y(vp)].
(b) x(V BDelayp) = y(V BDelayp).
(c) x(to send−p ) 6= λ⇒ x(V bcast.oldreg(p)) = y(V bcast.oldreg(p)).

We describe the various conditions two related states x and y must satisfy.
Part (1) requires that they share the same real-time and locations for CN s. Part (2)
requires that for each client, the velocity at RW is equal or the velocity in y is ⊥,
and GPSupdate records in the two states are for the same times. Part (3) requires
that VW ’s state and V bcast.now are the same in x and y. Part (4) requires that
the unprocessed message tuples are the same and that the last recorded regions in
V bcast for clients are the same in both states. Part (5) says that failure status of
each CN and VN is the same in both states. Part (6a) requires that for a nonfailed
VSA, local time and the set M are equal in x and y, and further, if M is nonempty
then V is equal for local regions in both states. Part (6b) says that the to send
queues for a nonfailed VSA are the same, except with the timestamps for messages
in y adjusted up by the difference between rtimeru in state y and x. Part (7a)
requires that the algorithm state of a nonfailed CN is either the same, or both
states share the same local v and have locations equal to ⊥. Part (7b) says that the
V BDelay state is the same for each nonfailed CN in x and y. Finally, Part (7b)
requires that if the to send−p buffer is nonempty in state x for a nonfailed client,
then V bcast.oldreg(p) is the same in both states.
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The proof of the following lemma is also routine and it breaks-down into a large
case analysis. Say that x and y are states in QV Layer[MC] such that xRMCy.
For any action or closed trajectory σ of V Layer[MC], suppose x′ is the state
reached from x, then, we have to show there exists a closed execution fragment β
of V Layer[MC] with β.fstate = y, trace(β) = trace(σ), and x′RMCβ.lstate.

Lemma 7.7. RMC is a simulation relation for V Layer[MC].

To show that each state in LMC is related to a reachable state of V Layer[MC],
it is enough to show that each state in ResetMC is related to a reachable state of
V Layer[MC]. The proof proceeds by providing a construction of an execution of
V Layer[MC] for each state in LMC .

Lemma 7.8. For each state x ∈ ResetMC , there exists a state y ∈ ReachV Layer[MC]

such that xRMCy.

Proof. Let x be a state in ResetMC . We construct an execution α based on
state x such that xRMCα.lstate. The construction of α is in three phases. Each
phase is constructed by modifying the execution constructed in the prior phase to
produce a new valid execution of VLayer[MC]. After Phase 1, the final state of
the constructed execution shares client locations and real-time values with state
x. Phase 2 adds client restarts and velocity actions for nonfailed clients in state x,
making the final state of clients consistent with state x. Phase 3 adds VSA restart
actions to make the final state of VSAs consistent with state x.

1. Let α1 be an execution of VLayer[MC] where each client and VSA starts out
failed, no restart or fail events occur, and α1.ltime = x(RW.now). For each failed
p ∈ P , there exists some history of movement that never violates a maximum
speed of vmax, is consistent with stored updates for p, and that lead to the
current location of p. We move each failed p in just such a way and add a
GPSupdate(〈l, t〉)p at time t for each 〈l, t〉∈ x(RW.updates(p)).
For each nonfailed p ∈ P and each state in α1, we set RW.loc(p) = x(RW.loc(p))
(meaning the client does not move). For each nonfailed p ∈ P , add a GPSupdate(x(RW.loc(p)), t)p
action for each t such that ∃〈l, t〉 ∈ x(RW.updates(p)).
For each u ∈ U , if x(last(u)) 6= ⊥ then add a timer(t)u output at time t in α1 for
each t in the set {t∗ | t∗ = x(last(u))∨ (t∗ < x(last(u))∧ t∗ mod εsample = 0)}.

Validity. It is obvious that the resulting execution is a valid execution of VLayer[MC].

Relation between x and α1.lstate. They satisfy (1)-(4) of Definition 7.6.
2. In order to construct α2, we modify α1 in the following way for each p ∈ P such

that ¬x(failedp): If x(xp) 6= ⊥, we add a restartp event immediately before and
a velocity(0)p immediately after the last GPSupdatep event in α1. If x(xp) = ⊥
and x(vp) = 0, then we add a restartp and velocity(0)p event immediately after
the last GPSupdatep event in α1. If x(xp) = ⊥ and x(vp) = ⊥, then we add a
restartp event at time x(RW.now) in α1.

Validity. Since restart actions are inputs they are always enabled, and a velocityp
action is always enabled at client CNp. Also, there can be no trajectory viola-
tions since any alive clients receive their first GPSupdate within εsample time of
x(RW.now) in α2, meaning that since δ is larger than εsample and x(RW.now) is
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a round boundary, there is no time before x(RW.now) in α2 where a cn-update
should have been sent. It is obvious that this is a valid execution of VLayer[MC].

Relation betweem x and α2.lstate. They satisfy (1)-(4) and (7) of Definition 7.6.
3. To construct α, we modify α2 in the following way for each u ∈ U such that
¬x(failedu): If x(clocku) = ⊥, we add a restartu event after any timeu actions.
If x(clocku) 6= ⊥, we add a restartu event immediately before the last timeu
action.

Validity. A restart action is always enabled. Also, there can be no trajectory
violations since no outputs at a VSA are enabled until its local M is nonempty.
Since M is empty, we can conclude that this is a valid execution of VLayer[MC].

Relation between x and α.lstate. xRMCα.lstate.

We conclude that α is an execution of VLayer[MC] such that if we take y =
α.lstate, then y ∈ ReachV Layer[MC] and xRMCy.

From Lemmas 7.8 and 7.7 it follows that the set of trace fragments of V Layer[MC]
corresponding to execution fragments starting from ResetMC is contained in the
set of traces of R(V Layer[MC]). Bringing our results together we arrive at the
main theorem:

Theorem 7.9. The traces of V LNodes[MC], starting in an arbitrary state and
executed with automaton R(V bcast‖RW‖VW ), stabilize in time δ+ d+ e+ εsample
to reachable traces of R(V Layer[MC]).

Thus, despite starting from an arbitrary configuration of the VSA and client com-
ponents in the VSA layer, if there are no failures or restart of client nodes (robots)
at or after some round t0, then within a finite number of rounds after t0, the clients
are located on the curve and are uniformly spaced in the limit.

8. CONCLUSION

We have described how we can use the Virtual Stationary Automaton infrastructure
to design protocols for coordinating mobile robots. In particular, we presented a
protocol by which the participating robots can be uniformly spaced on an arbitrary
curve. The VSA layer implementation and the coordination protocol are both
self-stabilizing. Thus, each robot can begin in an arbitrary state, in an arbitrary
location in the network, and the distribution of the robots will still converge to the
specified curve. The proposed coordination protocol uses only local information,
and hence, should adapt well to flocking or tracking problems where the target
formation is dynamically changing.
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A. PROOF OF CORRECTNESS

Lemma 6.4. In every round t ∈ [t2, t2 +(1+ρ3)m2n], for u, v ∈ U and u ∈ nbrs(v):

(1) If u, v ∈ Out(t) and y(v, t) = maxw∈nbrs(u)∩Out(t) y(w, t) and y(u, t) < y(v, t),
then y(u, t+ 1) < y(v, t).

(2) If u, v ∈ In(t) and y(v, t)/qv = maxw∈nbrs(u)∩In(t) [y(w, t)/qw] and y(u, t)/qu <
y(v, t)/qv, then:

y(u, t+ 1)
qu

≤ y(v, t)
qv

− (1− ρ2)
σ

q2
max

.

Proof. For Part 1, fix u, v and t, as in the statement of the lemma. Consider
some region w that is a neighbor of u and that assigns clients to u in round t+ 1.
Since qu = 0, notice that w assigns clients to u only if the conditions of lines 11–16
in Figure 4 are met. This implies that w ∈ Out(t), and hence y(w, t) ≤ y(v, t), by
assumption. We can also conclude that lowerw ≥ 1, as w assigns clients to u only
if u ∈ lowerw. Finally, from line 14 of Figure 4, we observe that the number of
clients that are assigned to u by w in round t is at most:

ρ2 [y(w, t)− y(u, t)]
2(|lowerw(t)|+ 1)

≤ ρ2 [y(v, t)− y(u, t)]
4

Since u has at most four neighbors, we conclude that it is assigned at most ρ2 [y(v, t)− y(u, t)]
clients. Since ρ2 < 1 and y(u, t) < y(v, t), this implies that:

y(u, t+ 1) ≤ y(u, t) + ρ2 [y(v, t)− y(u, t)]
≤ ρ2 · y(v, t) + (1− ρ2)y(u, t)
< ρ2 · y(v, t) + (1− ρ2)y(v, t)
< y(v, t) .

For Part 2, as in Part 1, fix u, v and t as in the lemma statement. Recall we
have assumed that y(u, t)/qu < y(v, t)/qv. We begin by showing that, due to the
manner in which the curve is quantized, y(u, t)/qu ≤ y(v, t)/qv − σ/q2

max . Since
qu is defined as dPu/σeσ, and since qv is defined as dPv/σeσ, we notice that, by
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assumption:

y(u, t)
⌈
Pv
σ

⌉
σ < y(v, t)

⌈
Pu
σ

⌉
We divide both sides by σ, and since both sides are integral, we exchange the ‘<’
with a ‘≤’:

y(u, t)
⌈
Pv
σ

⌉
≤ y(v, t)

⌈
Pu
σ

⌉
− 1

From this we conclude:
y(u, t)⌈
Pu
σ

⌉ ≤ y(v, t)⌈
Pv
σ

⌉ − σ2

quqv

Dividing everything by σ, and bounding qu and qv by qmax, we achieve the desired
calculation.

Now, consider some region w that is a neighbor of u and that assigns clients to
u in round t+ 1. First, notice that w /∈ Out(t), since by Lemma 6.3, no clients are
assigned from an Out region to an In region after round t2 (prior to t2+(1+ρ3)m2n).
Thus, w assigns clients to u only if the conditions of lines 5–10 in Figure 4 are met.
This implies that w ∈ In(t), and hence y(w, t)/qw ≤ y(v, t)/qv, by assumption. We
can also conclude that lowerw ≥ 1, as w assigns clients to u only if u ∈ lowerw.
Finally, from line 8 of Figure 4, we observe that the number of clients that are
assigned to u by w in round t is at most:

ρ2

[(
qu
qw

)
y(w, t)− y(u, t)

]
2(|lowerw(t)|+ 1)

≤
ρ2

[(
qu
qv

)
y(v, t)− y(u, t)

]
4

Since u has at most four neighbors, we conclude that it is assigned at most ρ2 [(qu/qv)y(v, t)− y(u, t)]
clients. This implies that:

y(u, t+ 1) ≤ y(u, t) + ρ2

[(
qu
qv

)
y(v, t)− y(u, t)

]
≤ ρ2

(
qu
qv

)
· y(v, t) + (1− ρ2) y(u, t)

Thus, dividing everything by qu, and recalling that y(u, t)/qu ≤ y(v, t)/qv−σ/q2
max:

y(u, t+ 1)
qu

≤ ρ2

(
y(v, t)
qv

)
+ (1− ρ2) ·

(
y(u, t)
qu

)
≤ ρ2

(
y(v, t)
qv

)
+ (1− ρ2) ·

(
y(v, t)
qv

− σ

q2
max

)
≤ y(v, t)

qv
− (1− ρ2)

σ

q2
max

Lemma A.1. In every round t ≥ Tout, |Cout(t)| = O(m3).

Proof. From Lemma 6.5, the set of CN s assigned to each VN u, u ∈ Out(t),
is unchanged in every round t ≥ Tout. This implies that in any round t ≥ Tout, the
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number of CN s assigned by VN u to any of its neighbors is 0. Therefore, from
line 17 of Figure 4, for any boundary VN v, (y(v, t) − k)/|Inv| < 1. Recall that
Inv is the (constant) set of neighbors of v with quantized curve length 6= 0. Since
|Inv| ≤ 4, y(v, t) < 4 + k.

From line 14 of Figure 4, for any non-boundary VN v, v ∈ Out(t), if v is 1-hop
away from a boundary region u, then ρ2(y(v,t)−y(u,t))

2(|lowerv(t)|+1) < 1. Since |lowerv(t)| ≤ 4,
y(v, t) ≤ 10

ρ2
+ 4 + k. Inducting on the number of hops, the maximum number of

clients assigned to a VN v, v ∈ Out(t), at ` hops from the boundary is at most
10`
ρ2

+ k + 4. Since for any `, 1 ≤ ` ≤ 2m − 1, there can be at most m VN s at
`-hop distance from the boundary, summing gives |Cout| ≤ (k + 4)(2m − 1)m +
10m2(2m−1)

ρ2
= O(m3).

Lemma 6.7 In every round t ≥ Tstab, for u, v ∈ In(t):∣∣∣∣y(u, t)
qu

− y(v, t)
qv

∣∣∣∣ ≤ [10(2m− 1)
qminρ2

]
.

Proof. Consider a pair of VN s for neighboring regions u and v, u, v ∈ In. As-
sume w.l.o.g. y(u, t) ≥ y(v, t). From line 8 of Figure 4, it follows that ρ2( qvqu y(u, t)−
y(v, t)) ≤ 2(|loweru(t)|+ 1). Since |loweru(t)| ≤ 4, |y(u,t)

qu
− y(v,t)

qv
| ≤ 10

qvρ2
≤ 10

qminρ2
.

By induction on the number of hops from 1 to 2m− 1 between any two VN s, the
result follows.
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