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Abstract

Recent advances in miniaturization and low-cost, low-
power design have led to active research in large-scale
networks of small, wireless, low-power sensors and ac-
tuators. Time synchronization is critical in sensor net-
works for diverse purposes including sensor data fusion,
coordinated actuation, and power-efficient duty cycling.
Though the clock accuracy and precision requirements
are often stricter than in traditional distributed systems,
strict energy constraints limit the resources available to
meet these goals.

We present Reference-Broadcast Synchronization, a
scheme in which nodes send reference beacons to their
neighbors using physical-layer broadcasts. A reference
broadcast does not contain an explicit timestamp; in-
stead, receivers use its arrival time as a point of reference
for comparing their clocks. In this paper, we use mea-
surements from two wireless implementations to show
that removing the sender’s nondeterminism from the
critical path in this way produces high-precision clock
agreement (1.85± 1.28µsec, using off-the-shelf 802.11
wireless Ethernet), while using minimal energy. We also
describe a novel algorithm that uses this same broad-
cast property to federate clocks across broadcast do-
mains with a slow decay in precision (3.68± 2.57µsec
after 4 hops). RBS can be used without external refer-
ences, forming a precise relative timescale, or can main-
tain microsecond-level synchronization to an external
timescale such as UTC. We show a significant improve-
ment over the Network Time Protocol (NTP) under sim-
ilar conditions.
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1 Introduction

Time synchronization is a critical piece of infrastructure
for any distributed system. For years, NTP (the Net-
work Time Protocol) [24] has kept the Internet’s clocks
ticking in phase. However, a new class of networks is
emerging. Recent advances in miniaturization and low-
cost, low-power design have led to active research in
large-scale networks of small, wireless, low-power sen-
sors and actuators [1]. These networks require that time
be synchronized more precisely than in traditional Inter-
net applications—sometimes on the order of 1µsec—due
to their close coupling with the physical world and their
energy constraints. For example, precise time is needed
to measure the time-of-flight of sound [9, 22]; distribute
a beamforming array [34]; form a low-power TDMA ra-
dio schedule [2]; integrate a time-series of proximity de-
tections into a velocity estimate [4]; or suppress redun-
dant messages by recognizing duplicate detections of the
same event by different sensors [13]. In addition to these
domain-specific requirements, sensor network applica-
tions often rely on synchronization as typical distributed
systems do: for secure cryptographic schemes, coordi-
nation of future action, ordering logged events during
system debugging, and so forth.

Many network synchronization algorithms have been
proposed over the years, but most share the same basic
design: a server periodically sends a message containing
its current clock value to a client. Our work explores a
form of time synchronization that differs from the tradi-
tional model. The fundamental property of our design is
that it synchronizes a set of receivers with one another,
as opposed to traditional protocols in which senders
synchronize with receivers. In our scheme, nodes pe-
riodically send messages to their neighbors using the
network’s physical-layer broadcast. Recipients use the
message’s arrival time as a point of reference for com-
paring their clocks. The message contains no explicit
timestamp, nor is it important exactly when it is sent. We
call this Reference-Broadcast Synchronization, or RBS.



In this paper, we use measurements from two wire-
less implementations to show that removing the sender’s
nondeterminism from the critical path in this way results
in a dramatic improvement in synchronization over us-
ing NTP. We also present an algorithm that allows time
to be propagated across broadcast domains without los-
ing the reference-broadcast property. In this way, nodes
in a multi-hop network can form a highly precise rela-
tive timescale, or maintain microsecond-level synchro-
nization to an external timescale such as UTC.

The most significant limitation of RBS is that it requires
a network with a physical broadcast channel. It can not
be used, for example, in networks that employ point-to-
point links. However, it is applicable for a wide range of
applications in both wired and wireless networks where
a broadcast domain exists and higher-precision or lower-
energy synchronization is required than what NTP can
typically provide.

The organization of this paper is as follows: We first re-
view related work in Section 2. In Section 3, we describe
the design of traditional time synchronization protocols
in more detail, and contrast it to the RBS design philoso-
phy. In Section 4, we describe the basic building blocks
of RBS, including estimation of phase offset (§4.1) and
clock skew (§4.2). We also present empirical data from
two wireless implementations of single-hop RBS (§4.3–
§4.5). In Section 5, we present a novel algorithm for
extending RBS across broadcast domains with slow pre-
cision decay. We also describe empirical results from a
multi-hop RBS implementation (§5.3). In Section 6, we
describe applications from three research groups that use
RBS. Finally, we offer our conclusions and describe our
plans for future work in Section 7.

2 Related Work

A landmark paper in computer clock synchronization is
Lamport’s work that elucidates the importance of virtual
clocks in systems where causality is more important than
absolute time [18]. Though Lamport’s work focused on
giving events a total order rather than quantifying the
time difference between them, it has emerged as an im-
portant influence in sensor networks. Many sensor ap-
plications require only relative time, for example timing
the propagation delay of sound [9], and thus absolute
time may not be needed.

Over the years, many protocols have been designed
for maintaining synchronization of physical clocks over

computer networks [5, 10, 24, 30]. These protocols all
have basic features in common: a simple connection-
less messaging protocol; exchange of clock information
among clients and one or more servers; methods for mit-
igating the effects of nondeterminism in message de-
livery and processing; and an algorithm on the client
for updating local clocks based on information received
from a server. They do differ in certain details: whether
the network is kept internally consistent or synchronized
to an external standard; whether the server is considered
to be the canonical clock, or merely an arbiter of client
clocks, and so on.

Mills’ NTP [24] stands out by virtue of its scalability,
self-configuration in large multi-hop networks, robust-
ness to failures and sabotage, and ubiquitous deploy-
ment. NTP allows construction of a hierarchy of time
servers, multiply rooted at canonical sources of external
time.

Synchronization to an external timescale is typically
provided by the Global Positioning System (GPS), a
constellation of satellites operated by the U.S. Depart-
ment of Defense [16]. Commercial GPS receivers can
achieve accuracy of better than 200nsec relative to UTC
[20]. However, GPS requires a clear sky view, which
is unavailable in many application areas—for example,
inside of buildings, beneath dense foliage, underwater,
on Mars, or behind enemy lines where GPS is jammed.
In addition, receivers can require several minutes of set-
tling time, and may be too large, costly, or high-power
to justify on a small, cheap sensor node.

Perhaps most closely related to our work are the Ce-
siumSpray system [32] (the foundations of which were
described by Verı́ssimo and Rodrigues [31]), and the
802.11-based broadcast synchronization described by
Mock et al. [27]. Their systems, like ours, make use
of the inherent properties of broadcast media to achieve
superior precision. However, their methods require all
nodes to lie within a single broadcast domain; multiple
domains can not be federated, except by depending on an
out of band common view of time (e.g., GPS). In con-
trast, RBS incorporates a novel multi-hop algorithm; in
Section 5, we show it can maintain tight time synchro-
nization across many hops through a wireless network
without external infrastructure support. In addition, we
have fully decoupled the sender from the receiver—only
synchronizing receivers with one another, even when
relating the timescale to an external timescale such as
UTC. CesiumSpray retains a dependence on the rela-
tionship between sender and receiver when synchroniz-
ing nodes to UTC.
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Liao et al. describe a system for synchronizing interfaces
on a system-area network, Myrinet, with microsecond
accuracy [19]. Although the precision bound in this sys-
tem is similar to ours, their results depend on the use
of an underlying network that offers latency and deter-
minism guarantees in fixed topologies. In contrast, our
scheme works over a much broader class of networks,
over a much wider area, and does not require a tight cou-
pling between the sender and its network interface.

Similarly, on Berkeley Mote hardware, Hill et al. re-
port 2µsec precision for receivers within a single broad-
cast domain [11]; Ganeriwal et al. report 25µsec-per-hop
precision across multiple hops [7]. Both of these re-
sults are achieved by tightly integrating the MAC with
the application, and building a deterministic bit-detector
into the MAC layer. RBS does not require that the ap-
plication be collapsed into the MAC, and indeed will
be shown in Section 4.4 to work on commodity hard-
ware (802.11). However, their work is complementary
to ours, as our focus is not on building deterministic de-
tectors, but rather making the best use of existing de-
tectors. By leveraging Hill’s 0.25µsec-precision bit de-
tector, RBS could achieve several times the precision of
their scheme, based on their 2µsec jitter budget analysis.

3 Traditional Synchronization Methods

Before discussing RBS in detail, we describe how exist-
ing time synchronization protocols typically work, and
their usual sources of error.

Many synchronization protocols exist, and most share a
basic design: a server periodically sends a message con-
taining its current clock value to a client. A simple one-
way message suffices if the typical latency from server
to client is small compared to the desired accuracy. A
common extension is to use a client request followed
by a server’s response. By measuring the total round-
trip-time of the two packets, the client can estimate the
one-way latency. This allows for more accurate synchro-
nization by accounting for the time that elapses between
the server’s creation of a timestamp and the client’s re-
ception of it. NTP is a ubiquitously adopted protocol for
Internet time synchronization that exemplifies this de-
sign.

3.1 Sources of Time Synchronization Error

The enemy of precise network time synchronization is
non-determinism. Latency estimates are confounded by
random events that lead to asymmetric round-trip mes-
sage delivery delays; this contributes directly to synchro-
nization error. To better understand the source of these
errors, it is useful to decompose the source of a mes-
sage’s latency. Kopetz and Schwabl characterize it as
having four distinct components [17]:

• Send Time—the time spent at the sender to con-
struct the message. This includes kernel protocol
processing and variable delays introduced by the
operating system, e.g. context switches and system
call overhead incurred by the synchronization ap-
plication. Send time also accounts for the time re-
quired to transfer the message from the host to its
network interface.

• Access Time—delay incurred waiting for access to
the transmit channel. This is specific to the MAC
protocol in use. Contention-based MACs (e.g., Eth-
ernet [23]) must wait for the channel to be clear
before transmitting, and retransmit in the case of
a collision. Wireless RTS/CTS schemes such as
those in 802.11 networks [14] require an exchange
of control packets before data can be transmitted.
TDMA channels [29] require the sender to wait for
its slot before transmitting.

• Propagation Time—the time needed for the mes-
sage to transit from sender to receivers once it has
left the sender. When the sender and receiver share
access to the same physical media (e.g., neighbors
in an ad-hoc wireless network, or on a LAN), this
time is very small as it is simply the physical prop-
agation time of the message through the media. In
contrast, Propagation Time dominates the delay in
wide-area networks, where it includes the queuing
and switching delay at each router as the message
transits through the network.

• Receive Time—processing required for the re-
ceiver’s network interface to receive the message
from the channel and notify the host of its arrival.
This is typically the time required for the network
interface to generate a message reception signal.
If the arrival time is timestamped at a low enough
level in the host’s operating system kernel (e.g., in-
side of the network driver’s interrupt handler), the
Receive Time does not include the overhead of sys-
tem calls, context switches, or even the transfer of
the message from the network interface to the host.
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Existing time synchronization algorithms vary primarily
in their methods for estimating and correcting for these
sources of error. For example, Cristian observed that
performing larger numbers of request/response experi-
ments will make it more likely that at least one trial will
not encounter random delays [5]. This trial, if it occurs,
is easily identifiable as the shortest round-trip time. NTP
filters its data using a variant of this heuristic.

Our scheme takes a different approach to reducing er-
ror. Instead of estimating error, we exploit the broadcast
channel available in many physical-layer networks to re-
move as much of it as possible from the critical path.
Our contributions in this paper stem from the observa-
tion that a message that is broadcast at the physical layer
will arrive at a set of receivers with very little variability
in its delay. Although the Send Time and Access Time
may be unknown, and highly variable from message to
message, the nature of a broadcast dictates that for a par-
ticular message, these quantities are the same for all re-
ceivers. This observation was also made by Verı́ssimo
and Rodrigues [31], and later became central to their Ce-
siumSpray system [32].

The fundamental property of Reference-Broadcast Syn-
chronization is that a broadcast message is only used
to synchronize a set of receivers with one another, in
contrast with traditional protocols that synchronize the
sender of a message with its receiver. Doing so re-
moves the Send Time and Access Time from the criti-
cal path, as shown in Figure 1. This is a significant ad-
vantage for synchronization on a LAN, where the Send
Time and Access time are typically the biggest contrib-
utors to the nondeterminism in the latency. Mills at-
tributes most of the phase error seen when synchroniz-
ing an NTP client workstation to a GPS receiver on the
same LAN (500µsec–2000µsec in his 1994 study [25])
to these factors—Ethernet jitter and collisions.

To counteract these effects, an RBS broadcast is always
used as a relative time reference, never to communicate
an absolute time value. It is exactly this property that
eliminates error introduced by the Send Time and Ac-
cess Time: each receiver is synchronizing to a reference
packet which was, by definition, injected into the physi-
cal channel at the same instant. The message itself does
not contain a timestamp generated by the sender, nor is it
important exactly when it is sent. In fact, the broadcast
does not even need to be a dedicated timesync packet.
Almost any extant broadcast can be used to recover tim-
ing information—for example, ARP packets in Ethernet,
or the broadcasted control traffic in wireless networks
(e.g., RTS/CTS exchanges or route discovery packets).

3.2 Characterizing the Receiver Error

Previously, we described the four sources of latency in
sending a message. Two of these—the Send Time and
Access Time—are dependent on factors such as the in-
stantaneous load on the sender’s CPU and the network.
This makes them the most nondeterministic and difficult
to estimate. As described above, RBS eliminates the ef-
fect of these error sources altogether; the two remaining
factors are the Propagation Time and Receive Time.

For our purposes, we consider the Propagation Time to
be effectively 0. The propagation speed of electromag-
netic signals through air is close to c,1 and through cop-
per wire about 2

3 c. For a LAN or ad-hoc network span-
ning tens of feet, propagation time is at most tens of
nanoseconds, which does not contribute significantly to
our µsec-scale error budget. (In sensor networks, the er-
ror budget is often driven by the need to sense phenom-
ena, such as sound, that move much more slowly than
the RF-pulse used to synchronize the observers.) In ad-
dition, RBS is only sensitive to the difference in prop-
agation time between a pair of receivers, as depicted in
Figure 1.

The length of a bit gives us an idea of the Receive Time.
For a receiver to interpret a message at all, it must be
synchronized to the incoming message within one bit
time. Latency due to processing in the receiver electron-
ics is irrelevant as long as it is deterministic, since our
scheme is only sensitive to differences in the receive time
of messages within a set of receivers.2 In addition, the
system clock can easily be read at interrupt time when
a packet is received; this removes delays due to receiver
protocol processing, context switches, and interface-to-
host transfer from the critical path.

To verify our assumptions about expected receiver er-
ror, we turned to our laboratory’s wireless sensor net-
work testbed [4]. Specifically, we tested the Berkeley
Mote, a postage-stamp sized narrowband radio and sen-
sor platform developed by Pister et al. at Berkeley [15].
Motes use a minimal event-based operating system de-
veloped by Hill et al. specifically for that hardware plat-
form called TinyOS [12]. We programmed 5 Motes to
raise a GPIO pin high upon each packet arrival, and at-
tached those signal outputs to an external logic analyzer
that recorded the time of the packet reception events.
An additional Mote emitted 160 broadcast packets over

1A convenient rule of thumb is 1nsec/foot.
2It is important to consider effects of any intentional nondetermin-

ism on the part of a receiver, such as aggregation of packets in a queue
before raising an interrupt.
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Figure 1: A critical path analysis for traditional time synchronization protocols (left) and RBS (right). For traditional
protocols working on a LAN, the largest contributions to nondeterministic latency are the Send Time (from the
sender’s clock read to delivery of the packet to its NIC, including protocol processing) and Access Time (the delay
in the NIC until the channel becomes free). The Receive Time tends to be much smaller than the Send Time because
the clock can be read at interrupt time, before protocol processing. In RBS, the critical path length is shortened to
include only the time from the injection of the packet into the channel to the last clock read.
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Figure 2: A histogram showing the distribution of inter-
receiver phase offsets recorded for 1,478 broadcast pack-
ets, grouped into 1µsec buckets. The curve is a plot of
the best-fit Gaussian parameters. (µ = 0,σ = 11.1µsec,
confidence=99.8%)

the course of 3 minutes, with random inter-packet de-
lays ranging from 200msec to 2 seconds. For each pulse
transmitted, we computed the difference in the pulse’s
packet reception time for each of the 10 possible pair-
ings of the 5 receivers. Some pulses were lost at some
receivers due to the normal vagaries of RF links. A total
of 1,478 pairings were computed.

A histogram showing the distribution of the receivers’
phase offsets is shown in Figure 2. The maximum phase
error observed in any trial was 53.4µsec. The Mote’s
radios operate at 19,200 baud and thus have a bit time
of 52µsec. This correspondence supports our reasoning
that a receiver’s jitter is unlikely to be much greater than
a single bit time, as long as the receiver electronics have
a deterministic delay between packet reception and host

notification.

The phase offset distribution appears Gaussian; the chi-
squared test indicates 99.8% confidence in the best fit
parameters—µ = 0,σ = 11.1µsec. This is useful for
several reasons. As we will see in later sections, a
well-behaved distribution enables us to significantly im-
prove on the error bound statistically, by sending mul-
tiple broadcast packets. In addition, Gaussian receivers
are easy to model realistically in numeric analyses. This
facilitates quick experimentation with many different al-
gorithms or scenarios whose systematic exploration is
impractical, such as examining the effects of scale.

4 Reference-Broadcast Synchronization

So far, we characterized the determinism of our receiver
hardware. We now turn to the question of using that
receiver to achieve the best possible clock synchroniza-
tion.

We should note that our research does not encompass the
question of how to build a more deterministic receiver.
This is best answered by those who design them. Plans
for forthcoming revisions of the Mote’s TinyOS are re-
ported to include better phase lock between a receiver
and incoming message. Instead, we ask: How well can
we synchronize clocks with a given receiver? How is the
precision we can achieve related to that receiver’s jitter?

In this section, we build up the basic RBS algorithm for
nodes within a single broadcast domain. (Applying RBS
in multihop networks will be considered in Section 5.)
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First, we consider how RBS can be used to estimate the
relative phase offsets among a group of receivers. Next,
we describe a slightly more complex scheme that also
corrects for clock skew. We also describe implemen-
tation of RBS on both Berkeley Motes and commod-
ity hardware, and quantify the performance of RBS vs.
NTP. Finally, we describe how the combination may be
used to achieve post-facto synchronization.

4.1 Estimation of Phase Offset

The simplest form of RBS is the broadcast of a single
pulse to two receivers, allowing them to estimate their
relative phase offsets. That is:

1. A transmitter broadcasts a reference packet to two
receivers (i and j).

2. Each receiver records the time that the reference
was received, according to its local clock.

3. The receivers exchange their observations.

Based on this single broadcast alone, the receivers
have sufficient information to form a local (or rela-
tive) timescale. Global (or absolute) timescales such
as UTC are important, and we will see in Section 5.4
how RBS can be extended to provide them. However,
in this section we will first consider construction of lo-
cal timescales—which are often sufficient for sensor net-
work applications. For example, if node i at position (0,
0) detects a target at time t = 4, and j at position (0, 10)
detects it at t = 5, we can conclude that the target is mov-
ing north at 10 units per second. This comparison does
not require absolute time synchronization; the reference
broadcast makes it possible to compare the time of an
event observed by i with one observed by j.3

The performance of this scheme is closely related to
three factors:

1. The number of receivers that we wish to synchro-
nize (n). We assumed above that n = 2; how-
ever, collaborative applications often require syn-
chronization of many nodes simultaneously. As the
set grows, the likelihood increases that at least one
will be poorly synchronized. We define the group

3Our prototype implementation never sets the local clock based on
reference broadcasts; instead, it provides a library function for times-
tamp conversion. That is, it can convert a time value that was generated
by the local clock to the value that would have been generated on an-
other node’s clock at the same time, and vice-versa.

dispersion as the maximum phase error between
any of the

(n
2

)

pairs of receivers in a group.

2. The nondeterminism of the underlying receiver, as
we discussed in Section 3.2.

3. Clock skew in the receivers, as their oscillators all
tick at different rates. A single reference will pro-
vide only instantaneous synchronization. Immedi-
ately afterward, the synchronization will degrade as
the clocks drift apart. Precision will therefore decay
as more time elapses between the synchronization
pulse and the event of interest. Typical crystal os-
cillators are accurate on the order of one part in 104

to 106 [33]—that is, two nodes’ clocks will drift
1–100µsec per second.

We will see in the next section how clock skew can be
estimated. However, assume for the moment that we al-
ready know the clock skew and have corrected for it.
Let us instead consider what is required to correct for
the nondeterminism in the receiver. Recall from Figure 2
that we empirically observed the Mote’s receiver error to
be Gaussian. We can therefore increase the precision of
synchronization statistically, by sending more than one
reference:

1. A transmitter broadcasts m reference packets.

2. Each of the n receivers records the time that the ref-
erence was observed, according to its local clock.

3. The receivers exchange their observations.

4. Each receiver i can compute its phase offset to any
other receiver j as the average of the phase offsets
implied by each pulse received by both nodes i and
j. That is, given

n: the number of receivers

m: the number of reference broadcasts, and

Tr,b: r’s clock when it received broadcast b,

∀i ∈ n, j ∈ n: Offset[i, j] =
1
m

m

∑
k=1

(Tj,k −Ti,k). (1)

Because this basic scheme does not yet account for
clock skew (a feature added in §4.2), it is not yet im-
plementable on real hardware. We therefore turned to
a numeric simulation based on the receiver model that
we derived empirically in Section 3.2. In each trial, n
nodes were given random clock offsets. m pulse trans-
mission times were selected at random. Each pulse was
“delivered” to every receiver by timestamping it using
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the receiver’s clock, including a random error matching
the Gaussian distribution parameters shown in Figure 2
(σ = 11.1). An offset matrix was computed as given in
Equation 1. Each of these O(n2) computed offsets was
then compared with the “real” offsets; the maximum dif-
ference was considered to be the group dispersion. We
performed this analysis for values of m = 1 . . .50 and
n = 2 . . .20. At each value of m and n, we performed
1,000 trials and calculated the mean group dispersion,
and standard deviation from the mean. The results are
shown in Figure 3.

This numeric simulation suggests that in the simplest
case of 2 receivers (the lower curve of Figure 3a), 30
reference broadcasts can improve the precision from
11µsec to 1.6µsec, after which we reach a point of di-
minishing return.4 In a group of 20 receivers, the dis-
persion can be reduced to 5.6µsec. Figure 3b shows a
3D view of the same dataset for all receiver group sizes
from 2 to 20. This view also shows that larger numbers
of broadcasts significantly mitigate the effect of larger
group size on precision decay.

4.2 Estimation of Clock Skew

So far, we have described a method for estimating phase
offset assuming that there was no clock skew—that is,
that all the nodes’ clocks are running at the same rate.
Of course, this is not a realistic assumption. A complete
description of crystal oscillator behavior is beyond the
scope of this paper;5 however, to a first approximation,
the important characteristics of an oscillator are:

• Accuracy—the agreement between an oscillator’s
expected and actual frequencies. The difference is
the frequency error; its maximum is usually spec-
ified by the manufacturer. The crystal oscillators
found in most consumer electronics are accurate to
one part in 104 to 106.

• Stability—An oscillator’s tendency to stay at the
same frequency over time. Frequency stability can
be further subdivided into short-term and long-term
frequency stability. Short-term instability is pri-
marily due to environmental factors, such as vari-
ations in temperature, supply voltage, and shock.
Long-term instability results from more subtle ef-
fects, such as oscillator aging.

411µsec is the expected average result for a single pulse delivered to
two receivers; this is the standard deviation of the inter-receiver phase
error, found in Section 3.2, upon which the analysis was based.

5[33] has a good introduction to the topic and pointers to a more
comprehensive bibliography.

The phase difference between two nodes’ clocks will
change over time due to frequency differences in the
oscillators. The basic algorithm that we described ear-
lier is not physically realizable without an extension that
takes this into account—in the time needed to observe
30 pulses, the phase error between the clocks will have
changed.

Complex disciplines exist that can lock an oscillator’s
phase and frequency to an external standard [26]. How-
ever, we selected a very simple yet effective algorithm
to correct skew. Instead of averaging the phase offsets
from multiple observations, as shown in Equation 1, we
perform a least-squares linear regression. This offers
a fast, closed-form method for finding the best fit line
through the phase error observations over time. The fre-
quency and phase of the local node’s clock with respect
to the remote node can be recovered from the slope and
intercept of the line.

Of course, fitting a line to these data implicitly assumes
that the frequency is stable, i.e., that the phase error is
changing at a constant rate. As we mentioned earlier, the
frequency of real oscillators will change over time due,
for example, to environmental effects. In general, net-
work time synchronization algorithms (e.g., NTP) cor-
rect a clock’s phase and its oscillator’s frequency error,
but do not try to model its frequency instability. That is,
frequency adjustments are made continuously based on a
recent window of observations relating the local oscilla-
tor to a reference. Our prototype RBS system is similar;
it models oscillators as having high short-term frequency
stability by ignoring data that is more than a few minutes
old.

4.3 Implementation on Berkeley Motes

To test these algorithms, we first built a prototype RBS
system based around the Berkeley Motes we described
in Section 3.2. In the first configuration we tested, 5
Motes periodically broadcasted a reference pulse with a
sequence number. Each of them used a 2µsec resolu-
tion clock to timestamp the reception times of incoming
broadcasts. We then performed an off-line analysis of
the data. Figure 4a shows the results of a typical ex-
periment after automatic rejection of outliers (described
below). Each point is the difference between the times
that the two nodes reported receiving a reference broad-
cast, plotted on a timescale defined by one node’s clock.
That is, given

Tr,b: r’s clock when it received broadcast b,
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Figure 4: An analysis of clock skew’s effect on RBS. Each point represents the phase offset between two nodes
as implied by the value of their clocks after receiving a reference broadcast. A node can compute a least-squared-
error fit to these observations (diagonal lines), and thus convert time values between its own clock and that of its
peer. a) Synchronization of the Mote’s internal clock. The vertical impulses (read with respect to the y2 axis) show
the distance of each point from the best-fit line. b) Synchronization of clocks on PC104-compatible single-board-
computers using a Mote as NIC. The points near x = 200 are reference pulses, which show a synchronization error of
7.4µsec 60 seconds after the last sync pulse.

for each pulse k that was received by receivers r1 and r2,
we plot

x =Tr1,k

y =Tr2,k −Tr1,k

For visualization purposes, the data are normalized so
that the first pulse occurs at (0,0). The diagonal line
drawn through the points represents the best linear fit
to the data—i.e., the line that minimizes the RMS error.
The vertical impulses, read with respect to the right-hand
y axis, show the distance from each point to the best-fit
line.

The residual error—that is, the RMS distance of each

point to the fit line—gives us a good idea of the qual-
ity of the fit. We can reject outliers by discarding the
point that contributes most to the total error, if its error
is greater than some threshold (e.g. 3σ). In this experi-
ment, the RMS error was 11.2µsec. (A more systematic
study of RBS synchronization error is described in later
sections.)

The slope of the best-fit line defines the clock skew,
when measured by receiver r1’s clock. We can see, for
example, that these two oscillators drifted about 300µsec
after 100 “r1 seconds.” The line’s intercept defines the
initial phase offset. When combined, we have sufficient
information to convert any time value generated by r1’s
clock to the value that would have been generated by
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r2’s clock at the same time. We will see in Section 5.4
that “r2” may also be an external standard such as UTC.
However, even the internally consistent mapping is use-
ful in a sensor network, as we saw in Section 4.1.

In a second test configuration, we used Motes as “net-
work interfaces” rather than as stand-alone nodes. Motes
were connected via a 9600-baud serial link to PC104-
based single-board-computers running the Linux oper-
ating system. In some sense, this makes the problem
more difficult because we are extending the path be-
tween the receiver (the Mote) and the clock to be syn-
chronized (under Linux). We modified the Linux kernel
to timestamp serial-port interrupts, allowing us to ac-
curately associate complete over-the-air messages with
kernel timestamps.

In this second test, shown in Figure 4b, one “Mote-NIC”
sent reference broadcasts to two receivers for two min-
utes. Each reception was timestamped by the Linux ker-
nel. After one minute of silence, we injected 10 ref-
erence pulses into the PC’s parallel port; these pulses
appear at the right of the figure. We computed the best-
fit line based on the Mote-NIC pulses, after automatic
outlier rejection. There was a 7.4µsec residual error be-
tween the estimate and the reference pulses.

4.4 Commodity Hardware Implementation

The performance of RBS on Berkeley Motes was very
encouraging. However, it is reasonable to wonder if its
success was due to the algorithm itself or simply the fact
that it was implemented on a tightly integrated radio and
processor platform. In addition, we were curious about
the relative performance of RBS and NTP. To answer
these questions—and provide RBS on a platform more
generally available to users—we implemented RBS as a
UNIX daemon, using UDP datagrams instead of Motes.
We used a commodity hardware platform that is part
of our testbed: StrongARM-based Compaq IPAQs with
Lucent Technologies 11Mbit 802.11 wireless Ethernet
adapters. Our IPAQs run the “Familiar” Linux distri-
bution6 with Linux kernel v2.4. In this test, all the wire-
less Ethernet adapters are connected to a wireless 802.11
base station.

To make the comparison as fair as possible, we first
implemented RBS under the same constraints as NTP:
a pure userspace application with no special kernel or
hardware support, or special knowledge of the MAC
layer (other than that it supports broadcasts). Like NTP,

6http://www.familiar.org

our Linux RBS daemon uses UDP datagrams sent and
received via the Berkeley socket interface. Packet re-
ception times are recorded in userspace by using the
standard gettimeofday() library function (and under-
lying system call). The daemon records the time after
learning that a new packet has arrived via an unblocked
select() call. The IPAQ’s clock resolution is 1µsec.

Our RBS daemon simultaneously acts in both “sender”
and “receiver” roles. Every 10 seconds (slightly random-
ized to avoid unintended synchronization), each daemon
emits a pulse packet with a sequence number and sender
ID. The daemon also watches for such packets to arrive;
it timestamps them and periodically sends a report of
these timestamps back to the pulse sender along with its
receiver ID. The pulse sender collects all of the pulse re-
ception reports and computes clock conversion parame-
ters between each pair of nodes that heard its broadcasts.
These parameters are then broadcast back to local neigh-
bors. The RBS daemons that receive these parameters
make them available to users. RBS never sets the nodes’
clocks, but rather provides a user library that converts
UNIX timevals from one node ID to another.

The clock conversion parameters are the slope and inter-
cept of the least-square linear regression, similar to the
examples shown in Figure 4. Each regression is based
on a window of the 30 most recent pulse reception re-
ports. In practice, a small number of pulses are outliers,
not within the Gaussian mode shown in Figure 2, due
to random events such as concurrent serial and Ether-
net interrupts. These outliers are automatically rejected
based on an adaptive threshold equal to 3 times the me-
dian fit error of the set of points not yet rejected. (Early
versions used a more traditional “3σ” approach, but the
standard deviation was found to be too sensitive to gross
outliers.) The remaining points are iteratively re-fit, and
the outlier threshold recomputed, until no further points
are rejected. If more than half the points are rejected as
outliers, the fit fails.

To test the synchronization accuracy, we connected a
GPIO output from each of two IPAQs to an external
logic analyzer. The analyzer was programmed to re-
port the time difference between two pulses seen on each
of its input channels. We wrote a Linux kernel module
that accepts a target pulse-time from a userspace appli-
cation, then emits a GPIO pulse when the local clock
indicates that the target time has arrived. By implement-
ing the pulsing service inside the kernel, with interrupts
disabled shortly before the target time arrives, there is
virtually no phase error between the GPIO pulse and the
node’s clock. In other words, the kernel module ensures
that error between the pulses as seen by the logic ana-
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lyzer is entirely due to the nodes’ clock synchronization
error, not an artifact of the test. (This kernel module
purely facilitates testing; it was not used to help the syn-
chronization of either NTP or RBS.)

Using this experimental framework, we tested three dif-
ferent synchronization schemes:

• RBS—Our reference broadcast synchronization. A
third IPAQ was used as a pulse sender to facilitate
synchronization between the two test systems. NTP
was off during this test.

• NTP—The standard NTP package, version 4.1.1a,
ported to our IPAQs. The ntpdate program was
first used to achieve gross synchronization. Then,
the ntpd daemon was run, configured to send syn-
chronization packets every 16 seconds (the max-
imum frequency it allows). The clients were al-
lowed to synchronize to our lab’s stratum 1 GPS-
steered NTP server for several hours at this high
sampling frequency before the test began. The NTP
server was on the wired side of our network (i.e.,
accessed via the wireless base station).

• NTP-Offset—In our test, RBS has a potentially un-
fair advantage over NTP. Although NTP maintains
a continuous estimate of the local clock’s phase er-
ror with respect to its reference clock, it also lim-
its the rate at which it is willing to correct this
error. This is meant to prevent user applications
from seeing large frequency excursions or discon-
tinuities in the timescale. Our initial RBS imple-
mentation has no such restriction. Since our test
only evaluates phase error, and does not give any
weight to frequency stability, it might favor RBS.
To eliminate this possible advantage, we created
NTP-Offset synchronization. This was similar to
the NTP method; however, during each trial, the
test application queried the NTP daemon (using the
ntpq program) for its current estimate of the local
clock’s phase error. This value was subtracted from
the test pulse time.

For each of these synchronization schemes, we tested
two different traffic scenarios:

• Light network load—The 802.11 network had very
little background traffic other than the minimal load
generated by the synchronization scheme itself.

• Heavy network load—Two additional IPAQs were
configured as traffic generators. Each IPAQ sent

a series of randomly-sized UDP datagrams, each
picked uniformly between 500 and 15,000 bytes (IP
fragmentation being required for larger packets).
The inter-packet delay was 10msec. The cross-
traffic was entirely among third parties—that is, the
source and destination of this traffic were neither
the synchronization servers nor the systems under
test. The average aggregate offered load of this
cross-traffic was approximately 6.5Mbit/sec.

Each of the six test scenarios consisted of 300 trials, with
an 8 second delay between each trial, for a total test time
of 40 minutes per scenario. The results are shown in Fig-
ure 5. In the light traffic scenario, RBS performed more
than 8 times better than NTP—an average of 6.29±6.45
µsec error, compared to 51.18±53.30µsec for NTP. 95%
of RBS trials had an error of 20.53µsec or better, com-
pared to a 131.20µsec bound for 95% of NTP trials.

Much of the 6.29µsec error seen with our userspace
RBS implementation is due to the jitter in software—
the code path through the network stack, the time re-
quired to schedule the daemon, and the system calls
from userspace to determine the current time. We will
see in the next section that significantly better precision
can be achieved using packet timestamps acquired inside
the kernel’s network interrupt handler.

In our heavy traffic scenario, the difference was even
more dramatic. As we discussed in Section 3, NTP is
most adversely affected by path asymmetries that con-
found its latency estimate. When the network is under
heavy load, it becomes far more likely that the medium
access delay will be different during the trip to and from
the NTP server. RBS, in contrast, has no dependence
on the exact time packets are sent; variable MAC delays
have no effect. While NTP suffered more than a 30-fold
degradation in precision (average 1,542µsec, 95% within
3,889µsec), RBS was almost completely unaffected (av-
erage 8.44µsec, 95% within 28.53µsec). The slight
degradation in RBS performance was due to packet loss,
which reduced the number of broadcast pulses available
for comparison with peers. Several instances of RBS
phase excursion were also observed when a packet con-
taining a clock parameter update was lost, forcing clients
to continue using aging data.

Surprisingly, the NTP-Offset method almost uniformly
performed more poorly than plain NTP. The cause was
not clear, but we suspect this was due to the inter-packet
jitter in the 802.11 MAC. The low-pass filter built into
NTP’s clock discipline algorithm was better suited to
model the high-jitter network than the more responsive
online phase estimator.
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Network Load Synchronization Mean Error Std Dev 50% Bound 95% Bound 99% Bound
Light RBS 6.29 6.45 4.22 20.53 29.61
Light NTP 51.18 53.30 42.52 131.20 313.64
Light NTP-Offset 204.17 599.44 48.15 827.42 4334.50

Heavy RBS 8.44 9.37 5.86 28.53 48.61
Heavy NTP 1542.27 1192.53 1271.38 3888.79 5577.82
Heavy NTP-Offset 5139.08 6994.58 3163.11 15156.44 38897.36

Figure 5: Synchronization error for RBS and NTP between two Compaq IPAQs using an 11Mbit 802.11 network.
Clock resolution was 1µsec. All units are µsec. “NTP-Offset” uses an NTP-disciplined clock with a correction based
on NTP’s instantaneous estimate of its phase error; unexpectedly, this correction led to poorer synchronization. RBS
performed more than 8 times better than NTP on a lightly loaded network. On a heavily loaded network, NTP further
degraded by more than a factor of 30, while RBS was virtually unaffected.

4.5 RBS using 802.11 and Kernel Timestamps

In the previous section, we described the performance
of RBS when implemented as a userspace application.
This provided a fair comparison with NTP. However, for
practical use in our testbed, we give RBS the additional
advantage of packet timestamps acquired in the network
interface’s interrupt handler. Timestamping at interrupt-
time, before the packet is even transferred from the NIC,
significantly reduces jitter and is a standard feature of
the Linux kernel. The metadata is accessible by reading
packets using the LBNL packet capture library, libpcap
[21], instead of the usual socket interface.

Using kernel timestamps, the performance of RBS im-
proved considerably, to 1.85± 1.28µsec (see Figure 8),
from 6.29±6.45µsec in the user-space implementation.

We believe this result was primarily limited by the 1µsec
clock resolution of the IPAQ, and that finer precision can
be achieved with a finer-resolution clock. In our future
work, we hope to try RBS on a such a platform: for
example, using the Pentium’s TSC, a counter which runs
at the frequency of the processor core (e.g., 1GHz).

4.6 Application to Post-Facto Synchronization

Sensor network nodes are wireless and unattended; their
finite energy becomes a dominating factor in their de-
sign. It is often not feasible to keep the processor or
radio powered continuously. Such a “deep sleep” con-
founds traditional protocols like NTP that keep the clock
synchronized at all times. We therefore have previ-
ously proposed post-facto synchronization [6]. In this
scheme, nodes normally stay in a low power state, with
unsynchronized clocks, until a event of interest occurs.
Only after such an event are the clocks reconciled. This
prevents energy from being wasted on achieving unnec-
essary synchronization.

An interesting facet of the RBS clock skew estimator is
that it is is also an effective form of post-facto synchro-
nization. After an event of interest, nodes can power
their radios up and exchange sync pulses until the best-
fit line that relates nodes’ clocks to each other has been
computed satisfactorily (e.g., the RMS error has fallen
below some threshold). Our experiment shown in Fig-
ure 4b suggests this line can be used to precisely extrap-
olate backwards, estimating what the phase offset was at
a time in the past, such as when the event occurred.
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4.7 Summary of Advantages of RBS

So far, we have built up the basic RBS algorithm, show-
ing how reference broadcasts can be used to relate a
set of receivers’ clocks to one another. Over time,
we can estimate both relative phase and skew. On
Berkeley Motes, RBS can synchronize clocks within
11µsec, with our relatively slow 19,200 baud radios.
On commodity hardware—Compaq IPAQs using an 11
Mbit/sec 802.11 network—we achieved synchronization
of 6.29± 6.45µsec, 8 times better than NTP under the
same conditions. Using kernel timestamps, precision
nearly reached the clock resolution—1.85±1.28µsec.

The advantages of RBS include:

• The largest sources of nondeterministic latency can
be removed from the critical path by using the
broadcast channel to synchronize receivers with
one another. This results in significantly better pre-
cision synchronization than algorithms that mea-
sure round-trip delay.

• Multiple broadcasts allow tighter synchronization
because residual errors tend to follow well-behaved
distributions. In addition, multiple broadcasts al-
low estimation of clock skew, and thus extrapola-
tion of past phase offsets. This enables post-facto
synchronization, saving energy in applications that
need synchronized time infrequently and unpre-
dictably.

• Outliers and lost packets are handled gracefully; the
best fit line in Figure 4 can be drawn even if some
points are missing.

• RBS allows nodes to construct local timescales.
This is useful for sensor networks or other applica-
tions that need synchronized time but may not have
an absolute time reference available. Absolute time
synchronization can also be achieved, as we will
describe in Section 5.4.

The primary shortcoming of RBS as we have described
it thus far is that it can only be used to synchronize a set
of nodes that lie within a single physical-layer broadcast
domain. We address this limitation in the next section.

1

3

2

A
4

6

B
7

5

Figure 6: A simple topology where multi-hop time syn-
chronization is required. Nodes A and B send sync
pulses, establishing two locally synchronized neighbor-
hoods. Receiver 4 hears both A and B, and can relate
nodes in either neighborhood to each other.

5 Multi-Hop Time Synchronization

RBS as we have described it until now has used broad-
casts to coordinate a set of receivers that lie within a sin-
gle broadcast domain. A natural question that arises is
how this technique might be extended so as to coordinate
receivers whose span is larger than a single physical-
layer broadcast. For example, the extent of wireless
sensor networks is usually much larger than the broad-
cast range of any single node. In traditional LANs, the
broadcast domain of an Ethernet is limited; LANs are
interconnected with routers, bridges, or other gateways
that do not propagate broadcasts at the physical layer.

In these scenarios, an extension to basic RBS can be
used to synchronize a group of nodes that lie beyond the
range of a single broadcast. Consider the example topol-
ogy shown in Figure 6. The lettered nodes, A and B,
both send a sync pulse. A and B can not hear each other,
but each of them are heard by 4 receivers. Receivers
that are in the same neighborhood (i.e., have heard the
same sync pulse) can relate their clocks to each other,
as described in previous sections. However, notice that
receiver 4 is in a unique position: it can hear the sync
pulses from both A and B. This allows receiver 4 to
relate the clocks in one neighborhood to clocks in the
other.

5.1 Multihop Clock Conversion

To illustrate how the conversion works, imagine that we
wish to compare the times of two events that occurred
at opposite ends of the network—near receivers 1 and
7. Nodes A and B both send synchronization pulses,
at times PA and PB. Say that receiver 1 observes event
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E1 2 seconds after hearing A’s pulse (e.g., E1 = PA +2).
Meanwhile, receiver 7 observes event E7 at time PB −4.
These nodes could consult with receiver 4 to learn that
A’s pulse occurred 10 seconds after B’s pulse: PA = PB +
10. Given this set of constraints:

E1 = PA +2

E7 = PB −4

PA = PB +10

=⇒ E1 = E7 +16

In this example, it was possible to establish a global
timescale for both events because there was an intersec-
tion between A’s and B’s receivers.

This technique for propagating timing information has
many of the same benefits as in the single-hop case. A
traditional solution to the multi-hop problem might be
for nodes to re-broadcast a timing message that they
have previously received. In contrast, our technique
never depends on the temporal relationship between a
sender and a receiver. As in the single-hop case, re-
moving all the nondeterministic senders from the criti-
cal path reduces the error accumulated at each hop, as
we will show in Section 5.3.

For simplicity, the example above spoke of sending “a
pulse.” Naturally, the phase and skew relationship be-
tween receivers in a neighborhood can be determined
more precisely by using a larger number of pulses, as
we described in Section 4. To take advantage of this in-
formation, our RBS prototype does not literally compare
pulse reception times, as suggested by the constraints
in the equations above. Instead, it performs a series of
timebase conversions using the best-fit lines that relate
logically-adjacent receivers to each other. Adopting the
notation Ei(R j) to mean the time of event i according to
receiver j’s clock, we can state the multihop algorithm
more precisely:

1. Receivers R1 and R7 observe events at times E1(R1)
and E7(R7), respectively.

2. R4 uses A’s reference broadcasts to establish the
best-fit line (as in Figure 4a) needed for convert-
ing clock values from R1 to R4. This line is used to
convert E1(R1) to E1(R4).

3. R4 similarly uses B’s broadcasts to convert E1(R4)
to E1(R7).

4. The time elapsed between the events is computed
as E1(R7)−E7(R7).

This algorithm is conceptually the same as the simpler
version. However, each timebase conversion implicitly
includes a correction for skew in all three nodes.

5.2 Time Routing in Multihop Networks

In Figure 6, there was a single “gateway” node that we
designated for converting timestamps from one neigh-
borhood’s timebase to another. However, in practice,
no such designation is necessary, or even desirable. It
is straightforward to compute a “time route”—that is,
dynamically determine a series of nodes through which
time can be converted to reach a desired final timebase.

Consider the network topology in Figure 7a. As in Fig-
ure 6, the lettered nodes represent sync pulse senders;
numbered nodes are receivers. (This distinction between
senders and receiver roles is purely illustrative; in reality,
a node can play both roles.) Each pulse sender creates a
neighborhood of nodes that have known phase offsets by
virtue of having received pulses from a common source.
These relationships are visualized in Figure 7b, in which
nodes with known clock relationships are joined by
graph edges. A path through this graph represents a se-
ries of timebase conversions. For example, we can com-
pare the time of E1(R1) with E10(R10) by transforming
E1(R1) → E1(R4) → E1(R8) → E1(R10).

It is possible to find a series of conversions automati-
cally, simply by performing a shortest-path search in a
graph such as in Figure 7b. In addition, the weights
of the graph edges can be used to represent the qual-
ity of the conversion—for example, the residual error
(RMS) of the linear fit to the broadcast observations. A
minimum-error conversion between any two nodes can
be found using a weighted-shortest-path search such as
Dijkstra’s or Bellman-Ford.

Of course, such shortest-path algorithms do not scale to
large networks due to their dependence on global infor-
mation. Although there is precedent for such systems
(e.g., the Internet’s early link-state routing algorithms),
a more localized approach is needed if the method is to
scale. To this end, there is an interesting alternative: time
conversion can be built into the extant packet forwarding
mechanism. That is, nodes can perform successive time
conversions on packets as they are forwarded from node
to node—keeping the time with respect to the local clock
at each hop. This technique, also suggested by Röemer
[28], is attractive because it requires only local computa-
tion and communication. Instead of flooding clock con-
version parameters globally, they can be distributed us-
ing a tightly scoped broadcast. In addition, the quality
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Figure 7: A more complex (3-hop) multihop network topology. a) The physical topology. Beacons (lettered nodes),
whose transmit radii are indicated by the larger shaded areas, broadcast references to their neighbors (numbered
nodes). b) The logical topology. Edges are drawn between nodes that have received a common broadcast, and
therefore have enough information to relate their clocks to each other. Receivers 8 and 9 share two logical links
because they have two receptions in common (from C and D).

of time synchronization across each link can be incorpo-
rated into the link metric used by the routing algorithm,
ensuring that routing is not completely orthogonal to the
quality of the time conversions available.

5.3 Measured Performance of Multihop RBS

In a multihop topology where a series of timestamp con-
versions are required, as described in the previous sec-
tion, each conversion step can introduce synchronization
error. We now consider the cumulative effects of such
errors as the path length grows.

We saw in Section 3.2 that the synchronization error in-
troduced by a reference broadcast is Gaussian. In ad-
dition, each of the per-hop contributions to the error
are independent because the phase and skew estimates
at each hop are based on a different set of broadcasts.
Therefore, we expect that total path error—a sum of in-
dependent Gaussian variables—will also follow a Gaus-
sian distribution. If the average per-hop error along the
path is σ, then we expect7 the average path error for an
n-hop path to be σ

√
n. This bound is pleasing in that it

grows slowly, and implies that we can synchronize nodes
across many hops without significant decay in precision.

We tested the precision of multihop RBS using the IPAQ
and 802.11-based testbed we described in Section 4.4,
including the in-kernel packet timestamping discussed
in Section 4.5. We configured 9 IPAQs in a linear topol-

7From the variance’s identity that var(x + y) = var(x) + var(y);
variance=σ2.

1 32A B C DD4 53

Hops Mean Error Std Dev 50% 95% 99%
1 1.85 1.28 1.60 4.51 5.85
2 2.73 1.91 2.41 6.49 7.74
3 2.73 2.42 2.22 6.93 9.92
4 3.68 2.57 3.18 8.26 10.70

Figure 8: top) The topology used to test cumulative er-
ror when RBS is used in a multihop network. bottom)
Measured performance of multihop RBS, using kernel
timestamping, on IPAQs using 11 MBit/sec 802.11. All
units are µsec.

ogy, alternating between 5 (numbered) receivers and 4
(lettered) beacon emitters, as shown in Figure 8. Each
receiver could hear only the nearest sender on its left
and right. The test procedure was the same as we de-
scribed in Section 4.4—in 300 trials, two IPAQs were
commanded to raise a GPIO pin high at the same time. A
logic analyzer reported the actual time differences. We
tested a 1-hop, 2-hop, 3-hop and 4-hop conversion, by
testing the rise-time difference between nodes 1–2, 1–3,
1–4, and 1–5, respectively.

The results, shown in Figure 8, generally seem to follow
our σ

√
n estimate. The average 4-hop error was 3.68±

2.57µsec, which is nearly σ
√

4, normalizing σ to be the
average 1-hop error.
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5.4 Synchronization with External Timescales

So far, we have spoken entirely of creating local, in-
ternally consistent timescales. Although relative syn-
chronization is sufficient for many applications, oth-
ers require absolute time as measured by an external
reference such as UTC. Reference timescales are typ-
ically distributed via governmentally sponsored radio
systems such as the short-wave WWVB station [3] or the
satellite-based Global Positioning System [16]. Com-
mercially available receivers for these systems can syn-
chronize computers by providing them with a “PPS”
(pulse-per-second) signal at the beginning of each sec-
ond. The seconds are numbered out of band, such as
through a serial port.

RBS provides a natural and precise way to synchronize
a network with such an external timescale. For exam-
ple, consider a GPS radio receiver connected to one of
the nodes in a multihop network such as the one in Fig-
ure 7. GPS time simply becomes another node in that
network, attached via one edge to its host node. The PPS
output of the receiver can be treated exactly as normal
reference broadcasts are. That is, the host node times-
tamps each PPS pulse and compares its own timestamp
with the pulse’s true GPS time. The phase and skew of
the host node’s clock relative to GPS time can then be
recovered using the algorithms described in Section 4.
Other nodes can use GPS time by finding a multihop
conversion route to it through the host node, using the
algorithm we described in Section 5.2.

6 Application Experience

To date, our RBS implementation has been applied,
both within and without our research group, in three
distributed sensor network applications requiring high-
precision time synchronization. Each uses RBS-
synchronized clocks to precisely measure the arrival
time of acoustic signals. Most audio codecs sample
the channel at 48KHz, or ≈ 21µsec per sample. As
we have seen in previous sections, the precision nomi-
nally achieved by RBS is significantly better. Distributed
acoustic sensors have thus been able to correlate their
acoustic time-series down to individual samples. This
has been useful in a number of contexts.

Our group has developed a implemented a centimeter-
scale localization service for Berkeley Motes based on
acoustic time-of-flight ranging [8]. A set of IPAQs set

around the room first establish their own positions within
a relatively coordinate system by ranging to one an-
other. Each IPAQ emits an audible “chirp” which has
an encoded pseudonoise sequence [9]. IPAQs run a
matched filter over their incoming audio data to find
the most likely audio sample indicating arrival of the
chirp. 802.11-based RBS corrections are then applied
to convert this into the equivalent sample number in
the sender’s timebase, allowing time of flight and there-
fore range to be computed. Once this startup phase is
complete, our “acoustic Motes,” specially equipped with
small amplifiers and speakers, periodically emit a simi-
lar pseudonoise chirp; IPAQs in the region each compute
their ranges to the Mote, and can localize it by trilaterat-
ing. In this case, RBS is used to synchronize all Motes
in the system to each other. A special “MoteNIC”—a
Mote physically attached to an IPAQ—provides transla-
tions between the Mote and IPAQ time domains.

Merrill et al. describe Sensoria Corporation’s use of
RBS in their implementation of a distributed, wireless
embedded system capable of autonomous position lo-
cation with accuracy on the order of 10cm [22]. This
system was built under the auspices of the DARPA
SHM program and has been field tested at Fort Leonard
Wood, Missouri, in configurations of up to 20 nodes.
Their application is also notable because it represents
a third hardware and radio platform on which RBS has
been successfully implemented. Sensoria’s “WINS NG”
node is based around the Hitachi SH4 processor running
Linux 2.4. Each node has two low-power 56Kbit/sec
hybrid TDMA/FHSS radios with an RS-232 serial inter-
face to the host processor. As with our 802.11 imple-
mentation, the firmware of this radio was opaque, mak-
ing schemes that rely on tricks at the MAC layer impos-
sible.

Finally, blind beamforming on acoustic signals has been
studied by Yao et al. for a number of years [35]. Their
group had previously restricted their empirical studies to
centralized systems, as they did not have a platform ca-
pable of synchronizing distributed audio sampling with
sufficient precision. Recently, Wang et al. reported their
first experience building a distributed beam-forming ap-
plication on IPAQs using our RBS daemon [34].

7 Conclusions and Future Work

In this paper, we explored a form of time synchroniza-
tion, Reference-Broadcast Synchronization, that pro-
vides more precise, flexible, and resource-efficient net-
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work time synchronization than traditional algorithms.
The fundamental property of our design is that it syn-
chronizes a set of receivers with one another, as op-
posed to traditional protocols in which senders synchro-
nize with receivers. In addition, we have presented a
novel multi-hop algorithm that allows this fundamental
property to be maintained across broadcast domains.

In our scheme, nodes periodically send beacon messages
to their neighbors using the network’s physical-layer
broadcast. Recipients use the message’s arrival time as a
point of reference for comparing their clocks. The mes-
sage contains no explicit timestamp, nor is it important
exactly when it is sent.

RBS has a number of properties that make it attrac-
tive. First, by using the broadcast channel to synchro-
nize receivers with one another, the largest sources of
nondeterministic latency are removed from the critical
path. This results in significantly better-precision syn-
chronization than algorithms that measure round-trip de-
lay. The residual error is often a well-behaved distribu-
tion (e.g., Gaussian), allowing further improvement by
sending multiple reference broadcasts. The extra infor-
mation produces significantly better estimates of relative
phase and frequency, and allows graceful degradation in
the presence of outliers and lost packets.

The RBS clock skew estimate also supports extrapola-
tion of past phase offsets. This enables nodes to syn-
chronize post-facto, saving energy in applications that
need synchronized time infrequently and unpredictably.

We presented a quantitative study that compared an RBS
implementation to a carefully tuned installation of GPS-
steered NTP. Both used IPAQ PDAs with 802.11 wire-
less Ethernet. We found that the average synchroniza-
tion error of RBS was 6.29± 6.45µsec, 8 times better
than that of NTP in a lightly loaded network. A heav-
ily loaded network further degraded NTP’s performance
by a factor of 30 but had little effect on RBS. With ker-
nel timestamping hints, RBS achieved an average error
of 1.85±1.28µsec, which we expect was limited by the
IPAQ’s 1µsec clock resolution.

Our multihop scheme allows locally coordinated
timescales to be federated into a global timescale, across
broadcast domains. Precision decays slowly—the aver-
age error for an n-hop network is proportional to

√
n.

In our test of kernel-assisted RBS across a 4-hop topol-
ogy, average synchronization error was 3.68±2.57µsec.
RBS-federated timescales may also be referenced to an
external standard such as UTC if at least one node has
access to a source of reference time.

We have implemented RBS on a variety of hardware
platforms, where it has proven to be robust and reliable
for both performance measurement and in support of real
applications. However, there is still much work to be
done. Some important scaling issues have not yet been
explored, such as automatic, dynamic election of the set
of nodes to act as beacon senders. If there are multiple
beacon-senders in a single neighborhood, RBS can make
use of redundant information to improve precision; how-
ever, it quickly reaches the point of diminishing return
where the system would be better off conserving band-
width instead. We would like understand just how much
extra precision is afforded by this redundancy.

In addition, we would like to quantify a number of per-
formance questions more fully: precision vs. both the
bandwidth used for beacons, and their frequency; mini-
mum time to acquire synchronization to within a given
precision bound; post-facto synchronization precision
vs. time elapsed from event to reference pulses; and pre-
cision with different data filtering algorithms. We would
like to quantify the performance of RBS when used for
external (UTC) synchronization over multiple hops, vs.
using NTP in the same topology.

We are confident that these techniques are widely ap-
plicable, based on our experience with Berkeley Motes
running TinyOS, Linux-based IPAQs, PCs, and Senso-
ria’s WinsNG radios. Each has quirks that have taught
us important lessons about RBS, so we would like fur-
ther with experience with RBS with a wider range of
hardware platforms, network interfaces, operating envi-
ronments, and applications. Many of our collaborators
in the sensor network community have research interests
that require precise time synchronization: collaborative
signal processing, acoustic ranging, object tracking, co-
ordinated actuation, and so forth. We look forward to
evaluating the utility of RBS in support of these applica-
tions.
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