
Every connected union of polygons in 3D, each with a specified visible color (on each side), can be folded from a sufficiently large piece of bicolor paper of any shape (e.g., square).

Proof: fold paper down to long narrow strip (!
- triangulate the polygons
- choose a path visiting each triangle at least once
- cover each triangle along the path by zig-zag parallel to next edge, starting at opposite corner:

Choose parity of zig-zag to arrive at correct corner for next triangle

- turn gadget implements zig-zags & vertex turns:

1. desired turn
2. fold bottom layer
3. hide excess (many folds)
Proof of folding any shape: (cont'd)

- hide excess paper underneath each triangle:
 (more generally, can hide under any convex polygon)
 repeatedly mountain fold along lines extending desired edges

- color-reversal gadget along transition between triangles of opposite colors:
 1.
 2.
 3.
 4.
 fold bottom layer
Pseudo-efficiency: if allowed to start with any rectangle of paper, then can achieve \(\text{area(paper)} = \text{area(surface)} + \varepsilon \) for any \(\varepsilon > 0 \)

Proof: construct Hamiltonian refinement of triangulation:
- cut each \(\triangle \) into \(\ast \)
- walk around spanning tree of original dual:
 - now visit each triangle exactly once
 - wastage from turns \(\to 0 \) with strip width. \(\square \)

OPEN: pseudopolynomial upper bound? lower bound?

Seam placement: can place seams (visible creases/paper boundary) as desired, provided regions between seams are convex
- idea: vary strip width, use hide gadget

OPEN: what seam placements are possible?
OPEN: can a given polygon of paper fold into a given target polygon? Likely NP-hard.

OPEN: what is the smallest square that can fold into a given shape? NP-hard?

Cube wrapping: [Catalano-Johnson & Loeb 2001]

- Consider a 1×1 square.
- In a $x \times x \times x$ cube, every point has an antipodal point at least $2x$ away.
- Center of square must be at least $2x$ away from corner (points only get closer by folding).
- Opposite corners have distance at least $4x$.
- Side length $\geq 2\sqrt{x}$.
- $x \leq \frac{1}{2\sqrt{2}} = \sqrt{1}/4$ & this is possible.

OPEN: optimal square \rightarrow regular tetrahedron?

OPEN: $x \times y$ rectangle \rightarrow largest cube?
- Strip method efficient as $x/y \to \infty$.

OPEN: optimal square \rightarrow unit $k \times k$ checkerboard
- Conjecture: $k/2$ for even $k \geq 4$
- No real lower bounds
- Seamless?
Tree method: [Lang 1994–2003; Lang & Demaine 2004–] algorithm to find folding of smallest square into “uniaxial” origami base whose projection is a desired metric tree

But: optimization is difficult: exponential time, as hard as disk packing, but good heuristics
- non-self-intersection is only conjectured (we’re working on it)

Uniaxial base:
1. in \(z \geq 0 \) half-space
2. intersection with \(z = 0 \) plane = projection onto that plane
3. partition of faces into flaps, each projecting to a line segment \(\Rightarrow \) all faces vertical
4. hinge crease shared by two flaps projects to a point: common endpoint of flap projections
5. graph of flap projections as edges, connected when flaps share a hinge crease, is a tree (shadow tree). Hinge creases projecting to a vertex form a hinge
6. only one point of paper folds to each leaf
Tree method: (cont’d)

Key lemma: in any uniaxial base from convex paper, distance between two points on shadow tree ≤ distance between corresponding points on paper

Proof: latter = length of line segment on paper
- folds to path in uniaxial
- projects to shorter path on shadow tree
- shortest path in tree is only shorter □

Scale optimization: focus on shadow leaves & placement as points p_i on paper:

\[
\begin{align*}
\text{maximize} & \quad \lambda \\
\text{subject to} & \quad d(p_i, p_j) \geq \lambda \cdot d(i,j) \quad \text{for leaves } i, j
\end{align*}
\]

\[
\begin{align*}
\text{distance on paper} & \quad \text{fixed distance in tree} \\
\text{quadratic constraint} & \quad
\end{align*}
\]

Example:

\[
\begin{align*}
\text{star} & \quad \rightarrow \quad \text{disk packing, centers in square} \\
\Rightarrow & \quad \text{with nxn piece of paper, get } (n+1)^3 \\
\Rightarrow & \quad \text{arms in star can flatten to perimeter } \Theta(n^2) \\
\Rightarrow & \quad \text{MARGULIS NAPKIN PROBLEM} \quad [\text{Lang 2003}]
\end{align*}
\]
Tree method (cont'd)

Active path = path between two shadow leaves
 of length = distance in piece of paper
 - never cross each other [GFALOP Lem.16.4.2]

Triangulation: can add artificial leaf edges to the
 shadow tree to make the active paths
 partition the piece of paper into triangles
 (without changing scale factor) [GFALOP, Lem.16.6.2]
 - later these leaf edges can be "folded away"
 - some triangle edges are paper boundary, not active

Rabbit-ear molecule:
 active paths
 angular bisectors
 leaves
 HINGES = perpendiculare emanating
 from tree vertices along path
 - put them together to form entire shadow tree

Example:
More practically:
- use convex decomposition instead of triangulation
 (in practice by letting tree edge lengths vary a bit)
- Lang Universal Molecule folds convex polygon

2 kinds of events:
1) gusset: new active path \rightarrow
 split shrunken polygon
2) two vertices meeting \rightarrow
 continue along new angular bisector