Folding polyhedra:
Decision problem:
given a polygon (or connected metric polygonal 2-manifold), can its boundary be glued to itself (in pairs of intervals) such that resulting surface can be folded into exactly a convex polyhedron?

Enumeration problem: list all gluings & foldings
Combinatorial problem: how many can there be?

Why convex polyhedra?
OPEN: if the goal is any nonconvex polyhedron without boundary, is the answer YES for all polygons? [O'Rourke 2004]

Alexandrov gluing: polygon + gluing induce a metric by shortest-path lengths between all pairs of points
- metric is polyhedral: all but finitely many points have zero curvature
- metric is convex if all points have zero or positive curvature
- metric is topological sphere if gluing noncrossing shortest paths from x to all vxs
Alexandrov's Theorem: [1941; English book 2005]
every convex polyhedral metric, topologically a sphere,
is realized by a unique convex polyhedron
(possibly degenerating to doubly covered flat polygon)

Proof sketch:
Uniqueness: draw all shortest paths between pairs of vxs.
- includes all edges of any polyhedral realization
⇒ faces between mesh of paths are rigid
- Cauchy's Rigidity Theorem ⇒ unique convex realiz.

Existence: induct on $n = \# \text{vertices}$
- base case: $n \leq 4$ (double triangle or tetrahedron)
- total curvature of all vertices $= 720^\circ = 4\pi$
 [Descartes' theorem; conseq. of Gauss-Bonnet Formula]
- $n \geq 5$ ⇒ 2 vertices x, y have curvatures $\alpha, \beta < 180^\circ$
- along shortest path from x to y,
paste edge of a doubly covered triangle
⇒ new vertex @ triangle apex; adds material @ $x \& y$
- continuously vary angles of triangle at $x \& y$
 from \emptyset to $\alpha/2 \& \beta/2$ ⇒ $x \& y$ flatten
⇒ continuous path on manifold of metrics
 from original metric to metric with one less vertex
- induct on latter
- argue continuity of realizability using
 Implicit Function Theorem ⇒ nonconstructive \square
Algorithm for Alexandrov's Theorem: [Bobenko & Izmestiev 2006]
(following Blaschke & Herglotz 1937; Alexandrov 1950; Volkov 1955)

Idea: represent interior of polytope, not just boundary
- add (hypothetical) point p interior to polytope
- triangulate surface with geodesics
- form solid tetrahedron on p & each Δ
- solve for distance \(r_i \) from p to vertex \(v_i \)
⇒ determines geometry of tetrahedra, hence polytope

Generalized polytope: same combinatorial structure, tetrahedra glued around p, but not necc. in 3D
- consider dihedral angles of edges of tetrahedra ~ view as angle of solid material
- convexity invariant: \(\Sigma \) two dihedral angles incident to edge of surface triangulation ≤ 180°
- goal: reach real polytope where \(\chi_i = 360° - \Sigma \) dihedral angles around interior edge \((p, v_i) = 0 \)

Evolution: start at generalized polyhedron \(P(\emptyset) \)
- set \(\chi_i(t) = (1-t)\chi_i(\emptyset) \to 0 \) as \(t \to 1 \)
- differential equation to evolve \(r_i \)'s:
 \[
 \frac{d\mathbf{r}}{dt} = \left(\frac{\partial\mathbf{P}}{\partial \mathbf{v}} \right)^{-1} \cdot \mathbf{P}(\emptyset)
 \]
 Jacobian - how \(r_i \)'s affect \(\chi_j \)'s
- geodesic triangulation changes (flips) as \(t \to 1 \)
- crucial part of proof: Jacobian has inverse
Algorithm for Alexandrov's Theorem: (cont'd)

Starting point: need generalized polyhedron $P(\emptyset)$

1. Compute Delaunay geodesic triangulation of surface [Bobenko & Springborn 2005]
 - Start with arbitrary geodesic triangulation
 - Flipping algorithm: if circumcircle of edge contains a vertex, flip e $e \Rightarrow$ e
 - In 2D, $O(n^3)$ flips suffice
 - Here, can be arbitrarily many ~ but finite
 - Example: can start with "barber pole":
 infinitely many geodesic triangulations!
 cube with triangulated top & bottom; nasty geodesics on side

2. Show that setting all r_i equal & sufficiently large yields desired convexity invariant
 - Using Delaunay property

OPEN: bound on running time?
Ungluable polygon: [Demaine, Demaine, Lubiw, O'Rourke 2000]
- no vertex can be glued into red reflex vertex: $< 90^\circ$ free
 \Rightarrow "zip" red reflex vertex
 \Rightarrow green reflex vertices glued together
 $\Rightarrow > 360^\circ$ of material □

Random polygons are ungluable:
- suppose uniform distribution on angles & edge lengths
 $\Rightarrow \approx \frac{1}{2}$ reflex vertices
- gluing in a convex vertex still leaves reflex vertex
 (angles don't match)
- at some point must zip a reflex vertex
- fails if nearer angle is reflex:

 $\begin{array}{c}
 \text{convex} \\
 \Rightarrow \text{OK}
 \end{array}$

 $\begin{array}{c}
 \text{reflex} \\
 \Rightarrow \text{BAD}
 \end{array}$

- happens with probability $\frac{1}{2}$
 for each reflex vertex □
Perimeter halving: every convex polygon has an Alexandrov gluing
- pick any point \(x \) on polygon boundary
- glue together two boundary points at distance \(d \) from \(x \) (measured along boundary). for all \(d > 0 \)
 - both points have \(\leq 180^\circ \) of material \(\Rightarrow \) convex
- stop at diametrically opposite point \(y \)
\(\Rightarrow \) gluing two halves (paths) of perimeter from \(x \) to \(y \)
- \(x \& y \) also convex (nothing glued)
\(\Rightarrow \) Alexandrov

EXPERIMENT: cut out convex polygon
tape together perimeter halves
see what convex polyhedron you get

 Mostly different: uncountably many polyhedra
- vary \(x \) near vertex \(v_i \) say \(d \) along edge \(v_i, v_{i+1} \)
- \(x \) \& \(v_i \) become distinct vertices of shortest-path distance \(d \)
- only finitely many vertex-vertex shortest paths for a particular polyhedron
- uncountably many choices for \(d \)
\(\Rightarrow \) uncountably many polyhedra
Gluing tree:
- turn polygon “inside-out”
- gluing of that boundary to self forms a cycle around a tree
- corresponds to cutting tree in unfolding

Properties:
- each leaf is either a zipped vertex or a fold point in middle of edge (\(\Rightarrow 180^\circ\))
 \(\Rightarrow\) at most 4 fold points (720° total curvature)
- if 4 fold points, then these are only leaves
 \(\Rightarrow\) always induce curvature
- at most one nonvertex (middle of edge) glued at \(\geq 3\)-way junction (else 180° \(+\) something)
Rolling belt = path in gluing tree whose end points are either fold pts. or convex vx. leaves & along which always ≤ 180° material on either side = effectively an embedded convex polygon

⇒ can perimeter halve arbitrarily = "rolling the belt"
- only way to get infinite gluings

Examples:
1. **Rolling belt:** perimeter halving of convex polygon
2. **Rolling belts:** cylinder
 - belt between every pair of leaves
3. **Rolling belts:**
 - belt between every pair of leaves

≥ 4 **rolling belts**: impossible [6.885 Fall 2004 PS5.3]
- must be 4 fold points
⇒ no curvature elsewhere
⇒ rolling belt from one fold point is uniquely determined to some fold point
⇒ same rolling belt from latter fold point
⇒ ≤ 2 rolling belts